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Abstract. The 1-dimensional universal formal group law is a power series (in two variables and with coefficients
in Lazard’s ring) carrying a lot of geometrical and algebraic properties. For a prime p, we study the corresponding
“p-localized” formal group law through its associated pk-series, [pFl(x) = >0 ak,sxx(” —D+l_the pk-fold
iterated formal sum of a variable x. The coefficients ai s lie in the Brown-Peterson ring BP, = Zplvi, v2, .. ]
and we describe part of their structure as polynomials in the variables v; with p-local coefficients. This is achieved by
introducing a family of filtrations { W, },>1 in BP, and studying the value of a; ; in each of the associated (bi)graded
rings BP,/W,. This allows us to identify, among monomials in a5 of minimal W,-filtration (1 < ¢ < k), an
explicit monomial m carrying the lowest possible p-divisibility. The p-local coefficient of m,, i s is described
as a Stirling-type number of the second kind and its actual value is computed up to p-local units. It turns out that
mg s Dot only carries the lowest Wy -filtration but, more importantly, the lowest p-divisibility among all other
monomials in a 5. In particular, we obtain a complete description of the p-divisibility properties of each ay .
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1. Introduction

The theory of formal group laws has shown to be of special importance in mathematics
mainly due to the wide variety of connections it has had with other mathematical branches
like geometry, algebraic topology, number theory and combinatorics. One of the basic
connections arises through the universal example. For the purposes of this paper we lo-
calize at a given prime p. Let BP stand for the p-local Brown-Peterson spectrum with
homotopy groups BP, = Zlvy, v2, ...] (say Araki generators v; € BP,(,i_1)) and let
Wy = up(x,y) € BP*(CP® x CP*™) = BP*[[x, y]] denote the corresponding Euler class
for the tensor product of the canonical complex line bundles over the axes of CP* x CP*°.
A fundamental theorem of Quillen claims that u, is both algebraically and topologically
universal (see [2, Theorem 4.6]). This bridge has led to a number of basic developments. For
instance, Hopkins-Miller and Hopkins-Mahowald have used a partial converse of Quillen’s
theorem in constructing higher K -theories related to elliptic curves (see [17] and [34]). One
of their resulting spectra has been used by Bruner, Davis and Mahowald [4] in obtaining
sharper information for the elusive problem of finding optimal Euclidean immersions for
real projective spaces.
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In this paper we concentrate on the algebro-combinatorial properties of i ,. We follow
the idea originally introduced by Johnson in [18] (as modified in [11, 12]) to make an
indirect study of 1, through its associated n-series; that is, the formal power series [1](x)
inductively defined by [n + 1](x) = pu,([n](x), x), with [0](x) = 0. Since BP is p-local,
the n-series carries the same information as the pX-series, where k = v(n) is the highest
power of p dividing n. We will focus on the latter series. By sparseness it takes the form

[P100) =) arox”, 1)

s>0

where 5 will stand for s(p — 1) + 1 and where a; ; € BPyg,_1) is the s-th (nontrivial)
coefficient. Thus each q  is a polynomial

s =) v’ (2)

with p-local coefficients ck 5 ;. The summation is over sequences I = (iy, iy, ...) of non-
negative integers, almost all zero, where v’ stands for the monomial v’1 12

Remark 1.1 We prove in [12] that each coefficient ¢, ; (and therefore gy ; itself) is
divisible by p**+, where

Mis = ks + (k= Dsqy + -+ - + 1) 3)

Here and in what follows, for a non-negative integer s we write sy; for the ith coefficient
in the p-adic decomposition of § and set

oy =Sy Sy + -0 (@)

As an immediate consequence of Theorem 1.2 below, we see that p*+s*! does not divide
ay.s, that is, g ¢ is in fact the highest power of p dividing ay .

Theorem 1.2 Let u; ; be defined as in (3) and let Ay 5 be defined by
(P = Dhrs = =1 +s0) + psy + -+ plswy + P (g + s +---). - )

Then, up to p-local units, the monomial v'*s shows up in (2) with coefficient p**s. Here
Tis = Mgy B2 kss B3 45y - - ), where i s = p*Ls(jpkory, for j > 2.

Remark 1.3 In our notation 1 = § = «, modulo p- 1, so that kk s above is indeed an
integer. We observe that a; ; is never divisible by v” (in fact by v in view of the case
¢ = 1 in Theorem 1.4 below) if j > 2; however, any large power of v; divides v’ for a
suitable value of s.

