ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Maximum Distance Separable Codes in the ρ  Metric over Arbitrary Alphabets

Steven T. Dougherty and Maxim M. Skriganov2

2dagger

DOI: 10.1023/A:1020834531372

Abstract

We give a bound for codes over an arbitrary alphabet in a non-Hamming metric and define MDS codes as codes meeting this bound. We show that MDS codes are precisely those codes that are uniformly distributed and show that their weight enumerators based on this metric are uniquely determined.

Pages: 71–81

Keywords: MDS codes; uniform distributions

Full Text: PDF

References

1. S.T. Dougherty and K. Shiromoto, “MDR codes over Zk ,” IEEE-IT 46(1) (2000), 265-269.
2. S.T. Dougherty and M.M. Skriganov, “MacWilliams duality and the Rosenbloom-Tsfasman metric,” Moscow Mathematical Journal 2(1) (2002), 83-99.
3. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
4. W.J. Martin and D.R. Stinson, “Association schemes for ordered orthogonal arrays and (T , M, S)-nets,” Canad. J. Math. 51 (1999), 326-346.
5. M. Yu Rosenbloom and M.A. Tsfasman, “Codes for the m-metric,” Problems of Information Transmission, 33(1) (1997), 45-52. (Translated from Problemy Peredachi Informatsii 33(1) (1996), 55-63.
6. M.M. Skriganov, “Coding theory and uniform distributions,” Algebra i Analiz 13(2) (2001), 191-239. (Translation to appear in St. Petersburg Math. J.).




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition