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Abstract. We provide a characterization of the real-valued univariate polynomials that have only real zeros, all
in a prescribed interval [a, b]. The conditions are stated in terms of positive semidefiniteness of related Hankel
matrices.
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1. Introduction

From a fundamental result of Aissen et al. [1], a real-valued univariate polynomial has
all its zeros real and nonpositive, if and only if a certain infinite Toeplitz matrix is totally
nonnegative (see also [9, Theorem 1, p. 21]). However, despite its theoretical significance,
this result involves checking infinitely many conditions, and therefore, cannot be applied
directly for practical purposes (see Stanley [9] on some open problems in Algebraic Combi-
natorics). Using a modified Routh array, S̆iljak has provided a finite algebraic procedure to
count the number of positive (or negative) zeros, with their multiplicity (see also the more
recent paper [8, Theorem 3.9, p. 140]).

In this paper we provide a characterization of such polynomials θ : R→R different from
that of S̆iljak. Our conditions are stated in terms of two Hankel matrices M(n, s), B(n, s)
formed with some functions s of the coefficients of the polynomial θ (the normalized
Newton’s sums). The conditions state that M(n, s) and −B(n, s) must be positive semidef-
inite (M(n, s) � 0, B(n, s) � 0) and the rank of M(n, s) gives the number of distinct zeros.
This condition is of the same flavour as Gantmacher’s conditions for the number of real
zeros of θ (see Gantmacher [4]). If we drop the nonpositivity condition on the zeros, then
the condition reduces to M(n, s) � 0, that is, a necessary and sufficient condition for θ to
have only real zeros (as before, the rank of M(n, s) also giving the number of distinct zeros).
The basic idea is to consider conditions for a probability measure to have its support on the
real zeros of θ . Then, we use a deep result in algebraic geometry of Curto and Fialkow [3]
on the K-moment problem.

In addition, this methodology allows us to also provide a similar necessary and sufficient
condition on the coefficients for θ to have all its zeros real and in a prescribed interval [a, b]
of the real line.
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2. Notation and definitions

Let R[x] be the ring of real-valued univariate polynomials u : R→R. In a standard fashion,
we identify u with its vector of coefficients {ui } when we write

u(x) =
n∑

i=0

ui x
i , (2.1)

in the canonical basis

1, x, x2, . . . (2.2)

The problem under investigation is thus to characaterize the polynomials u with all its
zeros real and nonpositive.

2.1. Moment matrix

Given an infinite vector y ∈ R∞, let M(n, y), B(n, y) ∈ R(n+1)×(n+1) be the Hankel
matrices

M(n, y) =




1 y1 y2 · · · yn

y1 y2 y3 · · · yn+1

· · · · · · · · · · · · · · ·
yn yn yn+1 · · · y2n


,

and

B(n, y) =




y1 y2 y3 · · · yn+1

y2 y3 y4 · · · yn+2

· · · · · · · · · · · · · · ·
yn+1 yn+2 yn+3 · · · y2n+1


,

respectively. M(0, y) is just the (1, 1)-matrix [1]. M(n, y) is called a moment matrix.
Whenever y is the vector of moments of some measure µ, then for every vector q ∈ R[x]
of degree less than n, with vector of coefficients q ∈ Rn+1, we have

〈q, M(n, y)q〉 =
∫

q(x)2µ(dx) ≥ 0, (2.3)

and therefore, as (2.3) is true for every q ∈ Rn+1, we must have M(n, y) � 0, that is, M(n, y)
is positive semidefinite.



POLYNOMIALS WITH ALL ZEROS REAL 233

2.2. Localizing matrix

Similarly, given a polynomial θ ∈ R[x] of degree s, and given an infinite vector y ∈ R∞,
define the localizing matrix Mθ (n, y) (with respect to θ ) to be

Mθ (n, y)(i, j) =
s∑

k=0

θk yi+ j+k, ∀i, j ≤ n.

Observe that B(n, y) = Mx (n, y), that is, B(n, y) is a localizing matrix with respect to the
polynomial x �→ θ (x) := x . The term localizing is used in Curto and Fialkow [3] because if
y is the vector of moments of some measure µ, Mθ (n, y) � 0 states a necessary condition
for µ to have its support contained in the algebraic set {x ∈ R : θ (x) ≥ 0}. Indeed if y is the
vector of moments of some measure µ, then for every vector q ∈ R[x] of degree less than
n, with vector of coefficients q ∈ Rn+1, we have

〈q, Mθ (n, y)q〉 =
∫

θ (x)q(x)2µ(dx), (2.4)

and therefore, as (2.4) is true for every q ∈ Rn+1, we must have Mθ (n, y) � 0, whenever
the support of µ is contained in the set {x ∈ R | θ (x) ≥ 0}.