The monomial in g, ; described by Theorem 1.2 is in fact part of a general pattern: our
main result, Theorem 1.4 below, generalizes Theorem 1.2 by identifying kX monomials in
each a; ; (which may not be all different, for instance for small values of s; however, in the
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typical situation, Theorem 1.4 does detect k different monomials). The following notation
helps to describe the new monomials. For s > 0and 1 < ¢ < k set

Hoks =ksoy +k—Dsqy+---+k—¢+ Dsy
+ (k= @) (s6) + Sy -, (©6)
(p—Drgs=—1+s0)+psqy + -+ pPsi + p(ﬂ_l(s@.H) + Sipq2) + - ) @)

and

Igo,s = ()Hpﬁsa i2,<p,57 i3,¢,s, .. -)7 (8)

where i, = p? 's(j1p—1) for j > 2. Note that for ¢ = k these definitions extend the
corresponding ones in (3) and in Theorem 1.2.

Theorem 1.4 Fors > 0, 1 < ¢ < k and up to p-local units, the monomial vies shows
up in (2) with coefficient p*es,

It is to be observed that, as suggested by the notation, the monomial v’+ is independent
of k and, therefore, shows up in every a; ; with k > ¢. Moreover, while Theorem 1.4 claims
that the coefficient of this monomial is of the form ¢ x ; p*¢** in ay s, with ¢, s a p-local
unit, Proposition 3.5 below computes the actual mod- p value of ¢, x ; which, in particular,
turns out to be independent of ¢ and k.

As for the methods, the proof of Theorem 1.4 requires using suitable “weight” filtrations
W, (1 < ¢ < k) in BP, (Section 2) which are slight variations of the usual filtration by
powers of the invariant prime ideal (p, vy, vy, .. .). In more detail, the formal logarithm for
W, yields an inductive formula for the coefficients of the p*-series. In the bigraded object
BP, /W, associated to W, this gives an expression for gy  in terms of “highly” p-divisible
terms together with the monomial ¢, 4 ptetsyles in Theorem 1.4 (Section 3). Up to this
point the methods are purely algebraic. The combinatorics arise in describing the p-local
unit ¢, ¢ s This requires a determination of the mod p values of the following combinatorial
function (Section 4).

Definition 1.5 For s > 0 let ¢(s) be the number of ways in which § distinct objects can
be partitioned into p unlabeled subsets each having size congruent with 1 modulo p — 1.

Remark 1.6 The function ¢ is a modified version of the usual definition for Stirling
numbers of the second kind as the number of equivalence relations defined on a set: we are
imposing an extra condition on the size of each class. For instance ¢(0) = 0, ¢(1) = 1 and
o2) = (2”17_l ). Note that the last two agree modulo p. This is a general fact which will be
essential for our work.

Proposition 1.7 Fors > 1, ¢(s) = 1 (mod p).
This result and Proposition 3.5 solve the two main combinatorial problems left open

in [19]. Up to the author’s knowledge, Proposition 1.7 has not appeared in the literature
before.! The author’s original proof used a rather involved induction argument which had
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the advantage of relating Propositions 1.7 and 3.5 to the same combinatorial phenomenon.
Later on, Ira Gessel and Martin Klazar independently suggested a proof of Proposition 1.7
based on a direct analysis with the exponential generating function of ¢. The simple and
elegant proof presented here was suggested by one of the reviewers assigned to the original
version of this work.

In an appendix we have briefly addressed two points: (potential) applications and (pos-
sible) extensions for the theory of formal groups and, in particular, the results in this paper.

2. The weight filtrations

Let log(x) = ZSZO mx?" € (BP* ® Q)[[x]] be the formal logarithm for the universal p-
typical formal group w, [16]. By expanding both sides of the relation log([p*](x)) =
p* log(x) and equating coefficients we get the inductive relation

i

p
—aps =Yy m ( U )ai’ - prs ©)

where §; = m, if 5 = p”, and §; = 0 otherwise. The sum is taken over i > 1 and over
sequences U = (ug, 11, . . .) of non-negative integers satisfying the two conditions

pl=ugtur+ur+---, (10)
5=0uo+ Tuy +2ur+---. (11D
We use the short hand g for the product a;yay’, - - -, and ({’;) =(" ") stands for the

multinomial coefficient. We distill information from (9) through theuf(;iibwing family of
filtrations in BP, ® Q.

