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Abstract. For about 10 years, the classification up to Wilf equivalence of permutation patterns was thought
completed up to length 6. In this paper, we establish a new class of Wilf-equivalent permutation patterns, namely,
(n −1, n −2, n, τ ) ∼ (n −2, n, n −1, τ ) for any τ ∈ Sn−3. In particular, at level n = 6, this result includes the only
missing equivalence (546213) ∼ (465213), and for n = 7 it completes the classification of permutation patterns by
settling all remaining cases in S7.
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1. Introduction

A permutation τ of length k is written as (a1, a2, . . . , ak) where τ (i) = ai , 1 ≤ i ≤ k. For
k < 10 we suppress the commas without causing confusion. As usual, Sn denotes the sym-
metric group on [n] = {1, 2, . . . , n}.

Definition 1 Let τ and π be two permutations of lengths k and n, respectively. We
say that π is τ -avoiding if there is no subsequence iτ (1), iτ (2), . . . , iτ (k) of [n] such that
π (i1) < π (i2) < · · · < π (ik). If there is such a subsequence, we say that the subsequence
π (iτ (1)), π (iτ (2)), . . . , π (iτ (k)) is of type τ .

For example, the permutation ω = (52687431) avoids (2413) but does not avoid (3142)
because of its subsequence (5283). An equivalent, but perhaps more insightful, definition
is the following reformulation in terms of matrices.

Definition 2 Let τ ∈ Sn . The permutation matrix M(τ ) is the n × n matrix having a 1 in
position (i, τ (i)) for 1 ≤ i ≤ n, and having 0 elsewhere.1 Given two permutation matrices
M and N , we say that M avoids N if no submatrix of M is identical to N .

Note that a permutation matrix M of size n is simply a traversal of an n × n matrix, i.e.
an arrangement of 1’s for which there is exactly one 1 in every row and in every column of
M . It is clear that a permutation π ∈ Sn contains a subsequence τ ∈ Sk if and only if M(π )
contains M(τ ) as a submatrix.
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Let Sn(τ ) denote the set of τ -avoiding permutations in Sn .

Definition 3 Two permutations τ and σ are called Wilf-equivalent if they are equally
restrictive: |Sn(τ )| = |Sn(σ )| for all n ∈ N. We denote this by τ ∼ σ . If |Sk(τ )| = |Sk(σ )| for
k ≤ n, then we say that τ and σ are equinumerant up to level n.

The basic problem in the theory of forbidden subsequences is to classify all permutations
up to Wilf-equivalence. Obviously, if two permutations are Wilf-equivalent, then they must
be of the same length. Further, many Wilf-equivalences can be deduced by symmetry
arguments within the same Sk . For instance, if M(π ) contains M(τ ) as a submatrix, then the
transpose matrix M(π )t contains M(τ )t . The same is true when simultaneously reflecting
both matrices M(π ) and M(τ ) in either a horizontal or a vertical axis of symmetry. The three
operations defined above generate the dihedral group D4 acting on the set of permutation
matrices in the obvious way. The orbits of D4 in Sk are called symmetry classes. It is
clear that if τ and σ belong to the same symmetry class in Sk , then τ ∼ σ . However,
Wilf-classes are in general, but apparently rarely, larger than single symmetry classes.
This makes the classification of permutations up to Wilf-equivalence a subtle and difficult
process.

The first major result in the theory of forbidden subsequences states that (123) ∼ (132),
and hence S3 is one Wilf-class, which combines the two symmetry classes of (123) and
(132). At the behest of Wilf, bijections between Sn(123) and Sn(132) were given by Simion-
Schmidt [15], Rotem [14], Richards [13], and West [19]. They all prove |Sn(123)| = cn ,
where cn is the nth Catalan number. Permutations with forbidden subsequences arise nat-
urally in computer science in connection with sorting problems and strings with forbidden
subwords. For example, in [6–7] Knuth shows that Sn(231) is the set of stack-sortable
permutations (see also [9]), so that |Sn(231)| is the number of binary strings of length
2n, in which 0 stands for a “move into a stack” and 1 symbolizes a “move out from
the stack”.