Therefore, if y is the vector of moments of some measure µ, the condition Mθ (n, y) = 0
will state a necessary condition for µ to have its support on the real zeros of θ (x). With
the additional condition B(n, y) � 0, we will state a necessary condition for µ to have its
support on the nonpositive real zeros of θ .

Remark 2.1 In the sequel, we will use the following observation. Let θ ∈ R[x] be a
polynomial of degree n +1, and let {ai }, i = 1, . . . , q, be its distinct zeros (real or complex)
with associated multiplicity ni . Let s ∈ R∞ be the infinite sequence defined by

sk = 1

n + 1

q∑
i=1

ni a
k
i , k = 1, 2, . . . (2.5)

From the definition of Mθ (n, .), it then follows that Mθ (n, s) = 0 for all n = 1, 2, . . .

3. Main result

For notational convenience, we consider a polynomial θ ∈ R[x] of degree n + 1 and, with
no loss of generality, we may and will assume that θn+1 = 1, that is, we will consider the
polynomial θ ∈ R[x]:

x �→ θ (x) := xn+1 +
n∑

i=0

θi x
i , x ∈ R.
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We first need to introduce some additional material. Given n fixed, let ek : Rn+1→R be
the elementary symmetric functions

ek :=
∑

1≤i1<i2<···<ik≤n+1

xi1 xi2 · · · xik , k = 1, 2, . . .

It is well known that every symmetric polynomial p ∈ C[x1, . . . , xn+1] is also a member
of C[e1, . . . , en+1].

In particular, denote by {q (k)
α } the coefficients in C of the expansion of (n +1)−1 ∑n+1

i=1 xk
i

in the basis (e1, . . . , en+1). That is,

(n + 1)−1
n+1∑
i=1

xk
i = qk(e1, . . . , en+1)

=
∑
|α|≤k

q (k)
α eα1

1 · · · eαn+1
n+1 , k = 1, . . . (3.1)

with q (k)
α ∈ C, for all α, and |α| := ∑

i αi . In fact, the coefficients {q (k)
α } are all in Q and

have a well-known combinatorial interpretation (see e.g. Macdonald [6, Ch. I, Section 6,
Example 8] and Beck et al. [2]).

Consider the moment matrix M(n, s) ∈ R(n+1)×(n+1) defined as follows: For all 2 <

i + j ≤ 2n + 2,

M(n, s)(i, j) = si+ j−2 = qi+ j−2(−θn, θn−1, . . . , (−1)n+1θ0), (3.2)

where the qi ’s are defined in (3.1). Thus, the si ’s are the Newton’s sums (here normalized)
already considered in Gantmacher [4]. More precisely, if θ ∈ R[x] has q distinct zeros
a1, . . . , aq (real or complex) with associated multiplicity n1, . . . , nq , then

sk = 1

n + 1

q∑
i=1

ak
i ni , k = 0, 1, . . . (3.3)

It is important to notice that the number q of all distinct zeros of θ (real or complex) is
equal to the rank of the matrix associated with the quadratic form Qn : Rn→R,

x �→ Qn(x, x) :=
n−1∑

i,k=0

si+k xi xk, ∀n ≥ q, (3.4)

see Gantmacher [4, Theorem 6, p. 202]. Similarly, let B(n, s) ∈ R(n+1)×(n+1) be such that
for all 1 ≤ i, j ≤ n + 1,

B(n, s)(i, j) = si+ j−1 = qi+ j−1(−θn, θn−1, . . . , (−1)n+1θ0). (3.5)

Theorem 3.1 Let θ ∈ R[x] be the polynomial x �→ θ (x) := xn+1 + ∑n
i=0 θi x i , and let

s ∈ R∞ be the infinite vector of (normalized) Newton’s sums defined in (3.3). Then the
following two propositions are equivalent:
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(i) All the zeros of θ are real, nonpositive, and q are distinct.
(ii) M(n, s) � 0, B(n, s) � 0 and rank(M(n, s)) = q.

Proof: (i) ⇒ (ii). Let a1; a2, . . . , aq be the q real zeros of θ , all assumed to be nonpositive,
and with associated multiplicity ni , i = 1, . . . , q. Let µ be the probability measure on R,
defined by

µ := 1

n + 1

q∑
i=1

niδai ,

(where δx stands for the Dirac measure at the point x ∈ R), and let s ∈ R∞ be its associated
infinite vector of moments, that is,

sk =
∫

R

xk dµ = 1

n + 1

q∑
i=1

ni a
k
i , k = 1, 2, . . . .

In other words, the moments of µ are the (normalized) Newton’s sums defined in (3.3).
Therefore, M(n, s) � 0 (as it is the moment matrix associated with µ) and moreover,

since every zero of θ is real and nonpositive, then, necessarily, µ has its support con-
tained in (−∞, 0]. This clearly implies B(n, s) � 0. Finally, observe that M(n, s) is the
matrix associated with the quadratic form x �→ Qn+1(x, x) (cf. (3.4)). Therefore, as the
number of distinct zeros is q , from Gantmacher [4, Theorem 6, p. 202], we must have
q = rank(M(n, s)).