Definition 2.1 Fix a positive integer ¢ and let v : Q — Z be the usual p-valuation; that

is, v(q) stands for the highest power of p “dividing” a given rational number gq.

(a) The g-weight of a monomial gvi'v---v% € BP, ® Q is w,(qui' v - vir) =
p*~(g)+ Y7, ;. More generally, the p-weight of an element v € BP, ® Q, de-
noted by w,(v), is defined as the smallest of the ¢-weights of monomials in v. We agree
to set w,(0) = oo.

(b) The ¢-weight filtration W, = {W, ;};ecz in BP, ® Q is defined by W, ; = {v €
BP, @ Q: w,(v) = j}.

For n > 0, w,(m,) can be inductively computed from the formula pm,, = Z?:o m; vfli

[31, A.2.2.2]. The properties we need are summarized in the following result. For p = 2
the proof is given in [12] and this immediately generalizes to p > 2. We omit the details.

Proposition 2.2  For a positive integer i let g(i) = (p' — 1)/(p — 1).
(2) wy(uv) = wy(u) + wy(v), for u, v € BP, ® Q. In particular, the p-weight filtration is
a multiplicative decreasing filtration in BP, ® Q.
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(b) wy(m,)=gn)— np*~! for0<n <¢—1.
(C) ww(mn) > 8(40 - 1) - ((P - ])ptp—l’forn =@ - L.

The following is a more explicit statement of Theorem 1.4. The proof is the crux of this
paper.

Theorem 2.3 Fors > 0and 1 < ¢ <k let pyi s, Ay and I, s be as defined in (6)—(8).
Then the @-weight filtration of ay s, wy i s for short, is given by

pks = P g ks + hps + PP (S041) + Sty + 7). (12)

I

Furthermore, ai s = cs p*e+svles modulo (p*e+sT1) N Wowpis T Wowp,+1, Where ¢y is a

p-local unit.

Thus, the monomial ¢, p“#+svles above captures both the the p-divisibility and the ¢-
weight of a; ; in the sense that any other monomial in (2) either has a larger ¢-weight or
a larger p-divisibility. Note by the way that only the mod- p value of ¢ is relevant here. It
will be described in Proposition 3.5.

The following alternative expression for w, s will be useful in the course of proving
Theorem 2.3.

Lemma 2.4 Set A, = Z?J(p“’*l(p — D@ — j) — p* + phsyjy and dyy = p? +
PN (p— Dk — @), then (p — Dwyis = —1 +dyros + Ay s

Proof: From (12), (6), (7) and (4) (in that order) we get

(p— l)ww,k,s
=(p— Dp* thgss + (P — Dhps +(p = Dp*™" > s
JZe+1
o—1
=(p—Dp*! (Z(k — sy + k= 9) Zs<,->>
j=0 j=e
(p .
1+ Plsp+p Y s+ =Dpt T Y sy
j=0 Jjze+1 Jjze+1
¢o—1 ¢—1 )
=(p—Dp*! (Z(k = sy +k—9) Zw)) — 14+ plsy+p) s
Jj=0 Jjze Jj=0 jze
=—1+ " ' (p— Dk — @)+ p*)ay
p—1 )
+ > P o = Dk =) = p? + (p = Dp* k= ) + sy, O
=0

We close the section by recalling a few auxiliary technical tools. The first one is a
well known relation (see for instance [43]); the last two are Lemmas 7 and 9 in [19] and
Lemma 2.8 in [12].
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Lemma?2.5 Letm have p-adic decompositionm = Zizo m;p', thenm = (p—1)v(m!)+
a(m), where a(m) = 3 ;- om;.

Lemma 2.6 (Johnson [19]) With the notation of (4) and (11) we have oy < agee(ug) +
a1a(uy) + - - - In the presence of (a) below, the above inequality is in fact an equality if
and only if condition (b) below holds.

@) u, < p, forallt >0, and

(b) Sy = 0(j>u() + 1(j>1/l1 + .-, forall j = 0.

Lemma 2.7 Let £ € N and assume given co > ¢y > -+ > ¢cy—1 > 0. Iij>o ejpj =
ijoejpf, wheree; > 0and0 < e; < p—1for j > 0, and where only finitely many €;’s
and e;’s are non-zero, then cogg + 161 + - -+ + Co_18¢—1 = Coeo +creg + -+ -+ co_1ep_y.

3. Filtering the coefficients

The calculations in this section are rather technical, they transform the algebraic information
in (9) into a combinatorial problem which will be tackled in Section 4.

Lemma 3.1 Let wy s be as defined in (12).

(a) Consider a summand o = mi(g)aij in (9). Then wy(c) > wgy . This is a strict
inequality provided either one of conditions (a) or (b) in Lemma 2.6 fails.

(b) w(ﬂ(ak,s) = Wy k,s-

Proof: When 5 = p”, Proposition 2.2 implies a)(/,(pkmn) > wy,s; therefore part (b)
follows from part (a) and (9). We now prove part (a) by induction over s, the case s = 0
being vacuously true. Since pimi lies in the ith power of the ideal (p, vy, v2,...) (see
[41]) we have i < w,(p'm;) = ip*~" + w,(m;), in view of Proposition 2.2(a). Thus
wy(m;) > i(1 — p?~') and then

@, (mi <Z )) >i(1—p* H+p! <V(pi!) - V(ur!)>
>0

AP
=il —p* )+ W —p Y v, (13)
p— >0

\%

On the other hand, Proposition 2.2 and Lemmas 2.4-2.6, together with (10) and the inductive
hypothesis yield

(p=Doy(af) = (p=1D wewprs =Y w(—=1+dysot, + Ay.)
>0 t>0
=—p' +d,x Y ((p— Do) + e + ) u, Ay,
t>0 >0
> —p'+dgi Y (p— Do +dgsos + Y uAg,. (14)

>0 >0
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But from (11) Vz? see ijo 5<j>Pj = Z;zo(zj‘zoﬂjﬂ’j)“t = 2150(2130 ”tt<j>)1’j’ SO
that A, s < Y 20[(p? ' (p — D@ — j) = p? 4+ p)) X ino tit(j] = Y yng Ui Ay, in view
of Lemma 2.7. Therefore, with ¢ as in the hypothesis, (13) and (14) now give
(p = Do) = i(p = DA = p* )+ p'(p?~ = 1) = p~ ' +dy sy + Ay
+(p = D(=p* ™ +dy ) ) vlud)

120
>i(p— DL —p* N+ p'(p? ' = 1) = p* ' +dy s + Ay (15)
> -1+ d(p,kax + A(p,s == (P - l)ww,k,h (16)

in view of Lemma 2.4 again. The proof is completed by noticing that inequality (15) is strict
when condition (a) in Lemma 2.6 fails; otherwise, inequality (14) is strict when condition
(b) in Lemma 2.6 fails. O

Remark3.2 Inview of Lemma 3.1, the proof of Theorem 2.3 depends only on establishing
the required congruence modulo the larger ideal (p*e+*') + W w51+

Corollary 3.3 Modulo the ideal in Remark 3.2, (9) simplifies to —ay s = ml({;)a,g —
p*8,, where the sum is taken over sequences U which satisfy (10) (for i = 1) as well as
conditions (a) and (b) in Lemma 2.6.

Proof: Lemma 3.1 gives —a; ; = Zmi(’; )a,? — p*8, modulo ¢-filtration larger than
Wy k,s» Where the summation is over i > 1 and over sequences U satisfying (10) as well as
parts (a) and (b) in Lemma 2.6. Observe that there can not be any such sequence U when
oy = l—implying the desired conclusion in this case. Indeed, with § = p” and if u, is a
positive term in U, then for each j > 0 with £;;y > 0, the relation Ojyuo + 1¢yu; + - -
+ Ljyug + -+ = s(jy = 6(j, n) (Kronecker’s delta) implies £(jy = uy = 1 and j = n.
This means £ = p", or £ = g(n) where g is as in Proposition 2.2, so that Ugmy = 1 and
u, = 0 for r # g(n). But this is incompatible with (10). Thus we can assume o, > 1.
Then, for ¢ = 1 the desired conclusion follows directly from Eq. (37) in [19], whereas for
¢ > 2 it follows from the proof of Lemma 3.1 with the added observation that the inequality
i(p— DA —p Y+ pi(p?~' — 1) — p?~! > —1 used in (16) is strict for i > 2. O

Although the congruence in Corollary 3.3 above would seem to be circularly giving some
ay. s in terms of all other ay ;, t > 0, it is actually inductive (on «y): in view of condition (b)
in Lemma 2.6, the Uth summand in that congruence must satisfy o, = ), o u,, so that
for any nontrivial factor a,':jt (that is, one with u, # 0) we have o, < o in view of (10).
Thus, the next result will ground an inductive proof for Theorem 2.3.

Proposition 3.4 For 5= p" the congruence in Theorem 2.3 (modulo the ideal in
Remark 3.2) holds with ¢y = 1.

Proof: Assume first n < ¢. By definition py s =k —n, Ay s = g(n) and wy i s = (k —
n)p?~'4g(n), where g(n)is as in Proposition 2.2. Then the desired congruence follows from

Qs = pk’”vf(") modulo p*~"*!, which is the conclusion of Corollary 2.6 in [12]. Assume
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nown > @,sothat p, s =k—@,hps = glp—andwy i s = p* ' (k—p+1)+glp—1).
Now the desired congruence is

k_“’vf(‘p_l) p*!

vy mod (P + W (17)

akyx =p

Under our notation, Lemma 11 in [19] translates as a; ; = pk’lal,s modulo W ;,; which,

for ¢ = 1, implies (17) in view of the relations w; x s = k and a; ; = v, modulo W, ,—the
latter being a standard consequence of the formal sum expression [2]

I =3 v (18)

i>0

Thus we further assume ¢ > 2 (in particular k£ > 2). Consider the inductive equation

[PX100) = [P 11D = D@k, ([plx)) P~ DF! (19)

Jj=0

By Remark 1.1, ax_ ; is divisible by pF¢+lunless j(p — 1)+ 1 = rp?~! for some r > 0.
Butin such a case, o, (ax—1 ;j([p1(x))/ P~ D) > 14 mp¢~! > w0, p + 1, forr > k—p+1,
whileif 2 <r <k — ¢ + 1 (so that ¢ < k), Lemma 3.1(b) gives

O (12 [€9) Ly
> Wy k-1,j + er—l = pwfl((k — Djoy + k= 2)jay + -+ (k — @) jig-1y
. , 1 _ . .
+ P (g + g )+ P gy g + o) 77

which is easily verified to be larger than w,, 1 , (for this it is convenient to consider the three
cases v(r) = 0, v(r) = 1 and v(r) > 2). Thus, (19) becomes

[PF100) = a1 g1y P1E)?" mod (XYY + Wy, 11 (20)

Now, a second application of [12, Corollary 2.6] yields ax_i ¢(o—1) = pk=e vlg(wfl) modulo
p*¥=¢*1: therefore, in terms of the p-formal sum expression (18), the right hand side of (20)

transforms as

P!
$—1 _ —1 Kp Jj —o+1
a—1,50-1) ([PY)P" = prouf® ><Z ’v,-xf’) mod (p*~**")

Jj=0
-1

p(ﬂ

= pkeypse=D vix? mod W,

=p 1 jX 0,04 k5 +1
Jj=0

_ —1 v—1 Jjte—1 _
= pk ‘/’vf'(w )va x? mod (p*F=¢*1).
70
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- .
+o-1
pite

All together gives [p*](x) = pk“/’vig(w_l) > is0 vfw X modulo (p* )+ Wy 0, 41,
and (17) follows by comparing coefficients of the p"th power of x.

Proof of Theorem 2.3: Letw, > 2 and pick a sequence U as in Corollary 3.3. Using (6),
(7), (8), (10) with i = 1, (12) and condition (b) in Lemma 2.6 we easily get

(1) ZIZO ul)\'(p.t = _1 + )"ga,s’

(i) Zzzo Utljpr = Ljp,ss
(i) D oo st rs = Mgks and, therefore,
(iv) ZIZO Uty k,t = -1+ Wy k,s-

Since v( (’}) =1and pm; =v; mod p [41], we inductively see that the summand ml((’;)a,f’
in the congruence of Corollary 3.3 contributes with %(Z)(]_Lzo ¢/ ptersvles in the ex-
pression for —ay ; modulo the ideal in Theorem 2.3. The proof is completed by the next

result. O

Proposition 3.5 Let c¢; € Z/p be defined (inductively on ag) by ¢, = 1 if oy, = 1, and
s ==Y %(5)]_[[20 ¢ for ay > 1, where the sum is taken over sequences U as in
Corollary 3.3. Then ¢, = (szo siyD7L

The proof of this result is deferred until we had proved Proposition 1.7 in the next and
final section.

