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Abstract. Using symmetric function theory, we study the cycle structure and increasing subsequence structure
of permutations after iterations of various shuffling methods. We emphasize the role of Cauchy type identities and
variations of the Robinson-Schensted-Knuth correspondence.
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1. Introduction

In an unpublished effort to study the way real people shuffle cards, Gilbert-Shannon-Reeds
introduced the following model, called k-riffle shuffling. Given a deck of n cards, one cuts
it into k piles with probability of pile sizes j1, . . . , jk given by

n( j1, . . . , jk)

kn
.

Then cards are dropped from the packets with probability proportional to the pile size at a
given time (thus if the current pile sizes are A1, . . . , Ak , the next card is dropped from pile
i with probability Ai

A1+···+Ak
).

The theory of riffle shuffling is relevant to many parts of mathematics. One area of
mathematics influenced by shuffling is Markov chain theory [11]. For instance Bayer and
Diaconis [5] proved that 3

2 log2(n) 2-shuffles are necessary and sufficient to mix up a deck of
n cards and observed a cut-off phenomenon. The paper [23] gives applications of shuffling
to Hochschild homology and the paper [8] describes the relation with explicit versions of
the Poincaré-Birkhoff-Witt theorem. Section 3.8 of [34] describes GSR shuffles in the lan-
guage of Hopf algebras. In recent work, Stanley [35] has related biased riffle shuffles with
the Robinson-Schensted-Knuth correspondence, thereby giving an elementary probabilistic
interpretation of Schur functions and a different approach to some work of interest to the
random matrix community. He recasts many of the results of [5] and [15] using quasisym-
metric functions. Connections of riffle shuffling with dynamical systems appear in [5, 18,
28, 29]. Generalizations of the GSR shuffles to other Coxeter groups appear in [7, 16–19].

∗The article was written when author was at Stanford University.
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It is useful to recall one of the most remarkable properties of GSR k-shuffles. Since k-
shuffles induce a probability measure on conjugacy classes of Sn , they induce a probability
measure on partitions λ of n. Consider the factorization of random degree n polynomials
over a field Fq into irreducibles. The degrees of the irreducible factors of a randomly
chosen degree n polynomial also give a random partition of n. The fundamental result of
Diaconis-McGrath-Pitman (DMP) [13] is that this measure on partitions of n agrees with the
measure induced by card shuffling when k = q. This allowed natural questions on shuffling
to be reduced to known results on factors of polynomials and vice versa. Lie theoretic
formulations, generalizations, and analogs of the DMP theorem appear in [16–18].

The motivation behind this paper was to understand the DMP theorem and its cousins in
terms of symmetric function theory. (All notation will follow that of [30] and background
will appear in Section 2). For the DMP theorem itself Stanley [35] gives an argument using
ideas from symmetric theory. The argument in Section 3 is different and emphasizes the
role of the RSK correspondence and the Cauchy identity

∑
λ

sλ(x)sλ(y) =
∑

λ

1

zλ

pλ(x)pλ(y).

Here sλ and pλ denote the Schur functions and power sum symmetric functions respectively,
and zλ denotes the centralizer size of a permutation of type λ.

Given Section 3, it was very natural to seek card shuffling interpretations for the Cauchy
type identities∑

λ

sλ′ (x)sλ(y) =
∑

λ

ελ

zλ

pλ(x)pλ(y)

∑
λ

sλ(x)Sλ(y) =
∑

λ
all parts odd

2l(λ)

zλ

pλ(x)pλ(y)

∑
λ

sλ′ (x)Sλ(y) =
∑

λ
all parts odd

2l(λ)ελ

zλ

pλ(x)pλ(y)

∑
λ

sλ(x)s̃λ(α, β, γ ) =
∑

λ

1

zλ

pλ(x) p̃λ(α, β, γ )

Here λ′ denotes the transpose of a partition and ελ = (−1)|λ|−l(λ) where l(λ) is the number of
parts of λ. Sλ is a symmetric function studied for instance by Stembridge [37] and defined in
Section 5. The symmetric function s̃λ(α, β, γ ) is an extended Schur function to be discussed
in Section 6. (The fourth identity is actually a generalization of the second identity though
it will be helpful to treat them differently).

In fact these identities (and probably many identities from symmetric function theory)
are related to card shuffling. Section 4 relates the first of these identities to riffle shuffles
followed by reversing the order of the cards; the resulting cycle index permits calculations
of interest to real-world shufflers. Section 5 relates the second of these identities to the
cycle structure of affine hyperoctahedral shuffles, which are generalizations of unimodal
permutations; the third identity shows that dealing from the bottom of the deck has no
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effect for these shuffles. This gives a non-Lie theoretic approach to some results in [18] and
proves a more general assertion. Although there is some overlap with the preprint [38] for
the case of unimodal permutations, even in that case the treatment here is quite different
and forces into consideration a variation of the RSK correspondence, which we believe to
be new. We should also point out that Gannon [20] was the first to solve the problem of
counting unimodal permutations by cycle structure, using completely different ideas. (His
results are not in the form of a cycle index and it would be interesting to understand the
results in this paper by his technique).

Section 6 develops preliminaries related to the case of extended Schur functions. It defines
models of card shuffling called ( 	α, 	β, γ ) shuffles (which include the GSR shuffles) and
explains how they iterate. This model contains other shuffles of interest such as iterations of
the following procedure. Given a deck of n cards, cut the deck into two piles where the sizes
are k, n − k with probability

(n
k)

2n ; then shuffle the size k pile thoroughly and riffle it with the
remaining cards. This special case was first studied in [12] (their work was on convergence
rates, not about cycle structure or increasing subsequence structure). Section 6 proves that
if one applies the usual RSK correspondence to a permutation distributed as a (	α, 	β, γ )
shuffle, then the probability of getting any recording tableau of shape λ is the extended
Schur function s̃λ(	α, 	β, γ ). (When γ = 0 this is equivalent to a result of Kerov/Vershik
[26] and Berele/Remmel [6]. However the case γ 
= 0 (which arises for the shuffle in this
paragraph), is treated incorrectly in [26] and not at all in [6]).

Section 7 applies the results of Sections 3 and 6 to find formulas for cycle structure after
(	α, 	β, γ ) shuffles; for instance it is proved that after such a shuffle on a deck of size n, the
expected number of fixed points is the sum of the first n extended power sum symmetric
functions evaluated at the relevant parameters. An upper bound on the convergence rate of
these shuffles is derived. Section 7 closes with a discussion of convolutions of top to random
shuffles, and remarks that for sufficiently large n, 5/6 log2(n) + c log2(e) 2-riffle shuffles
bring the longest increasing subsequence to its limit distribution.

Currently we are working on analyzing the Toeplitz determinants which arise in the
analysis of longest increasing subsequences after (	α, 	β, γ ) shuffles. We also note that there
are many shuffles of interest (e.g. iterations of top to random, iterations of riffle shuffles
followed by cuts) for which Toeplitz determinant expressions are unavailable. Analysis of
these shuffles should be of interest to computational biology.

2. Background

This section collects the facts from symmetric function theory which will be needed later.
Chapter 1 of [30] is a superb introduction to symmetric functions. We review a few essentials
here.

The power sum symmetric functions pλ are an orthogonal basis of the ring of symmetric
functions. Letting zλ = ∏

i i ni ni ! be the centralizer size of the conjugacy of Sn indexed by
the partition λ with ni parts of size i , one has that

〈pλ, pµ〉 = δλµzλ.
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The descent set of a permutation w is defined as the set of i with 1 ≤ i ≤ n − 1 such that
w(i) > w(i +1); the ascent set is the set of i with 1 ≤ i ≤ n −1 such that w(i) < w(i +1).
The descent set of a standard Young tableau T is the set of i such that i + 1 is in a lower
row of T than i . The RSK correspondence (carefully exposited in [33, 36]) associates to a
permutation w a pair of standard Young tableau (its insertion tableau P(w) and its recording
tableau Q(w)) and the descent set of w is equal to the descent set of Q(w). Further the
descent set of w−1 is equal to the descent set of P(w), since Q(w−1) = P(w). Des(w) and
Asc(w) will denote the descent and ascent set of w respectively. The notation λ � n means
that λ is a partition of n. The symbol fλ denotes the number of standard Young tableau of
shape λ.