Numerous problems involving forbidden subsequences have also appeared in algebraic
combinatorics. In the late 1980s, it was discovered that the property of avoiding 2143 exactly
characterizes the vexillary permutations, i.e. those whose Stanley symmetric function is a
Schur function. (See [10] for a good exposition.) Lakshimibai and Sandhya [8] likewise
show that Sn(3412, 4231) is the set of permutations indexing an interesting subclass of
Schubert varieties. And Billey and Warrington [3] have very recently defined a class of
permutations under 5 restrictions which are related to the Kazhdan-Lusztig polynomials.
This all naturally leads to the study and classification of Wilf-classes of permutations of
length 4 or more.

The classification of S4 turns out to be much more complicated than that of S3. It is com-
pleted in a series of papers by Stankova and West. They utilize the concept of a generating
tree T(τ ) of τ ∈ Sk : the nodes on the kth level of T(τ ) are the permutations in Sn(τ ), and the
descendants of π ∈ Sn(τ ) are obtained from π by inserting n + 1 in appropriate places in
π so that τ is still avoided. Clearly, the tree isomorphism T(τ ) 
 T(σ ) implies τ ∼ σ , but
the converse is far from true. In [19], West shows T(1234) 
 T(1243) 
 T(2143). In [16],
Stankova constructs a specific isomorphism T(4132) ∼= T(3142). In [17], she completes
the classification of S4 by proving (1234) ∼ (4123); there she uses a different approach
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Figure 1. Classification of S4 up to Wilf-equivalence.

Figure 2. Splitting of a traversal T ∈ SY (10,10,9,8,8,8,8,7,4,3)(213).

which yields the somewhat surprising result that, while T(1234) �∼= T(4123), on every level
of the two trees the number of nodes with a given number of descendants is the same for
both trees. Thus, the seven symmetry classes of S4 are grouped in three Wilf-classes, with
representatives (4132), (1234) and (1324) (cf. figure 1.)

In [1], Babson-West show (n −1, n, τ ) ∼ (n, n −1, τ ) for any τ ∈ Sn−2, and (n −2, n −1,

n, τ ) ∼ (n, n −1, n −2, τ ) for any τ ∈ Sn−3, thus completing the classification up to level 5.
The key idea is the concept of a stronger Wilf-equivalence relation.

Definition 4 A traversal T of a Young diagram Y is an arrangement of 1’s and 0’s such
that every row and every column of Y has exactly one 1 in it. A subset of 1’s in T is said
to form a submatrix of Y if all columns and rows of Y passing through these 1’s intersect
inside Y . For a permutation τ ∈ Sk , we say that T contains pattern τ if some k 1’s of T form
a submatrix of Y identical to M(τ ) (cf. figure 2.)

Given several 1’s in a traversal T , the condition for them to form a submatrix of T is
the same as the requirement that the column of the rightmost 1 and the row of the lowest
1 must intersect inside Y . This condition is necessary for the new definition to be a useful
generalization of the classical definition of a forbidden subsequence, as we shall see below.
In particular, when Y is a square diagram, the two definitions coincide. Let us denote by
SY (τ ) the set of all traversals of Y which avoid τ .

Definition 5 Two permutations τ and σ are called shape-Wilf-equivalent (SWE) if
|SY (τ )| = |SY (σ )| for all Young diagrams Y . We denote this by τ

s∼ σ .

Clearly, τ
s∼ σ implies τ ∼ σ , but not conversely. We will write Y (a1, a2, . . . , an) for the

Young diagram Y whose i-th row has ai cells, 1 ≤ i ≤ n. In order for a Young diagram
Y to have any traversals at all, Y must have the same number of rows and columns and
Y must contain the staircase diagram St = Y (n, n − 1, . . . , 2, 1), where n is the number
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of cells in the top (largest) row of Y . Thus, from now on, when we talk about a Young
diagram Y of size n, we will assume that Y has n rows and n columns and contains St of
size n.