4. Modified Stirling numbers

For a > 1 let X, stand for the permutation group (acting on the left) of the set [a] =
{1,2, ..., a}. For an equivalence relation ~ on [a] and a permutation o € X, consider the
equivalence relation ~, given so thati ~, j precisely when o (i) ~ o(j). This produces a
(right) action of ¥, on the set R, of equivalence relations on [a]. Now, for a prime number
p and a positive integer s seta = 5§ = s(p — 1) + | and consider the set ®(s) € R;
consisting of those equivalence relations having exactly p equivalence classes each one of
which has size congruent with 1 modulo p — 1 (thus ¢(s) in Definition 1.5 is the size of
®(s)). It is clear that ®(s) is closed under the action of X;. We consider the restricted action

D(s) x Z/p — D(s) (21)

under the usual group monomorphisms Z/p < X, <> X;. As ®(1) consists of a single
point, the action of Z/p on ®(1) is trivial; however, the next result (whose straightforward
proof is included just for completeness) shows that the situation is certainly different for
s > 2.

Lemma 4.1 Lets > 2. The orbit of ~ € D(s) reduces to {~} if and only if i ~ j for all
i,j€lpl
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Proof: It is clear from the construction that, when [ p] is contained in some equivalence
class of ~, the relation o (i) ~ i holds for any i € [5] and any o € Z/p so that, in particular,
~s = ~.Conversely, assume ~, = ~forallo € Z/p,buti # i+ 1fori € [p—1]. Then
forany j € [p—1]chooseo; € Z/p witho;(i) = jandobservei * i+1 =i %, i+1 =
Jj=0;0) #0;@+1)=j+1. Sinces > 2, there are j € [p] and k > p with j ~ k and
take o € Z/ p to be the usual generator if j < p, but to be the inverse of the usual generator
otherwise (so that j % o(j) as shown above). Now, j ~k = j ~, k = o (j) ~ o(k) = k.
But the last relation is incompatible with k ~ j # o (j). O

Proof of Proposition 1.7: Let s > 2 and consider the map 6 : R; — R;=7 given by
restriction of equivalence relations under the inclusion ¢: [ s — 1] — [5], where «(1) = 1
and ((¢) = £+ p — 1, for £ > 2. With ®'(s) standing for the set of elements in ®(s) whose
orbit under (21) is a singleton, Lemma 4.1 claims that the restriction of 6 to ®'(s) is a
one-to-one map onto ®(s — 1). But p is prime, so that any Z/ p-orbit in ®(s) either is a
singleton or has size p. Therefore, in a mod-p counting of ®(s), we can throw away the
latter orbits and obtain ¢(s) = |®'(s)| = ¢(s — 1) modulo p. The result follows since, as
observed in Remark 1.6, ¢(1) = 1. O

Our approach to Proposition 3.5 requires a generalized version of the above combinatorial
situation: we want the same sort of partitions, however, now the objects to be partitioned
admit repetitions. We set up the situation in detail. Fors > Oand j > 0 assume givenaset 7}
consisting of sy distinct elements, which we refer to as having “type” j,sothatT; N T; = ¢}
fori # j.(Wekeep the conventions in Remark 1.1, so that 7; = ¥ for almost all i; moreover
oy, thesizeof T = szo T;,is congruent with 1 modulo p—1in view of Remark 1.3). Letus

identify the set dD(‘);jjll ), denoted by ®(T') for simplicity, with the set of partitions of T into
p unlabeled sets each one having size congruent with 1 modulo p — 1. Likewise, let ®z(T)
stand for the set of partitions as above but where we do not distinguish among elements
of T having the same type. There is an obvious surjective function 7w : ®(T) — Pr(T)
obtained by neglecting any distinction among objects of the same type. As we shall see, the
proof of Proposition 3.5 demands, on the one hand, knowing the size of 7 ~!({y}) for each
y € ®(T), and on the other, using the sequences U in Corollary 3.3 as a way to identify
elements in ®(7") with the same m-image. We start with the latter task, and for that matter,
we denote by S the set of sequences U satisfying (10) for i = 1, as well as conditions (a)
and (b) in Lemma 2.6.