The following result is a simple consequence of work of Gessel and Reutenauer [22] and
Garsia [21].

Theorem 1 Let βλ(D) be the number of standard Young tableau of shape λ with descent
set D. Let Ni (w) be the number of i-cycles of a permutation w. Then
1.

∑
w∈Sn

Des(w)=D

∏
i≥1

x Ni (w)
i =

〈 ∑
λ�n

sλ(y)βλ(D),
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (y)i/d

〉

2.

∑
w∈Sn

Asc(w)=D

∏
i≥1

x Ni (w)
i =

〈 ∑
λ�n

sλ′ (y)βλ(D),
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (y)i/d

〉
.

Proof: The number of w in Sn with descent set D and ni i-cycles is the coefficient of∏
i x Ni (w)

i on the left hand side of the first equation. Let τ be the partition with ni parts
of size i and let Lieτ (y) be the symmetric function associated with the corresponding Lie
character (for background on Lie characters and relevant symmetric function theory see
[32]). By [22], the number of w in Sn with descent set D and ni i-cycles is equal to the
inner product

〈 ∑
λ�n

sλ(y)βλ(D), Lieτ (y)

〉
.

From [21] it follows that Lieτ (y) is the coefficient of
∏

i xni
i in

∏
i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (y)i/d

.

This proves the first assertion.



APPLICATIONS OF SYMMETRIC FUNCTIONS 169

For the second assertion, note that βλ′ (D) = βλ({1, . . . , n − 1} − D). This follows from
the fact that if a permutation w has RSK shape λ and descent set D, then its reversal has
RSK shape λ′ and ascent set D. Thus

〈 ∑
λ�n

sλ′ (y)βλ(D),
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (y)i/d

〉

=
〈 ∑

λ�n

sλ(y)βλ({1, . . . , n − 1} − D),
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (y)i/d

〉

as desired.

3. Biased riffle shuffles

We emphasize from the start that the main result in this subsection is not new: it is equivalent
to assertions proved in [15] and then in work of Stanley [35]. It was first proved for ordinary
riffle shuffles in [13]. The value of the current argument is that it underscores the role of
RSK and the Cauchy identity

∑
λ

sλ(x)sλ(y) =
∑

λ

1

zλ

pλ(x)pλ(y)

(the sums are over all partitions of all natural numbers).
Biased riffle shuffles were introduced in [12] and studied further in [15]. A biased riffle

shuffle with parameters 	q = (q1, q2, . . .) where
∑

qi = 1 is defined as follows. First cut
the deck into piles of sizes k1, k2, . . . by picking the k’s according to the distribution

(
n

k1, k2, . . .

) ∏
i

qki
i .

Now drop cards from the packets one at a time, according to the rule that at each stage the
probability of dropping from a packet is proportional to the number of cards in that packet.
For instance if there are 2 packets with sizes 3 and 5, then the next card would come from
the first packet with probability 3/8. It is not hard to see that the probability that a biased
riffle shuffle gives a permutation w depends on w only through Des(w−1). The main case of
interest is q1 = · · · = qk = 1/k all other qi = 0 and corresponds to ordinary riffle shuffles
[5].

To determine the cycle structure after a biased riffle shuffle we could make use of the
following result of Stanley [35].

Theorem 2 Let w be distributed as a biased riffle shuffle with parameters 	q. Let T be a
standard Young tableau of shape λ. Then the probability that the RSK algorithm associates
insertion tableau T to w is equal to sλ( 	q).
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Instead (to simplify later sections) we will use the following similar result, which we record
for completeness.

Theorem 3 Let w be distributed as a biased riffle shuffle with parameters 	q. Let T be a
standard Young tableau of shape λ. Then the probability that the RSK algorithm associates
recording tableau T to w is equal to sλ( 	q).

Proof: Given a length n word J with positive integers as letters, let ai be the number
of occurrences of symbol i in J respectively. Define a permutation w in two line form by
putting 1, . . . , a1 in the positions occupied by the 1’s of J from left to right, then putting
the next a2 numbers in the positions occupied by the 2’s of J from left to right, and so on.
For instance the word

1 3 2 1 2 2 1 3 1 2

corresponds to the permutation

1 9 5 2 6 7 3 10 4 8.

It is easy to see that in general the recording tableau of w under the RSK algorithm is equal
to the recording tableau of J under the RSK algorithm. Arguing as in [5], if the entries
of the random word J are chosen independently with probability qi of symbol i , then the
resulting distribution on permutations w is the same as performing a 	q biased riffle shuffle.
As in [26], the combinatorial definition of the Schur function immediately implies that the
chance that J has recording tableau T is sλ( 	q).

Lemma 1 could be simplified via Theorem 2 but we prefer not to take this path.

Lemma 1 Let βλ(D) be the number of standard Young tableau of shape λ with descent set
D. If βλ(D) 
= 0, then the probability that a biased 	q-shuffle produces a specific permutation
w with Des(w−1) = D and RSK shape λ is equal to the probability that a biased 	q-shuffle
produces a permutation with (P, Q) tableaux satisfying Des(P(w)) = D,shape(Q(w)) = λ

divided by βλ(D) fλ.

Proof: Fix any permutation w such that Des(w−1) = D and such that w has RSK shape
λ (this is possible if βλ(D) 
= 0). Let x be the probability of obtaining w after a biased
	q shuffle. Since all w with Des(w−1) = D are equally likely, x = y/z where y is the
probability that a biased 	q shuffle leads to a permutation with inverse descent set D and
RSK shape λ, and z is the number of permutations with inverse descent set D and RSK
shape λ. Now y is the probability that after a biased 	q shuffle one obtains a permutation w

with Des(P(w)) = D, shape(Q(w)) = λ. Note that z is simply βλ(D) fλ, since the insertion
tableau can be any standard Young tableau of shape λ and descent set D, and the recording
tableau can be any standard Young tableau of shape λ.

Now we prove the main result in this subsection.
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Theorem 4 Let En, 	q denote expected value under the biased riffle shuffle measure with
parameters 	q. Let Ni (w) be the number of i-cycles of the permutation w. Then

∑
n≥0

un En, 	q

( ∏
i

x Ni
i

)
=

∏
i, j

e
(ui xi ) j

i j

∑
d|i µ(d)p jd ( 	q)i/d

.

Proof: Let w be a fixed permutation such that Des(w−1) = D; then Prob 	q (D) will denote
the probability of obtaining w after a biased riffle shuffle with parameters 	q. Using part 1
of Theorem 1 one concludes that the sought cycle index is

∑
n≥0

un En, 	q

( ∏
i

x Ni
i

)

=
∑
n≥0

un
∑
ni ≥0

( ∏
i

xni
i

) ∑
D⊆{1,...,n−1}

Prob 	q (D) |{w : Des(w) = D, Ni (w) = ni }|

=
∑
n≥0

∑
D⊆{1,...,n−1}

Prob 	q (D)

〈 ∑
λ�n

sλ(y)βλ(D),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉

=
∑
n≥0

〈 ∑
λ�n

sλ(y)
∑

D⊆{1,...,n−1}
Prob 	q (D)βλ(D),

∏
i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉

Lemma 1 implies that∑
D⊆{1,...,n−1}

Prob 	q (D)βλ(D)

is 1
fλ

multiplied by the probability that the recording tableau of a permutation obtained after
a biased 	q shuffle has shape λ. By Theorem 3, this latter probability is sλ( 	q) fλ. Hence the
sought cycle index is simply the inner product〈 ∑

λ

sλ(y)sλ( 	q),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉
.

Applying the Cauchy identity yields〈 ∑
λ

1

zλ

pλ(y)pλ( 	q),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉
.

Since 〈pλ, pµ〉 = δλ,µzλ this simplifies to

∏
i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd ( 	q)i/d

.
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We remark that for k-riffle shuffles the cycle index simplifies to

∏
i≥1

(
1

1 − ui xi
ki

) 1
i

∑
d|i µ(d)ki/d

.

4. Dealing from the bottom of the deck

This section considers cycle structure of a biased riffle shuffle followed by dealing from
the bottom of the deck. This is equivalent to turning the deck upside down after shuffling.
(Persi Diaconis points out that someone running card guessing experiments might do this).
The results in this section are all new. Results about subsequence structure are omitted since
reversing the order of a permutation simply transposes its RSK shape. Forthcoming work
relates this section to unitary groups.