SWE is a very strong relation on two permutations and it is certainly too restrictive
on its own to be useful in the general classification of permutations. However, com-
bined with the proposition below (see [1]), it allows for more Wilf-equivalences to be
established.

Proposition 1 Let A
s∼ B for some permutation matrices A and B. Then for any permu-

tation matrix C:

(
A 0
0 C

)
s∼

(
B 0
0 C

)
·

Let Ik be the k × k identity matrix, and let Jk be its reflection across a vertical axis of
symmetry. According to Backelin-West-Xin in [2], Ik

s∼ Jk for any k, and hence (n, n −
1, . . . , m, τ ) ∼ (m, . . . , n − 1, n, τ ) for any τ ∈ Sn−m . This SWE generalizes the re-
sults in [20] and [1], but it is not sufficient to complete the classification of S7, nor
of S6.

In 2001, Stankova noticed a missing case of a plausible Wilf-equivalence in S6: (546213)
and (465213) were equinumerant up to level 11, but no reference was found regarding why
these permutations were thought to be in different Wilf classes (see figure 11). Stankova
further found an infinite class of Wilf-equivalences

(n − 1, n − 2, n, τ ) ∼ (n − 2, n, n − 1, τ ), (1)

At her request, West confirmed (1) by computer checks for n = 6, 7 up to level 13.2

The purpose of this paper is to explain the proof of the new Wilf-equivalences in (1).
The idea is to show (213)

s∼ (132) and apply then Proposition 1. Even though M(213)
and M(132) are transposes of each other, their SWE relationship is far from trivial, as the
present paper will reveal. It is surprising that such a basic relationship is discovered only
now, 10 years after the introduction of SWE in the early 1990s.

Theorem 1 (Main result of the paper) The permutations (213) and (132) are shape-
Wilf-equivalent. Consequently, for any τ ∈ Sn−3, the permutations (n − 1, n − 2, n, τ ) and
(n − 2, n, n − 1, τ ) are Wilf-equivalent.

Theorem 1 finally accounts for the last missing case in S6 and the remaining cases in S7, thus
completing the classification of forbidden subsequences up to length n = 7 (see figure 7).

In summary, modulo symmetry classes, as of now there are essentially two known infinite
families of Wilf-equivalences, resulting from [2] and the present paper:

(
Ik 0
0 C

)
s∼

(
Jk 0
0 C

)
and

(
M(213) 0

0 C

)
s∼

(
M(132) 0

0 C

)
· (2)
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Further, there is only one known “sporadic” case of Wilf-equivalence, from [16]:




1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


 ∼




0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


 · (3)

The above (4132) and (3142) in (3) constitute an interesting pair of Wilf-equivalent per-
mutations: (3142) has the smallest symmetry class as it corresponds geometrically to the
quadrilateral with most symmetries—the square, while (4132) has the largest symmetry
class as it corresponds to the quadrilateral with least number of symmetries—a quadri-
lateral with 4 different angles. And yet, not only (4132) ∼ (3142), but also their trees are
isomorphic. In a similar vein, the permutations in (2) are more than just Wilf-equivalent—
they are SWE. This is an interesting phenomenon—so far, every known Wilf-equivalence
can be explained by a stronger relationship: either symmetry, tree isomorphism, SWE, or a
combination of these.

For further discussion, we refer the reader to Sections 5–6.
The proof of the main result (Theorem 1) is structured as follows. Since the permutation

matrices of (213) and (132) are transposes, Lemma 2(i)–(ii) in Section 3 allows us to prove
the equivalent statement that Y ≡ Y t for all Young diagrams Y , i.e. that the number of
(213)-avoiding traversals of Y is the same as the number of (213)-avoiding traversals of
Y t (cf. Definition 10 in Section 2). To this end, in Section 2 we define an operation on
Young diagrams, which we call row-decomposition. It breaks up every Young diagram Y
into two smaller diagrams Y ′

r and Y ′′
r so that Y ≡ Y ′

r + Y ′′
r . To link this with the transpose

Y t , we define an analogous column-decomposition on Y , and Lemma 2(iii) shows that
establishing Y ≡ Y ′

c + Y ′′
c is equivalent to the main result (213)

s∼ (132). In Section 4, we
investigate a commutativity argument: we apply row decomposition followed by column
decomposition, then reverse the order of the two operations and compare the results. This
gives us a tool for using induction and the row-decomposition formula to prove the desired
column decomposition formula. An amusing consequence of this discussion in presented
by Corollary 2 in Section 5.