(ii) ⇒ (i). Remember that since M(n, s) is the matrix associated with the quadratic form
x �→ Qn+1(x, x) (cf. (3.4)), we know that rank(M(n + k, s)) = q for all k = 0, 1, . . . as
it is the number of distinct zeros (real or complex) of θ (and we will show that they all
are real). Next, from M(n, s) � 0 and rank(M(n + k, s)) = rank(M(n, s)) = q, it follows
that M(n + k, s) � 0 for all k = 0, 1, . . .. In other words, and in the terminology of Curto
and Fialkow [3], the matrices M(n + k, s) are all flat positive extensions of M(n, s), for all
k = 1, 2, . . ..

In addition, observe that from the definition of the sk’s, and as θ (ai ) = 0 for all i =
1, 2, . . . , q , we also have Mθ (n, s) = 0 (cf. Remark 2.1). Therefore, s also satisfies

M(2n + 1, s) � 0; B(n, s) � 0; Mθ (n, s) = 0. (3.6)

Equivalently,

M(2n + 1, s) � 0; M−x (n, s) � 0; Mθ (n, s) = 0. (3.7)

But then, from Theorem 1.6 in Curto and Fialkow [3, p. 6] (adapated here to the one-
dimensional case), s is the vector of moments of a rank(M(n, s))-atomic (or, q-atomic) prob-
ability measure with support contained in {θ (x) = 0} ∩ (−∞, 0] (the constraint Mθ (n, s) =
0 is equivalent to Mθ (n, s) � 0 and M−θ (n, s) � 0).

As q was the number of distinct (real or complex) zeros of θ , this shows that in fact θ

has only real zeros, all nonpositive and q distinct. �
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If in Theorem 3.1 we drop the condition B(n, s) � 0, then M(n, s) � 0 becomes a
necessary and sufficient condition for θ to have only real zeros.

We next consider the case where all the zeros are real and in a prescribed interval
[a, b] ⊆ R.

Theorem 3.2 Let [a, b] ⊆ R, θ ∈ R[x] be the polynomial x �→ θ (x) := xn+1+∑n
i=0 θi x i ,

and let s ∈ R∞ be the infinite vector of (normalized) Newton’s sums defined in (3.3). Then
the following two propositions are equivalent:
(i) All the zeros of θ are in [a, b], and q are distinct.

(ii) M(n, s) � 0, bM(n, s) � B(n, s) � aM(n, s) and rank(M(n, s)) = q.

Proof: The proof mimics that of Theorem 3.1. It is immediate to check that bM(n, s) −
B(n, s) is the localizing matrix Mb−x (n, s) whereas B(n, s) − aM(n, s) is the localizing
matrix Mx−a(n, s). Therefore, exactly as in the proof of Theorem 3.1, invoking Theorem 1.6
in Curto and Fialkow [3], the conditions in (ii) are necessary and sufficient for the vector s
to be the vector of moments of a probability measure with support in the set

{x ∈ R | θ (x) = 0; b − x ≥ 0; x − a ≥ 0}. �

When a > −∞ and b < ∞, the condition M(n, s) � 0 is implied by the other one. However,
as it stands, Theorem 3.2 includes Theorem 3.1 as a particular case with a = −∞ and b = 0.

Example Consider the 3rd degree polynomial

x �→ θ (x) := x3 + θ2x2 + θ1x + θ0, x ∈ R.

M(2, s) ∈ R3×3 is the Hankel matrix




1 −θ2/3
(
θ2

2 − 2θ1
)
/3

−θ2/3
(
θ2

2 − 2θ1
)
/3 −θ3

2 /3 + θ1θ2 − θ0(
θ2

2 − 2θ1
)
/3 −θ3

2 /3 + θ1θ2 − θ0 θ4
2 /3 − 4θ2

2 θ1/3 + 2θ2
1 /3 + 4θ2θ0/3


,

whereas B(2, s) ∈ R3×3 is the Hankel matrix




−θ2/3
(
θ2

2 − 2θ1
)
/3 −θ3

2 /3 + θ1θ2 − θ0

∗ −θ3
2 /3 + θ1θ2 − θ0 θ4

2 /3 − 4θ2
2 θ1/3 + 2θ2

1 /3 + 4θ2θ0/3

∗ ∗ −θ5
2 /3 + 5

(
θ3

2 θ1 − θ2
2 θ0 − θ2θ

2
1 + θ1θ0

)
/3


,

where we have displayed only the upper triangle.

4. Conclusion

In this paper we have provided finitely many necessary and sufficient conditions on the
coefficients of a polynomial θ ∈ R[x], for θ to have only real zeros, all in a prescribed
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interval [a, b] of the real line. Those conditions are diffferent from those of S̆iljak stated for
a, b = ±∞.
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