Let λ′ denote the transpose of λ. Let l(λ) be the number of parts of λ and let ελ denote
(−1)|λ|−l(λ). Whereas the previous section used the Cauchy identity, this section uses the
dual Cauchy identity∑

λ

sλ′ (x)sλ(y) =
∑

λ

ελ

zλ

pλ(x)pλ(y)

(the sums are over all partitions of all natural numbers).

Theorem 5 Let E ′
n, 	q denote expected value under the biased riffle shuffle measure with

parameters 	q followed by reversing the order of the cards. Then

∑
n≥0

un E ′
n, 	q

( ∏
i

x Ni
i

)
=

∏
i, j

e
((−u)i xi ) j

i j

∑
d|i µ(d)(−p jd ( 	q))i/d

.

Proof: Let w be a fixed permutation such that Asc(w−1) = D; then Prob′
	q (D) will denote

the probability of obtaining w after a 	q biased riffle shuffle followed by reversing the order
of the cards.

Using part 2 of Theorem 1 one concludes that the sought cycle index is

∑
n≥0

un E ′
n, 	q

( ∏
i

x Ni
i

)

=
∑
n≥0

un
∑
ni ≥0

( ∏
i

xni
i

) ∑
D⊆{1,...,n−1}

Prob′
	q (D)|{w : Asc(w) = D, Ni (w) = ni }|

=
∑
n≥0

∑
D⊆{1,...,n−1}

Prob′
	q (D)

〈 ∑
λ�n

sλ′ (y)βλ(D),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉

=
∑
n≥0

〈 ∑
λ�n

sλ′ (y)
∑

D⊆{1,...,n−1}
Prob′

	q (D)βλ(D),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉
.
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From the proof of Theorem 4,

∑
D⊆{1,...,n−1}

Prob′
	q (D)βλ(D) =

∑
D⊆{1,...,n−1}

Prob 	q (D)βλ(D) = sλ( 	q).

Consequently the sought cycle index is simply the inner product

〈 ∑
λ

sλ′ (y)sλ( 	q),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉
.

Applying the dual Cauchy identity yields

〈 ∑
λ

ελ

zλ

pλ(y)pλ( 	q),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (y)i/d

〉
.

Since 〈pλ, pµ〉 = δλ,µzλ this simplifies to

∏
i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)(−1) j i−i/d p jd ( 	q)i/d

.

The case of most interest is q1 = · · · = qk = 1
k and all other qi = 0. Then the cycle

index simplifies to

∏
i≥1

(
1

1 − (−u)i xi

ki

) 1
i

∑
d|i µ(d)(−k)i/d

.

Much information can be gleaned from this cycle index in analogy with results in [13] for
ordinary riffle shuffles (i.e. when one deals from the top of the deck). We record three such
results which are perhaps the the most interesting.

Corollary 1 The expected number of fixed points after a k-riffle shuffle on n cards followed
by reversing the order of the cards is

1 − 1

k
+ 1

k2
· · · + (−1)n−1

kn−1
.

Proof: The generating function for fixed points is given by setting xi = 1 for all i > 1 in
the cycle index. This yields

(1 + x1u/k)k
∏
i 
=1

(
1

1 − (−u)i

ki

) 1
i

∑
d|i µ(d)(−k)i/d

.
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Multiplying and dividing by (1 + u/k)k gives

(1 + x1u/k)k

(1 + u/k)k

∏
i

(
1

1 − (−u)i

ki

) 1
i

∑
d|i µ(d)(−k)i/d

.

Observe that

1

1 − u
=

∏
i≥1

(
1

1 − (−u)i

ki

) 1
i

∑
d|i µ(d)(−k)i/d

since this is what one obtains by setting all xi = 1 in the cycle index. Hence the generating
function for fixed points is

(1 + x1u/k)k

(1 + u/k)k(1 − u)
.

Then one differentiates with respect to x1, sets x1 = 1, and takes the coefficient of un .

We remark that [13] showed that the expected number of fixed points for k-riffle shuffles
on an n-card deck is

1 + 1

k
+ 1

k2
· · · + 1

kn−1
.

It is straightforward to compute higher moments for k shuffles followed by reversal.
The next goal is to determine the limit behavior of the distributions of the short cycles.

The answer differs considerably from the GSR riffle shuffle case, in which only convolutions
of geometric distributions come into play.

We require a simple lemma.

Lemma 2 If f (u) has a Taylor series
∑

n≥0 anun which converges at u = 1, then the

n → ∞ limit of the coefficient of un in f (u)
1−u is f (1).

Proof: This follows because the coefficient of un in f (u)
1−u is a0 + · · · + an .

Recall that a binomial(n, p) random variable assumes the value x with probability
(n

x)px (1 − p)n−x . Recall also that a geometric (α) random variable assumes the value x
with probability (1 − α)αx .

Corollary 2
1. Fix u such that 0 < u < 1. Choose a random deck size with probability of getting

n equal to (1 − u)un. Let Ni (w) be the number of i-cycles of w distributed as the
reversal of a k riffle shuffle. Then the random variables Ni are independent, where Ni

(i odd ) is a binomial ( 1
i

∑
d|i µ(d)ki/d , ui/(ki + ui )) and Ni (i even) is the convolution

of 1
i

∑
d|i µ(d)(−k)i/d many geometrics with parameter ui/ki .
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2. Let Ni (w) be the number of i-cycles of w distributed as the reversal of a k riffle
shuffle. Then as n → ∞ the random variables Ni converge in finite dimensional dis-
tribution to independent random variables, where Ni (i odd ) becomes a binomial
( 1

i

∑
d|i µ(d)ki/d , 1/(ki + 1)) and Ni (i even) becomes the convolution of 1

i

∑
d|i µ(d)

(−k)i/d many geometrics with parameter 1/ki .

Proof: As noted after Theorem 5, the cycle index of a k-shuffle followed by reversing the
order of the cards is

∏
i≥1

(
1

1 − (−u)i xi

ki

) 1
i

∑
d|i µ(d)(−k)i/d

.

The proof of Corollary 1 gives that

1

1 − u
=

∏
i≥1

(
1

1 − (−u)i

ki

) 1
i

∑
d|i µ(d)(−k)i/d

.

Dividing these equations implies that

∑
n≥0

(1 − u)un E ′
n,1/k,...,1/k

( ∏
i

x Ni
i

)

=
∏
i odd

(
1 + ui xi/ki

1 + ui/ki

)1/ i
∑

d|i µ(d)ki/d ∏
i even

(
1 − ui/ki

1 − ui xi/ki

)1/ i
∑

d|i µ(d)(−k)i/d

.

This proves the first assertion of the theorem. The second assertion follows from dividing
both sides of this equation by 1 − u and applying Lemma 2. (Note that if all but finitely
many xi = 1, only finitely many terms in the generating function remain. Since k ≥ 2 the
Taylor series converges at u = 1 provided that the remaining x’s aren’t too much larger
than 1).

We remark that as k → ∞, the distribution of Ni in parts 1 and 2 converges to Poisson(ui/ i)
and Poisson(1/ i) respectively.

Finally we observe (Corollary 3) that the distribution of the large cycles is the same
as for random permutations (in contrast to the case of small cycles). One can guess this
heuristically from the generating function since the large i terms of the cycle index converge
to those of random permutations. The same happens for ordinary riffle shuffles (Proposition
5.5 of [13]). The distribution of large cycles in random permutations has been broadly
studied ([40] and the references therein).

Corollary 3 Fix k and let L1, . . . , Lr be the lengths of the r longest cycles of π . Then for
k fixed, or growing with n as n → ∞,∣∣Prob′

n,1/k,...,1/k(L1/n ≤ t1, . . . , Lr/n ≤ tr ) − ProbSn (L1/n ≤ t1, . . . , Lr/n ≤ tr )
∣∣ → 0

uniformly in t1, . . . , tr . (Here ProbSn denotes the uniform distribution on Sn).
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Proof: Given the cycle index for k-shuffles followed by a reversal, this follows from minor
modifications of either the arguments in [24] or [2].

5. Unimodal permutations and a variation of the RSK correspondence

One goal of this section is to understand cycle structure after shuffling by the following
method.

5.1. Generalized shuffling method on Cn

Step 1: Start with a deck of n cards face down. Let 0 ≤ y1, . . . , yk ≤ 1 be such that∑
yi = 1. Choose numbers j1, . . . , j2k multinomially with the probability of getting

j1, . . . , j2k equal to ( n
j1,..., j2k

)
∏k

i=1 y j2i−1+ j2i

i . Make 2k stacks of cards of sizes j1, . . . , j2k

respectively. Flip over the even numbered stacks.
Step 2: Drop cards from packets with probability proportional to packet size at a given

time. Equivalently, choose uniformly at random one of the ( n
j1,..., j2k

) interleavings of the
packets.

Cycle structure of this model of shuffling was analyzed for equal y in [18]. (Actually
there one flipped over the odd numbered piles, but this has no effect on the cycle index
as the resulting sums in the group algebra are conjugate by the longest element in Sn .
By a result of Schützenberger exposited as Theorem A1.2.10 in [36], conjugation by the
longest element also has no effect on RSK shape). The model was introduced for k = 1
(and thus y1 = 1) in [5]. Let E∗

n,	y be expectation on Cn after the above shuffling method.
Let Ni (w) be the number of i-cycles of w in Cn , disregarding signs. It is proved in [18]
that

Theorem 6

1 +
∑
n≥1

un
∑
w∈Cn

E∗
n, 1

k ,..., 1
k

( ∏
i≥1

x Ni (w)
i

)
=

∏
m≥1

(
1 + xmum/(2k)m

1 − xmum/(2k)m

) 1
2m

∑
d|m

d odd
µ(d)(2k)

m
d

.

As the paper [18] did not discuss asymptotics of long cycles, before proceeding we note
the following corollary, whose proof method is the same as that of Corollary 3.

Corollary 4 Fix k and let L1, . . . , Lr be the lengths of the r longest cycles of π . Then for
k fixed, or growing with n as n → ∞,

∣∣Prob∗
n,1/k,...,1/k(L1/n ≤ t1, . . . , Lr/n ≤ tr ) − ProbSn (L1/n ≤ t1, . . . , Lr/n ≤ tr )

∣∣ → 0

uniformly in t1, . . . , tr . (Here ProbSn denotes the uniform distribution on Sn)

A generalization of Theorem 6 will be proved later in this section. To this end, we require
the following variation of the RSK correspondence.
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5.1.1. Variation of the RSK correspondence. Order the set of numbers {±1, . . . ,±k} by

1 < −1 < 2 < −2 · · · < k < −k.

Given a word on these symbols, run the RSK algorithm as usual, with the amendments that
a symbol i can’t bump another i if i is positive, but must bump another i if i is negative.
(This guarantees that positive numbers appear at most once in each column and that negative
numbers appear at most once in each row).

For example the word

1 −1 2 −2 1 1 −1 1 2 2 −1 2 −2

has insertion tableau P and recording tableau Q respectively equal to

1 1 1 1 −1 2 2 − 2

−1 2 2

−1 −2

1 2 3 4 9 10 12 13

5 6 7

8 11

The proof of Theorem 7 runs along the same lines as the proof of the RSK correspondence
as presented in [33]. Hence we omit the details.

Theorem 7 Order the set of numbers {±1, . . . ,±k} by

1 < −1 < 2 < −2 · · · < k < −k.

Then the above variation on the RSK Correspondence is a bijection between length n words
on the symbols {±1, . . . ,±k} and pairs (P, Q) where
1. P is a tableau on the symbols {±1, . . . ,±k} satisfying P(a, b) ≤ P(a+1, b), P(a, b) ≤

P(a, b + 1) for all a, b where P(a, b) denotes the entry in the ath row and bth column
of P.

2. If i is positive then it appears at most once in each column of P and if i is negative then
it appears at most once in each row of P.

3. Q is a standard Young tableau on the symbols {1, . . . , n}.
4. P and Q have the same shape.

The next result relates the shuffling model of this section with the above variation of the
RSK correspondence. For its statement, Sλ will denote the symmetric functions studied in
[37] (a special case of the extended Schur functions in [26]). One definition of the Sλ is as
the determinant

Sλ(y) = det
(
qλi −i+ j

)
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where q−r = 0 for r > 0 and for r ≥ 0, qr is defined by setting

∑
n≥0

qntn =
∏
i≥1

1 + yi t

1 − yi t
.

We remark that Theorem 8 gives a simple probabilistic interpretation to Sλ, different from
the interpretation in [26]. Of course one can let k → ∞ as well.

Theorem 8 Let w be distributed as a shuffle of this section with parameters y1, . . . , yk af-
ter disregarding the up/down pattern of the cards so that w is an unsigned permutation. Let
Q be a standard Young tableau of shape λ. Then the probability that the usual RSK corre-
spondence associates recording tableau Q to w is equal to 1

2n Sλ(y1, . . . , yk). Consequently

the probability that w has RSK shape λ is equal to fλ
2n Sλ(y1, . . . , yk).

Proof: Given a length n word J on the symbols {±1, . . . ,±k}, let ai , bi be the number
of occurrences of the symbol i, −i in J respectively. Define a permutation w in two line
form by putting 1, . . . , a1 in the positions occupied by the 1’s of J from left to right, then
putting the next b1 numbers (arranged in decreasing order) in the positions occupied by the
−1’s of J from left to right, then the next a2 numbers (arranged in increasing order) in the
positions occupied by the 2’s of J from left to right, etc. For instance the word

1 −1 2 −2 1 1 −1 1 2 2 −1 2 −2

corresponds to the permutation

1 7 8 13 2 3 6 4 9 10 5 11 12.

If the word entries are chosen independently with ±i having probability yi

2 , the resulting
distribution on permutations is the same as performing a 	y shuffle of this section and
forgetting about signs.

It is easy to see that the recording tableau of w under the RSK algorithm is equal to the
recording tableau of J under our variant of the RSK algorithm. Let γi (P) be the number of
occurrences of symbol i in a tableau P . By Theorem 7, the probability that J has recording
tableau Q under our variant of RSK is equal to

1

2n

∑
P

∏
i≥1

yγi (P)+γ−i (P)
i

where P has shape λ and satisfies conditions 1, 2 in Theorem 7. Theorem 9.2b of [37] shows
that this sum is equal to 1

2n Sλ(y1, . . . , yk).

As mentioned in the introduction, Theorem 8 is relevant to random matrix theory. This is
because the first row in the RSK shape of a random permutation w is equal to the length of
the longest increasing subsequence of w and has asymptotically the same distribution as the
largest eigenvalue of a random GUE matrix [3]. Studying longest increasing subsequences
of w distributed as a GSR k-riffle shuffle amounts to studying the longest weakly increasing
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subsequences in random length n words on k symbols, which has also been of interest
to random matrix theorists [35, 39]. What Theorem 8 tells us is that studying longest
increasing subsequences of w distributed as unsigned type C shuffles amounts to studying
weakly increasing subsequences in random length n words on the symbols {±1, . . . ,±k},
where 1 < −1 < · · · < k < −k and the subsequence is not allowed to contain a given
negative symbol i more than once. For k fixed and random length n words on the symbols
{±1, . . . ,±k}, roughly half the symbols will be positive, and the negative symbols can
in total affect the length of the longest weakly increasing subsequence by at most k. For
example, one obtains the following corollary from the analogous results in [25] and [39]
for weakly increasing subsequences in random words.

Corollary 5 For k fixed, the RSK shape after an unsigned Cn shuffle with y1 = · · · =
yk = 1

k has at most k rows and k columns. For large n the expected value of any of the k
rows or columns is asymptotic to n

2k .

We hope in future work to study the fluctuations around this limit shape, and to examine
the case when both n, k are large.

Theorem 9 determines the generating function for cycle structure after performing the
generalized shuffling method on Cn with parameters y1, . . . , yk and forgetting about signs.

Theorem 9 Let E∗
n,	y denote expected value under the generalized shuffling method on

Cn with parameters y1, . . . , yk after forgetting signs. As usual, let Ni (π ) be the number of
cycles of length i of the permutation π . Then

∑
n≥0

un E∗
n,	y

( ∏
i

x Ni
i

)
=

∏
i≥1

∏
j odd

e
(ui xi /2i ) j

i j

∑
d|i

d odd
µ(d)(2p jd (y))i/d

.

Furthermore, reversing the order of the cards has no effect on the cycle index.

Proof: Let w be a fixed permutation such that Des(w−1) = D and let Prob∗
	y(D) be the

probability of obtaining w after a 	y unsigned type C shuffle.
Using part 1 of Theorem 1 and the fact that the probability of w depends only on w

through Des(w−1), it follows that the sought cycle index is

∑
n≥0

un E∗
n,	y

( ∏
i

x Ni
i

)

=
∑
n≥0

un
∑
ni ≥0

( ∏
i

xni
i

) ∑
D⊆{1,...,n−1}

Prob∗
	y(D)|{w : Des(w) = D, Ni (w) = ni }|

=
∑
n≥0

∑
D⊆{1,...,n−1}

Prob∗
	y(D)

〈 ∑
λ�n

sλ(z)βλ(D),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (z)i/d

〉

=
∑
n≥0

〈 ∑
λ�n

sλ(z)
∑

D⊆{1,...,n−1}
Prob∗

	y(D)βλ(D),
∏

i, j≥1

e
(ui xi ) j

i j

∑
d|i µ(d)p jd (z)i/d

〉
.



180 FULMAN

Arguing as in Theorem 4 shows that

∑
D⊆{1,...,n−1}

Prob∗
	y(D)βλ(D) = 1

2n
Sλ(y).

Thus the sought cycle index is simply the inner product

〈 ∑
λ

sλ(z)Sλ(y),
∏

i, j≥1

e
(ui xi /2i ) j

i j

∑
d|i µ(d)p jd (z)i/d

〉
.

Applying the third identity in the Introduction (due to Stembridge [37]) yields

〈 ∑
λ

all parts odd

2lλ

zλ

pλ(z)pλ(y),
∏

i, j≥1

e
(ui xi /2i ) j

i j

∑
d|i µ(d)p jd (z)i/d

〉
.

Since 〈pλ, pµ〉 = δλ,µzλ, this simplifies as desired to

∏
i

∏
j odd

e
(ui xi /2i ) j

i j

∑
d|i

d odd
µ(d)(2p jd (y))i/d

.

For the second assertion, Theorem 5 shows that the cycle index after reversing the card
order at the end is given by

∏
i

∏
j odd

e
((−u)i xi /2i ) j

i j

∑
d|i

d odd
µ(d)(−2p jd (y))i/d

.

It is easy to see that the “−” signs all drop out.

We remark that in the case of greatest interest (y1 = · · · = yk = 1
k , all other yi = 0), one

recovers Theorem 6.
A unimodal permutation w on the symbols {1, . . . , n} is defined by requiring that there

is some i with 1 ≤ i ≤ n such that the following two properties hold:

1. If a < b ≤ i , then w(a) < w(b).
2. If i ≤ a < b, then w(a) > w(b).

Thus i is where the maximum is achieved, and the permutations 12 · · · n and nn−1 · · · 1 are
counted as unimodal. For each fixed i there are (n−1

i−1) unimodal permutations with maximum
i , hence a total of 2n−1 such permutations. As noted in [20], unimodal permutations are
those which avoid the patterns 213 and 312.

Unimodal permutations are the shuffles of this section in the case k = 1 after forgetting
about signs; hence Theorem 6 (from [18]) gives a cycle index for unimodal permutations.
The paper [38], which appeared in between [18] and this paper, obtained a count of unimodal
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permutations by cycle structure and position of their maximum, denoted by max(w). We
prove an equation equivalent to Thibon’s result [38]. The proof uses the notation that mi (λ)
is the number of parts of λ of size i .

Theorem 10 Let Ni (w) be the number of i-cycles of a permutation w.

1 +
∑
n≥1

un(1 + t)
∑

w unimodal

tmax(w)−1
∏

i

x Ni (w)
i =

∏
i, j

e
(xi ui ) j

i j

∑
d|i µ(d)(t jd−(−1) jd )i/d

.

Proof: A permutation on n symbols is unimodal with maximum at position k if and only
if it has descent set k, k + 1, . . . , n − 1. Hence Theorem 1 implies that

1 +
∑
n≥1

un(1 + t)
∑

w unimodal

tmax(w)−1
∏

i

x Ni (w)
i

=
〈

1 + (1 + t)
∑

a,b≥0

s(a+1,1b)(z)taua+b+1,
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (z)i/d

〉
.

This can be further simplified using Macdonald’s identity (page 49 of [30])

1 + (t + u)
∑

a,b≥0

s(a+1,1b)(z)taub =
∏
i≥1

1 + uzi

1 − t zi

with t replaced by tu to yield

〈 ∏
i≥1

1 + uzi

1 − tuzi
,

∏
i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (z)i/d

〉

=
〈

e
∑

i≥1 ui pi (z)(t i −(−1)i )/ i ,
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (z)i/d

〉

=
〈 ∑

λ

pλ(z)u|λ| ∏
i (t

i − (−1)i )mi (λ)

zλ

,
∏

i, j≥1

e
x

j
i

i j

∑
d|i µ(d)p jd (z)i/d

〉

=
∏
i, j

e
(xi ui ) j

i j

∑
d|i µ(d)(t jd−(−1) jd )i/d

.

Note that we have used the identity

∏
i≥1

1

1 − uzi
= e

∑
i≥1 pi (z)ui / i .
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6. Extended Schur functions

The extended complete symmetric functions h̃k(α, β, γ ) are defined by the generating
function

∞∑
k=0

h̃k(α, β, γ )zk = eγ z
∏
i≥1

1 + βi z

1 − αi z
.

For λ = (λ1, . . . , λn), the extended Schur functions are defined by

s̃λ = det
(
h̃λi −i+ j

)n

i, j=1.

The extended Schur functions give the characters of the infinite symmetric group and are
usefully reviewed in [31]. Observe that s̃λ is obtained from taking the expression for sλ as
a polynomial in the hk and replacing hk by h̃k . Defining a homomorphism � on symmetric
functions by �(hk) = h̃k , one sees that any identity for ordinary symmetric functions gives
a corresponding identity for extended symmetric functions. That is how one derives the
Cauchy identity

∑
λ

sλ(x)s̃λ(α, β, γ ) =
∑

λ

1

zλ

pλ(x) p̃λ(α, β, γ )

for extended Schur functions from the usual Cauchy identity (e.g. Example 3.23 of [30] for
the case γ 
= 0).

Since probabilities must be positive, one motivation for interpreting extended Schur
functions probabilistically is the following positivity result.

Theorem 11 ([14]) Let G(z) = ∑∞
k=0 gk zk be such that g0 = 1 and all gk ≥ 0. Then

det
(
gλi −i+ j

)n

i, j=1 ≥ 0

for all partitions λ if and only if

G(z) = eγ z
∏
i≥1

1 + βi z

1 − αi z

where γ ≥ 0 and
∑

βi ,
∑

αi are convergent series of positive numbers.

Next we define (	α, 	β, γ ) shuffles. We suppose that γ +∑
αi +

∑
βi = 1 and that γ ≥ 0,

αi , βi ≥ 0 for all i . Using these parameters, we define a random permutation on n symbols as
follows. First, create a word of length n by choosing letters n times independently according
to the rule that one picks i > 0 with probability αi , i < 0 with probability βi , and i = 0
with probability γ . We use the usual ordering · · · < −1 < 0 < 1 < · · · on the integers.
Starting with the smallest negative symbol which appears in the word, let m be the number
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of times it appears. Then write {1, 2, . . . , m} under its appearances in decreasing order from
left to write. If the next negative symbol appears k times write {m +1, . . . , m + k} under its
appearances, again in decreasing order from left to write. After finishing with the negative
symbols, proceed to the 0’s. Letting r be the number of 0’s, choose a random permutation
of the relevant r consecutive integers and write it under the 0’s. Finally, move to the positive
symbols. Supposing that the smallest positive symbol appears s times, write the relevant s
consecutive integers under its appearances in increasing order from left to right.