2. The row-decomposition formula

Let Y be a Young diagram with n rows and n columns. We denote by (k, 	) the intersection
cell of row k and column 	, counted from the top left corner of Y . A cell in the bottom row
of Y is called a bottom cell of Y . Let m be the number of bottom cells in Y .

Definition 6 For a subset X of cells in Y , define the reduction Y/X of Y along X to be
the new Young diagram obtained from Y by deleting all rows and columns of Y which
intersect X .

For example, if the cross of a cell C in Y is the union of the row and column containing
C , then the reduction Y/C is the diagram obtained from Y by deleting the cross of C . The
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Figure 3. Y → Y
/

C → YC = AC × BC .

reduction of Y along an arbitrary bottom cell of Y is denoted by Y r , and it clearly does not
depend on the choice of the bottom cell. We will use this fact frequently when reducing
along cell (1, n) (and (n, 1)) in the proof of the commutativity argument in Lemma 3 in
Section 4.

Definition 7 To any bottom cell C in Y , we associate a cross-product YC of Young diagrams
in the following way. Mark by P the top right corner of C (this is a grid point on Y ), and
consider the reduction Y/C , which still contains point P. Starting from P in Y/C , draw a 45◦

ray in north-east direction until the ray intersects for the first time the border of Y/C , and use
the resulting segment as the south-west/north-east diagonal of a smaller subdiagram AC of
Y/C . Delete the rows and columns of AC in Y/C , leaving a subdiagram BC = Y/{C,AC }. Thus,
any bottom cell C in the original diagram Y determines a pair (AC , BC ) of smaller Young
diagrams, which we call the cross-product of AC and BC and denote by YC := AC × BC .

If one of the subdiagrams AC or BC is empty, we define YC to equal the other subdiagram.
This case occurs exactly when C is the first or the last bottom cell of Y :

Y(n,1) = Y r × ∅ = Y r = ∅ × Y r = Y(n,m).

Example 1 Let Y = Y (10, 10, 9, 8, 8, 8, 8, 7, 4, 3). Let C = (10, 2). Then YC = AC ×
BC = Y (6, 6, 6, 6, 5, 2) × Y (3, 3, 2) (cf. figure 3.)

Definition 8 Let Y be a Young diagram of size n. The row decomposition of Y is the
formal sum R(Y ) of cross-products of smaller Young diagrams:

R(Y ) :=
∑

C

YC =
∑

C

AC × BC ,

where the sum is taken over all bottom cells C of Y .

As noted above, the first and the last summands of R(Y ) are identical to Y r .

Definition 9 A traversal of a diagram Y which avoids (resp. contains) a (213)-pattern is
called a good (resp. bad ) traversal of Y . Denote by T (Y ) = T (a1, a2, . . . , an) the number
of good traversals of Y = Y (a1, a2, . . . , an).
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We use the convention T (∅) = 1. For some 1 already placed in a cell of Y , we say that
it imposes a (213)-condition on Y if it plays the role of a “1” in a (213)-pattern contained
in some bad traversal of Y ; the (213)-condition is the actual condition on the rest of Y in
order to avoid a (213)-pattern containing this 1.

Definition 10 Two diagrams Y and X are said to be numerically equivalent ifT (Y ) = T (X ).
We denote this by Y ≡ X .

Clearly, T (AC × BC ) = T (AC ) · T (BC ). Moreover, to obtain the number T (Y ), we can
apply the function T to all terms in the formal sum R(Y ):

Theorem 2 (Row-Decomposition) Let Y be a Young diagram of size n. Then

T (Y ) =
∑

C

T (AC ) · T (BC ) (4)

where the sum is taken over all bottom cells C in Y .

Proof: For a bottom cell C = (n, i), let Yi denote the diagram Y with the additional data
of 1 in cell C . The correspondence will be induced by the map Yi �→ (AC , BC ). In fact, we
claim that the good traversals of Yi are in 1-1 correspondence with the good traversals of
the pair of diagrams (AC , BC ), and hence

T (Yi ) = T (AC ) · T (BC ). (5)

This, and the fact that any traversal of Y must contain exactly one 1 in the bottom row,
immediately establishes Theorem 2. Hence, it suffices to prove (5) for Yi .

When i = 1 or i = m, the claim (5) is trivial. Indeed, in these cases, the 1 in the bottom
row of Y is either in the first or last bottom cell, and hence it doesn’t impose any (213)-
conditions on Y . The question reduces to finding all good traversals of Y/C = Y r = YC .
Therefore, Y1 ≡ Ym ≡ Y r .

Assume now that 1 < i < m. Fix a good traversal T of Yi . Denote by 1 j the 1 in column
j . By 1 j > 1k we mean that 1 j is in a row above the row of 1k . Similarly, for two disjoint
sets A and B of 1’s, by A > B we mean that all 1’s in A are above all 1’s in B. Let
BL = {11, 12, . . . , 1i−1} denote the set of all 1’s in T appearing in columns to the left of
cell C . Similarly, let A = {1i+1, 1i+2, . . . , 1k} be the set of all 1’s appearing in the columns
of Y intersecting AC , and let BR = {1k+1, 1k+2, . . . , 1n} be the set of all 1’s appearing in the
remaining columns, i.e. all columns to the right of AC . Notice that no 1 in BR can appear
in a row intersecting AC : the rows of the 1’s in BR are above all rows of AC as enforced by
the construction of AC via the 45◦ segment.

The key idea of the proof is contained in the following lemma:

Lemma 1 In any good traversal T of Yi , we have BL > A.

Proof (of Lemma 1): Given a row j of A, let the level L j be the subset of A consisting
of all 1’s whose orthogonal projections onto row j are inside AC . Clearly, every 1 ∈ A
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belongs to at least one level L j , and Ln−1 ⊆ Ln−2 ⊆ · · · ⊆ Ln−k = A, where k is the size
of AC . Recall that i < m, so that Ln−1 ∩ A �= ∅, and that the bottom row of Y is filled by
1i . This imposes a (213)-condition on Yi : BL > Ln−1. Finally, from the construction of AC ,
|Ln− j | > j for j = 1, 2, . . . , k − 1, and |Ln−k | = k.

We will prove simultaneously the following two statements for all 1 ≤ j ≤ k:

(i) BL > Ln− j ;
(ii) All rows n − 1, n − 2, . . . , n − j of Yi are filled in with 1’s on level Ln− j .

For j = 1, (i) was shown above. But then row n − 1 in Yi must be filled with an element
of Ln−1, so (ii) is also true. Assume (i) and (ii) for some j < k. Then (ii) for j , together
with |Ln− j | > j , implies that at least one element 1s of Ln− j is in row n − j − 1 or above.
Now (i) for j implies in particular BL > 1s , so that a new (213)-condition is imposed:
BL > (Ln− j−1\Ln− j ). Combining, BL > Ln− j−1: this is (i). By definition of Ln− j−1, the
only 1h that can possibly fill in row n − j − 1 in Yi must belong either to Ln− j−1, or to
BL . Because |Ln− j−1| ≥ j +1 and BL > Ln− j−1, we conclude that 1h ∈ Ln− j−1. This shows
(ii) for j + 1 and completes the inductive proof of the above statement. Lemma 1 follows
automatically from (i) for j = k.