Let 7 be a block of an element in ®(T'). For j > 0 let 7(; be the number of elements
in T of type j. By construction, ) j=0 T(jy—the size of T—is congruent with 1 modulo
p — 1, thus there is a unique number ¢ > 0, called the “type distribution” of 7, such that
t = ijo 7;yp’. Note that #;, = 1(;y as t(jy < s(jy < p. It is clear that two elements
X1, Xy € ©(T) have the same m-image if and only if the blocks of x; can be set into a
one-to-one correspondence with those of x; so that corresponding blocks have the same
type distribution (such a situation will be referred as “x; and x, having the same type
distribution”). Now for x € ®(T) set U, = (ug, U1, . ..), where u, is the number of blocks
in x having type . In these conditions (10) for i = 1 and condition (b) in Lemma 2.6
clearly hold, as well as the fact that 0 < u, < p for ¢ > 0. Moreover, if u,, = p for some
tp > 0, there would be a type j > 0 repeating at least p times, in contradiction to the
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fact that s(;y < p. Therefore the correspondence x +— U, defines a map p: d(T) — S
which, by construction, is constant on each 7~ ({y}). In particular we get an induced map

Lemma 4.2 p is bijective.

Proof: It suffices to construct a map v:S — O(T) such that mvp = 7 and pwv is the
identity on S (the former condition implies that 7z v is surjective; the latter that 7 v is injective
and, therefore, that (mv)~! = p). Let U € S have nonzero terms uy(1y, Us(2), - - - » U(r)- The
formulee p = Y1, u,i) and sjy = Y i, uypt(i)jy mean we can choose a (numbered)
partition of T; into p blocks in such a way that the first u,(;) blocks have size #(1)(;), the
second u,(2) blocks have size #(2)(jy, ... , and the last u,. blocks have size (r);, (some
of the blocks may be empty, but we count them anyway). Then v(U) is formed by the
partition whose fth block (1 < ¢ < p) consists of the elements in the £th block of each
T; for j > O—the typical combinatorial situation (p = 7,7 = 3, u;1y = 2, us2) = 3 and
u;3) = 2) is illustrated in the picture below where the boxes on the jth row represent the
chosen partition of 7}, the union of the boxes on a given column form a block of v(U) and
the number inside boxes exemplifies their size.

Ug(1) Ur(2) Ur(3)
3 N EOTON N I o o I o N b I o R R
n L T L _Jl@e][ L JL |
oL J L JL JL L J[®a]
D S P
t(1)-type blocks of v(U) t(2)-type blocks of v(U) t(3)-type blocks of v(U)

Asl=7i=3 ., typ! = > js0t(jy modulo p — 1, v(U) is indeed an element in O(T).
Then the relation pv = 1g is immediate, while the relation 7vp = m follows from the
observation that, for any x € ®(T), vp(x) has been constructed so to have the same type
distribution as x. O

Proof of Proposition 3.5: We proceed by induction on «;, the result being obvious for
oy = 1. For oy > 1 Wilson’s theorem gives

=y (]_[u,!)1 [Te" (22)

UeS \ >0 120
On the other hand, for U € S and using the notation in the proof of Lemma 4.2, a straight-
forward counting shows that |p~!(U)|, the size of p~!(U), is given by
_ ! ( S(j) )
Uiy ! i=0 t(D)jy, t(Wgjys ooty oene e LE) Gy EE) Gy -5 E) () ’
(23)
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where (i) ;) repeats u,(;) times in the jth multinomial coefficient. Since u, = 0 for ¢ # (i),
the product of the multinomial coefficients in (23) can be rewritten as

(o) (11 (1) )

whose mod- p values agrees with

(1_[ S() !> (]_[ C?') : 24)
Jj=0 t>0

in view of the inductive hypothesis and the observations in the paragraph just before
Proposition 3.4. Thus (22)—(24) yield

-1
¢ = (Z |p-1(U)|> (Hs<,->!> :
UeS j=0

The conclusion follows since, by Lemma 4.2 and Proposition 1.7,

S 1MW) = 19(T) =1 modulo p. O
UeS

Appendix

It should be stressed how just a simple modification (Definition 2.1) of the standard fil-
tration by powers of the ideal (p, v, vz, ...) allows us to get so much information on the
polynomial structure of the coefficients in the p*-series. Yet, there are many more obvious
modified filtrations worth trying on. We believe that further modifications will eventually
shed considerable light toward a true global understanding of these algebraic objects. The
next lines are intended to stress the importance of such a goal; indeed, we briefly sample
areas which could (or even have) benefit(ted) from the results in this paper. Far from making
an exhaustive list of applications, our intention is just to pinpoint explicit situations directly
related to our work.