The best way to understand this procedure is through an example. Given the string

−2 0 1 0 0 2 −1 −2 −1 1

one obtains each of the six permutations

2 5 8 6 7 10 4 1 3 9

2 5 8 7 6 10 4 1 3 9

2 6 8 5 7 10 4 1 3 9

2 6 8 7 5 10 4 1 3 9

2 7 8 5 6 10 4 1 3 9

2 7 8 6 5 10 4 1 3 9

with probability 1/6. In all cases the 1, 2 correspond to the −2’s, the 3, 4 correspond to the
−1’s, the 8, 9 correspond to the 1’s and the 10 corresponds to the 2. The symbols 5, 6, 7
correspond to the 0’s and there are six possible permutations of these symbols. We call this
probability measure on permutations a (	α, 	β, γ ) shuffle.

The following elementary result (generalizing results in [5] and [12]) gives physical
descriptions of these shuffles and explains how they convolve. The proof method follows
that of [5].

Proposition 1
1. A (	α, 	β, γ ) shuffle is equivalent to the following procedure. Cut the n card deck into

piles with sizes Xi indexed by the integers, where the probability of having Xi = xi for
all i is equal to

n!∏∞
i=−∞ xi !

γ x0
∏
i>0

α
xi
i

∏
i<0

β
xi
i .

The top cards go to the non-empty pile with smallest index, the next batch of cards goes
to the pile with second smallest index, and so on. Then mix the pile indexed by 0 until
it is a random permutation, and turn upside down all of the piles with negative indices.
Finally, riffle the piles together as in the first paragraph of the introduction and look at
the underlying permutation (i.e. ignore the fact that some cards are upside down).

2. The inverse of a (	α, 	β, γ ) shuffle is equivalent to the following procedure. Randomly label
each card of the deck, picking label 0 with probability γ , label i > 0 with probability αi



184 FULMAN

and label i < 0 with probability βi . Deal cards into piles indexed by the labels, where
cards with negative or zero label are dealt face down and cards with positive label are
dealt face up. Then mix the pile labeled 0 so that it is a random permutation and turn
all of the face up piles face down. Finally pick up the piles by keeping piles with smaller
labels on top.

3. Performing a (	α, 	β, γ ) shuffle k times is the same as performing the following shuffle. One
cuts into piles with labels given by k-tuples of integers (z1, . . . , zk) ordered according
to the following rule:
(a) (z1, . . . , zk) < (z′

1, . . . , z′
k) if z1 < z′

1.

(b) (z1, . . . , zk) < (z′
1, . . . , z′

k) if z1 = z′
1 ≥ 0 and (z2, . . . , zk) < (z′

2, . . . , z′
k).

(c) (z1, . . . , zk) < (z′
1, . . . , z′

k) if z1 = z′
1 < 0 and (z2, . . . , zk) > (z′

2, . . . , z′
k).

The pile is assigned probability equal to the product of the probabilities of the variables
corresponding to symbols in the k tuple. Then the shuffle proceeds as in part 1, where
negative piles (piles where the product of the coordinates of the k tuple are negative)
are turned upside down and piles with some coordinate equal to 0 are perfectly mixed
before the piles are all riffled together.

Examples As an example of Proposition 1, consider an (α1, α2; β1, β2; γ ) shuffle with
n = 11. For part 1, it may turn out that X−2 = 2, X−1 = 1, X0 = 3, X1 = 2, and X2 = 3.
Then the deck is cut into piles {1, 2}, {3}, {4, 5, 6}, {7, 8}, {9, 10, 11}. The first two piles are
turned upside down and the third pile is completely randomized, which might yield piles
{2, 1}, {3}, {5, 4, 6}, {7, 8}, {9, 10, 11}. Then these piles are riffled together as in the GSR
shuffle. This might yield the permutation

5 2 7 4 8 9 10 3 1 11 6.

The inverse description (part 2) would amount to labeling cards 2, 9 with −2, card 8 with
−1, cards 1, 4, 11 with 0, card 3, 5 with 1, and cards 6, 7, 10 with 2, and then mixing the 0
pile as 4, 1, 11. Note that this leads to the permutation (inverse to the previous permutation)

9 2 8 4 1 11 3 5 6 7 10.

As an example of part 3, note that doing a (α1; β1; 0) shuffle twice does not give a (	α, 	β, γ )
shuffle, but rather gives a shuffle with 4 piles in the order (−1, 1), (−1, −1), (1, −1), (1, 1)
where pile 1 has probability β1α1, pile 2 has probability β1β1, pile 3 has probability α1β1

and pile 4 has probability α1α1. Piles 1 and 3 are turned upside down before the riffling takes
place. From Section 5 of this paper one can still analyze the cycle structure and RSK shape
of these shuffles even though they aren’t (	α, 	β, γ ) shuffles. (Actually Section 5 of this paper
looked at shuffles conjugate to these shuffles by the longest element; this clearly has no
effect on the cycle index and has no effect on the RSK shape by a result of Schützenberger
exposited as Theorem A1.2.10 in [36]).

As another example of part 3, note that a shuffle with parameters (α1; 0; γ ) repeated
twice gives a shuffle with 4 piles in the order (0, 0), (0, 1), (1, 0), (1, 1) where the first 3
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piles are completely mixed before all piles are riffled together. This is clearly the same as
a (α2

1; 0; 1 − α2
1) shuffle, agreeing with Lemma 2.1 of [12].

Berele and Remmel [6] and independently Kerov and Vershik [26] consider the follow-
ing analog of the RSK Correspondence (different from the variation in Section 5 as the
BRKV version uses the standard ordering on the integers). Given a word on the symbols
{±1, ±2, . . .} one runs the RSK correspondence with the amendments that a negative sym-
bol is required to bump itself, but that a positive symbol can’t bump itself. For example the
word

1 −1 2 −2 1 1 −2

has insertion tableau P and recording tableau Q respectively equal to

−2 1 1

−2 2

−1

1

1 3 6

2 5

4
7

Theorem 12 ([6, 26]) The above variation on the Robinson-Schensted-Knuth correspon-
dence gives a bijection between words of length n from the alphabet of integers with the
symbol i appearing ni times and pairs (P, Q) where
1. The symbol i occurs ni times in P.
2. The entries of P are weakly increasing in rows and columns.
3. Each positive symbol occurs at most once in each column of P and each negative symbol

occurs at most once in each row of P.
4. Q is a standard Young tableau on the symbols {1, . . . , n}.
Furthermore,

s̃λ(	α, 	β, 0) =
∑

P
shape(P)=λ

∏
i>0

α
ni (P)
i

∏
i<0

β
ni (P)
i .

Theorem 13 and Corollary 6 connect card shuffling to the extended Schur functions.
When α = 0, this result is essentially in [6] and [26]. The paper [26] states a version of
Theorem 12 in which there is also a parameter γ (their Proposition 3), but it is incorrect for
γ 
= 0 as the following counterexample shows. Setting all parameters other than α1 = α and
γ = 1 − α equal to 0, it follows from the definitions that the extended Schur function s̃2 is
equal to α2+1

2 . But if Proposition 3 of [26] were correct, it would also equal α2+(1−α)α = α

since the two words giving a Young tableau with 1 row of length 2 are 11 and 01. In fact as
the 2 in the denominator of α2+1

2 shows, one can’t interpret the extended Schur functions
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with γ 
= 0 in terms of RSK and words on a finite number of symbols. This accounts for the
extra randomization step (choosing a random permutation for the symbols corresponding
the 0’s) in our definition of (	α, 	β, γ ) shuffles.

Theorem 13 gives a probabilistic interpretation of s̃λ for all values of γ .

Theorem 13 Let π be distributed as a permutation under a (	α, 	β, γ ) shuffle. Let Q be any
standard Young tableaux of shape λ. Then the probability that π has Robinson-Schensted-
Knuth recording tableau equal to Q is s̃λ(	α, 	β, γ ).

Proof: First suppose that γ = 0. As indicated earlier in this section, each length n word
w on the symbols {±1, ±2, . . .} defines a permutation π . From this construction, it is easy
to see that the recording tableau of w under the BRKV variation of the RSK algorithm is
equal to the recording tableau of π under the RSK algorithm. Thus it is enough to prove
that the probability that the word w has BRKV recording tableau Q is s̃λ(	α, 	β, 0). This is
immediate from Theorem 12.

Now the case γ 
= 0 can be handled by introducing m extra symbols between 0 and
1—call them 1/(m + 1), 2/(m + 1), . . . , m/(m + 1) and choosing each with probability
γ /m. Thus the random word is on {±1, ±2, . . .} and these extra symbols. Each word defines
exactly one permutation—the symbols 1/(m + 1), 2/(m + 1), . . . , m/(m + 1) are treated
as positive. By the previous paragraph, the probability of obtaining recording tableau Q is
equal to s̃λ(	α, 	β) where the associated h̃k are defined by

∞∑
k=0

h̃k(α, β)zk =
(

1

1 − γ z/m

)m ∏
i≥1

1 + βi z

1 − αi z
.

As m → ∞, this distribution on permutations converges to that of a (	α, 	β, γ ) shuffle, and
the generating function of the h̃k converges to

∞∑
k=0

h̃k(α, β, γ )zk = eγ z
∏
i≥1

1 + βi z

1 − αi z
.

Corollary 6 Let fλ be the number of standard Young tableau of shape λ. Let π be
distributed as a permutation under a (	α, 	β, γ ) shuffle. Then the probability that π has
Robinson-Schensted-Knuth shape λ is equal to fλs̃λ(	α, 	β, γ ).

We also note the following result.

Corollary 7 Let fλ be the number of standard Young tableaux of shape λ. Then the chance
that a permutation distributed as a (	α−, 	β−, γ −) shuffle on Poisson(γ +) symbols has RSK
shape λ is

(γ +)|λ| fλSλ(	α−, 	β−, γ −)

eγ +|λ|! .
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By standard manipulations (e.g. those used in [39]) the chance that such a permutation has
longest increasing subsequence at most n is equal to the Toeplitz determinant

1

eγ + Dn

(
eγ +/zeγ −z

∞∏
r=1

1 + α−
r z

1 − β−
r z

)
.

For longest decreasing subsequences, one switches the α’s and β’s.

Finally we connect card shuffling with work of Baik and Rains [4]. They study “extended
growth models” indexed by parameter sets which we call (	α+, 	β+, γ +) and (	α−, 	β−, γ −).
The case relevant to this paper is 	α+ = 	β+ = 	0. We assume without loss of generality
(one can simply rescale γ +) that γ − + ∑

α−
i + ∑

β−
i = 1. In this case, which we call

BR(γ +, 	α−, 	β−, γ −), their model becomes the following:

1. On [0, 1] × [0, 1] choose Poisson(γ +γ −) i.i.d. uniform points.
2. On [0, 1] × i (i ∈ {1, 2, . . .}) choose Poisson(γ +α−

i ) i.i.d. uniform points.
3. On [0, 1] × i (i ∈ {−1, −2, . . .}) choose Poisson(γ +β−

i ) i.i.d. uniform points.

They define a sequence of points (xi , yi ) to be increasing if xi ≤ xi+1, yi ≤ yi+1 and

yi = yi+1 =⇒ yi ≥ 0.

They associate to their point process a random partition λ with λi defined by the property
that

l∑
i=1

λi

is the size of the longest subsequence of points which is a union of l increasing subsequences.
They find a Toeplitz determinant expression for the probability that λ1 < k. Theorem 14

(which is well known for the case of random permutations (i.e. 	α− = 	β− = 0) relates their
point process to card shuffling measures on permutations and gives a formula for the chance
that their random partition is λ. (This gives another proof of Corollary 7)

Theorem 14 Consider the random partition arising from the BR(γ +, 	α−, 	β−, γ −) point
process. The probability that this partition is equal to λ is the same as the probability that
the RSK shape of a permutation after a (	α−, 	β−, γ −) shuffle on Poisson(γ +) symbols is
equal to λ.

Proof: We associate to a realization of the BR(γ +, 	α−, 	β−, γ −) point process a random
permutation π as follows. First take the deck size to be the number of points (which has
distribution Poisson(γ +)). Rank the y coordinates of the points in increasing order, where
one breaks ties for negative y coordinates by defining the point with the larger x coordinate
to be smaller and breaks ties for positive y coordinates by defining the point with larger x
coordinate to be larger. Then π (i) is defined as the rank of the y coordinate of the point
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with the i th smallest x coordinate (with probability one there is no repetition among x
coordinates). For example, if the BR point process yields the points

(.2, .3), (.3, .5), (.35, −8), (.4, 9), (.45, 9), (.5, 7), (.6, −2), (.7, −8)

then the resulting permutation would be (in 2-line form)

4 5 2 7 8 6 3 1.

It is easy to see that this distribution on permutations is the same as that arising from a
(	α−, 	β−, γ −) shuffle.

7. Convergence rates and cycle index of (α,β, γ) shuffles

First we derive an upper bound on the convergence rate of (	α, 	β, γ ) shuffles to randomness
using strong uniform times as in [12]. The separation distance between a probability P(π )
and the uniform distribution U (π ) is defined as maxπ (1 − P(π )

U (π ) ) and gives an upper bound
on total variation distance. Examples of the upper bound of Theorem 15 are considered
later.

Theorem 15 The separation distance between k applications of a (	α, 	β, γ ) shuffle and
uniform is at most

(
n

2

)[ ∑
i

(αi )
2 +

∑
i

(βi )
2

]k

.

Thus k = 2 log 1∑
i (αi )2+∑

i (βi )2
n steps suffice to get close to the uniform distribution.

Proof: For each k, let Ak be a random n × k matrix formed by letting each entry equal
i > 0 with probability αi , i < 0 with probability βi , and i = 0 with probability γ . Let T be
the first time that all rows of Ak containing no zeros are distinct; from the inverse description
of (	α, 	β, γ ) shuffles this is a strong uniform time in the sense of Sections 4B-4D of Diaconis
[10], since if all cards are cut in piles of size one the permutation resulting after riffling
them together is random. The separation distance after k applications of a (	α, 	β, γ ) shuffle is
upper bounded by the probability that T > k [1]. Let Vi j be the event that rows i and j of Ak

are the same and contain no zeros. The probability that Vi j occurs is [
∑

i (αi )2 + ∑
i (βi )2]k .

The result follows because

Prob(T > k) = Prob(∪1≤i< j≤n)Vi j

≤
∑

1≤i< j≤n

Prob(Vi j )

=
(

n

2

)[ ∑
i

(αi )
2 +

∑
i

(βi )
2

]k
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Taking logarithms of the defining identity for h̃k , one sees that

p̃1(	α, 	β, γ ) =
∑

i

αi +
∑

i

βi + γ = 1

and (for n ≥ 2)

p̃n(	α, 	β, γ ) =
∑

i

(αi )
n + (−1)n+1

∑
i

(βi )
n.

Theorem 16 gives a cycle index after (	α, 	β, γ ) shuffles.

Theorem 16

1. Let En,(	α, 	β,γ ) denote expected value after a (	α, 	β, γ ) shuffle of an n card deck. Let Ni (π )
be the number of i-cycles of a permutation π . Then

∑
n≥0

un En,(	α, 	β,γ )

( ∏
i

x Ni
i

)
=

∏
i, j

e
(ui xi ) j

i j

∑
d|i µ(d) p̃ jd (	α, 	β,γ )i/d

.

2. Let E ′
n,(	α, 	β,γ ) denote expected value after a (	α, 	β, γ ) shuffle of an n card deck followed

by reversing the order of the cards. Then

∑
n≥0

un E ′
n,(	α, 	β,γ )

( ∏
i

x Ni
i

)
=

∑
n≥0

un En,( 	β,	α,γ )

( ∏
i

x Ni
i

)
.

Proof: Given the results of Section 6, the proof of the first part runs along exactly the
same lines as in the proof of Theorem 4. The second assertion follows from the observation
that a (	α, 	β, γ ) shuffle followed by reversing the order of the cards is conjugate (by the
longest length element in the symmetric group) to a ( 	β, 	α, γ ) shuffle. Alternatively, arguing
as in the proof of Theorem 5, one sees that the effect of reversing the cards on the cycle
index of a (	α, 	β, γ ) shuffle is to get

∏
i, j

e
((−u)i xi ) j

i j

∑
d|i µ(d)(− p̃ jd (	α, 	β,γ ))i/d

.