Number theory is perhaps the most natural area linked to the theory of formal groups,
and the relations have become abundant over the time. The text [16] gives an excellent
revision for known applications (up to the mid 70’s) of formal group theory into number
theory as well as into arithmetical and algebriac geometry. More recent applications to
cryptography, where it is important to have methods for computing the cardinality of the
group of rational points of elliptic curves defined over a finite field F', can be derived from
the results in [8]. In that work, formal group laws associated to elliptic curves are used to
give effective methods to compute isogenies (see also [3, 23] for further developments in
this direction). More generally, it is possible to associate formal group laws to algebraic
varieties. Most interesting cases seem to be one-dimensional formal groups arising from
Calabi-Yau varieties. For instance, the p-series—and in particular the pth coefficient—
contains information about the number of rational points on the variety over the field with
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p elements [14, 36, 37, 44]. Formal group theory has also proven to have close connections
to class field theory, offering alternative approaches which reveal remarkable properties of
number and local fields [10].

In combinatorics it is worth noticing the interrelation of formal group theory with umbral
calculus [6, 33]. As for applications in other areas of mathematics, the theory of formal
groups has played, in fact, a sort of unifying role. Since the 1986 conference at the IAS
in Princeton ([22], see also [35, 38])—whose original aim centered at (that time) recent
developments of elliptic genera and elliptic cohomology—it has became clear that geometry
and physics enter prominently into the subject [1, 30, 42]. In particular, and as already
noticed in the introduction, algebraic topology has seen deep connections to those areas via
the formal-group-grounds it shares with number theory.

‘We finish this brief survey with a bit more thorough revision of some aspects in algebraic
topology directly related to the results in this paper.

Right from the original work of Johnson [18] it was known that “half” the coefficients
in the 2-series were even (but not divisible by 4). It turns out that this information was
the key to compute in [9] BP-Euler theoretic obstructions for the existence of Euclidean
immersions of real projective spaces. The calculation led to what could be the most general
and strongest result known to date on this problem of differential topology and, consequently,
was a motivation for the development of this paper. Indeed, the 2-divisibility properties for
the 2*-series obtained here (or in [12]) were used in [13] to compute the corresponding
obstructions for the existence of Euclidean immersions of 2-torsion lens spaces, extending
in part the main result in [9].

Another (far reaching) connection with algebraic and differential topology starts with
the study of bordism classes of free (Z/p)"-actions on oriented manifolds. This problem
led Conner and Floyd [7] to consider the oriented bordism (MSO-homology) of (BZ/ p)™",
the iterated n-fold smash product of the classifying space for Z/p with itself. As they
noticed, the bottom “toral” class in these groups plays a fundamental role in the problem,
for its MSO, annihilator ideal I, is generated by those bordism classes of oriented manifolds
admitting a free (Z/ p)"-action. Conner and Floyd’s main geometric results can be recovered
provided a conjectured description of I, holds (the so-called Conner-Floyd conjecture). For
this problem one can replace the Thom spectrum MSO by the Brown-Peterson spectrum BP
and, in these terms, the iterated n-fold tensor product (over BP,) of BP,(BZ/ p) with itself
—where the p-series plays a major role—yields a first approximation to 1,,. The Conner-
Floyd conjecture was proved in the early 80’s: I,, = (p, vy, v, ..., Uy,—1) [29, 32], and it
turns out that, together with detailed information about the p-series, the above description
of I, leads in fact to a full description of the (additive) structure of the Brown-Peterson
homology of (BZ/p)™" [20, 21]. The relevance of such a calculation has been confirmed
by Minami’s work [25-28] on the possible existence of framed manifolds of Kervaire
invariant 1 (that is, on the basic problem of understanding stable homotopy classes of
spheres detected in the 2-line of the classical Adams spectral sequence). Now, in view of
the basic role the p-series played in the above development, it would be interesting to see
to what extent the information in this paper for the pX-series can be used in a calculation of
BP.(BZ/p" x --- x BZ/p*), as well as its implications in the stable homotopy groups of
spheres.
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Note

1. Some algebraic-combinatoric aspects of the poset of partitions with restricted block size has been studied in
[5, 15, 24, 39, 40].
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