Example 1 As a first application of Theorem 16, we derive an expression for the expected
number of fixed points, generalizing the expression in [13] for ordinary riffle shuffles. To
get the generating function for fixed points, one sets x2 = x3 = · · · = 1 in the cycle index.
Using the same trick as in [13], the generating function simplifies to

1

1 − u

euxγ

euγ

∏
i≥1

1 − uαi

1 − uxαi

1 + uxβi

1 + uβi
.
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Taking the derivative with respect to x and the coefficient of un , one sees that the expected
number of fixed points is

γ +
n∑

j=1

[ ∑
i

(αi )
j + (−1) j+1(βi )

j

]
.

This is exactly the sum of the first n extended power sum functions at the parameters
(	α, 	β, γ ).

Example 2 We suppose that 	β = 	0 and that α1 = · · · = αq = 1−γ

q . Then the cycle index
simplifies to

∏
i≥1


 1

1 − xi
( u(1−γ )

q

)i




1
i

∑
d|i µ(d)qi/d ∏

i≥1

e
ui xi (1−(1−γ )i )

i .

Of particular interest is the further specialization q = 1. Then the cycle index becomes

1

1 − x1u(1 − γ )

∏
i≥1

e
ui xi (1−(1−γ )i )

i .

Recall that a (1/2, 0, 1/2) shuffle takes a binomial (n, 1/2) number of cards (a binomial
(n, 1/2) random variable is equal to k with probability (n

k)/2n), thoroughly mixes them, and
then riffles them with the remaining cards. Example 3 on page 140 of [12] proves (in slightly
different notation) that the iteration of k (1/2, 0, 1/2) shuffles is the same as a ((1/2)k, 0, 1−
(1/2)k) shuffle. They conclude (in agreement with Theorem 15) that a (1/2, 0, 1/2) shuffle
takes log2(n) steps to be mixed, as compared to 3

2 log2(n) for ordinary riffle shuffles. They
also establish a cut-off phenomenon. From the computation of Example 1 one sees that the
expected number of fixed points also drops.

As another example, consider a (1 − 1/n, 0, 1/n) shuffle. Heuristically this is like top to
random and [12] proves that the convergence rate is the same (n log(n) steps), which agrees
with Theorem 15. From page 139 of [12], performing a (1 − 1/n, 0, 1/n) shuffle k times is
the same as performing a single ((1 − 1/n)k, 0, 1 − (1 − 1/n)k) shuffle. Example 1 gives
a formula for the expected number of fixed points. See Example 4 for more discussion of
iterations of top to random shuffles.

Next we consider the asymptotics of cycle structure. As usual, µ denotes the Moebius
function of elementary number theory. Note that considerable simplifications take place
when q = 1 (the interesting case) because

∑
d|i µ(d) is 1 if i = 1 and is 0 otherwise.

We omit the details of the proof as they are the same as for the corresponding results in
Section 4.

Corollary 8 Suppose that 	β = 	0 and α1 = · · · = αq = 1−γ

q .
1. Fix u such that 0 < u < 1. Choose a random deck size with probability of getting n

equal to (1 − u)un. Let Ni (π ) be the number of i-cycles of π distributed as a (	α, 	β, γ )
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shuffle. Then the random variables Ni are independent, where Ni is the convolution of
a Poisson((ui (1 − (1 − γ )i ))/ i) with 1

i

∑
d|i µ(d)qi/d many geometrics with parameter

( u(1−γ )
q )i .

2. Let Ni (π ) be the number of i-cycles of π distributed as a (	α, 	β, γ ) shuffle. Then as
n → ∞ the random variables Ni are independent, where Ni is the convolution of a
Poisson((1− (1−γ )i )/ i) with 1

i

∑
d|i µ(d)qi/d many geometrics with parameter ( 1−γ

q )i .
3. Fix q and let L1, . . . , Lr be the lengths of the r longest cycles of π . Then for q fixed, or

growing with n as n → ∞,

∣∣Prob′
n,	α, 	β,γ (L1/n ≤ t1, . . . , Lr/n ≤ tr ) − ProbSn (L1/n ≤ t1, . . . , Lr/n ≤ tr )

∣∣ → 0

uniformly in t1, . . . , tr (Here ProbSn denotes the uniform distribution on Sn).

Example 3 Consider the case when α1 = · · · = αq = β1 = · · · = bq = 1
2q and all other

parameters are 0. Theorems 13 and 16 imply that the distribution on RSK shape and cycle
index is the same as for the shuffles in Section 5, though we do not see a simple reason why
this should be so.

Example 4 Another generalization of riffle shuffles are random walks coming from real
hyperplane arrangements [9]. The most interesting such shuffles are those where the weights
on faces of the Coxeter complex are invariant under the action of the symmetric group. It
is straightforward to see that such shuffles are mixtures of what can be called µ shuffles,
where µ is a composition of n. For a µ shuffle, one breaks the decks into piles of sizes
µ1, µ2, . . . and then chooses uniformly at random one of the ( n

µ1,µ2,...
) possible interleavings.

In what follows we also let µ denote the partition of n given by ordering the parts of the
composition by decreasing size.

For example the top to random shuffle is a (1, n − 1) shuffle. Let P( j, k, n) be the
probability that when k balls are dropped at random into n boxes, there are j occupied cells
(thus by inclusion exclusion P(n − j, k, n) = ∑n

r= j (−1)r− j (n
r)(r

j)(1 − r/n)k). A result of
[12] is that the iteration of k top to random shuffles is equivalent to a mixture of (n − j, 1 j )
shuffles, where (n − j, 1 j ) is chosen with probability P( j, k, n). Theorem 17 will give an
expression for the increasing subsequence structure after this process. For this a lemma is
required. In its statement we use notation in [30] that Kλµ is a Kostka number (the number
of semistandard Young tableau of shape λ where i appears µi times), and λ/µ denotes a
tableau of skew shape λ/µ.

Lemma 3 Let T be a standard Young tableau of shape λ. The probability that a µ shuffle
has recording tableau T is equal to Kλµ

( n
µ1 ,µ2 ,...

)
.

Proof: A µ shuffle corresponds to choosing at random a word where i appears µi times,
and each word has probability ( n

µ1,µ2,...
). It is easy to see that the RSK recording tableau of

the word and the corresponding permutation obtained after the shuffle are identical. Now
the number of words of length n where i appears µi times and with recording tableau T is
equal to Kλµ, since such words biject with the possible insertion tableau which have shape
λ and weight µ.
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Theorem 17 Let fλ/µ denote the number of standard tableau of shape λ/µ. Then the
chance that the RSK shape after k top to random shuffles is λ is equal to

f 2
λ

n!

n∑
a=1

P(a, k, n)(n − a)!
fλ/(n−a)

fλ
.

Proof: From Lemma 3 and the description of iterations of top to random shuffles as
mixtures of µ shuffles, it follows that the sought probability is

fλ
n!

n∑
a=1

P(a, k, n)Kλ,(n−a,1a )(n − a)!.

Finally observe the Kλ,(n−a,1a ) = fλ/(n−a), since the n − a ones must appear in the first row
and what remains is a standard Young tableau.

Note that in Theorem 17, f 2
λ

n! corresponds to Plancherel measure and the rest is a correction
term (going to 1 as k → ∞ and n is fixed). It would be interesting to determine how many
iterations of top to random are necessary for the length of the longest increasing subsequence
to be close to that of a random permutation.

For comparison, one has the following result for ordinary 2-riffle shuffles. The result is
a corollary of Eq. (1.27) of [25], together with the fact that k 2-riffle shuffles is the same
as one 2k riffle shuffle [5]. At the urging of Persi Diaconis, Arnab Chakraborty has made
clever use of Gray codes to run simulations on increasing subsequences after several 2-riffle
shuffles for a n = 52 card deck.

Corollary 9 Let Ln denote the longest increasing subsequence of a random element of
Sn and let L2k

n denote the longest increasing subsequence of an element of Sn after k 2-riffle
shuffles. Then

lim
n→∞ Prob.

(
Ln − 2n1/2

n1/6
≤ t

)
= F(t)

and

lim
n→∞ Prob.

(
L2k

n − 2n1/2

n1/6
≤ t

)
= F(t − e−c)

where 2k = �ecn5/6� and F(t) is the Tracy-Widom distribution. Thus for sufficiently large n,

5/6 log2(n) + c log2(e) 2-riffle shuffles are necessary and suffice for the longest increasing
subsequence to be that of a random permutation.
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