End of Proof of Theorem 2: Combining Lemma 1 with a previous observation, we see
that no 1’s from BL or from BR can fill the rows intersecting AC . In other words, all rows
of AC must be filled exactly with the 1’s from set A: the number of necessary 1’s to make a
traversal of AC matches |A| = k because, by construction, AC has as many rows as columns.
This in turn forces all 1’s in BL and BR to make a good traversal of the subdiagram BC . It
remains to show that there are no further (213)-conditions imposed by a triple of 1’s coming
from AC and BC .

The only way for AC and BC to engage together in a (213)-pattern is to have the “2” in
BL , the “1” in A, and the “3” in BR ; or, to have the “2” and the “1” in A, and the “3” in BR .
Even though such configurations of three 1’s are possible, their “full” matrices will not be
contained entirely in Y because of the relative positioning of AC and BR .

Putting everything together, the good traversals of Yi are in 1 − 1 correspondence with
pairs of good traversals of AC and BC , i.e. T (Yi ) = T (AC ) · T (BC ) for all bottom cells C
of Y . This completes the proof of the Row-Decomposition formula.

Example 2 To illustrate the above proof, consider Y (10, 10, 9, 8, 8, 8, 8, 7, 4, 3). Let Y2

denote the diagram Y with the additional data that the 1 in the bottom row is in cell
C = (10, 2). We have to show that T (Y2) = T (6, 6, 6, 6, 5, 2) · T (3, 3, 2) (cf. figure 3.)

The initial condition that 12 is in the bottom row forces the (213)-condition 11 > 13.
Since 13 is above row 10, the only 1’s which can fill row 9 are 13 and 14. If 13 is in row
9, then 11 > 14 in order to avoid (213); if 14 is in row 9, then 11 > 13 > 14. In any case,
11 > 13, 14. Without loss of generality, assume that 13 is in row 9, so that 14 is in row 8 or
above. From 11 > 14 and avoiding (213), we conclude that 11 > 14, 15, 16, 17. One of the
latter four 1’s must fill in row 8. Without loss of generality, assume that 14 is in row 8; hence
15, 16, 17 are in rows 7 or above. But then, to avoid (213), we are forced to conclude that
11 > 18, i.e. 11 is above all of 13, . . . , 18. We need six 1’s to fill in the six rows 9, 8, . . . , 4. It
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Figure 4. T (9, 9, 9, 9, 7, 7, 7, 7, 4) = T (9, 9, 9, 9, 7, 7, 7, 7, 3) + T (4, 4, 4, 4)2.

immediately follows that 13, . . . , 18 must have filled all 6 rows and columns of subdiagram
AC , leaving all remaining 1’s (except for 12) to form a good traversal of subdiagram BC

(cf. figure 2.)
We note that BC consists of two disjoint parts: BL (1, 1, 1) and BR(2, 2, 1). The argument

that BC and AC cannot engage together in a pattern (213) is identical to the corresponding
part of the proof of Theorem 2.

Given a diagram Y , let Cb be its rightmost bottom cell, which we call the bottom corner
of Y , and let Cb−1 be the bottom cell to the left of Cb. (In our previous notation, Cb = (n, m),
Cb−1 = (n, m−1).) Deleting Cb from Y results in a new diagram, which we denote by Y ′

r and
call the row-deletion of Y . Similarly, we define the right corner Ct of Y as the bottom cell
in the rightmost column of Y , Ct−1 as the cell directly above Ct , and the column-deletion
Y ′

c by deleting Ct from Y . Note that (Y ′
r )t = (Y t )′c, where Xt denotes as usual the transpose

of diagram X along its main (north-west to south-east) diagonal.
In the row-decomposition of Y , we distinguish one special summand: the last but one

summand YCb−1 = ACb−1 × BCb−1 , which we denote by Y ′′
r .

Corollary 1 For any diagram Y, Y ≡ Y ′
r + Y ′′

r .

Proof: The row-decomposition of Y includes one more summand than the row-
decomposition of Y ′

r , namely, Y ′′
r : R(Y ) = Y ′

r + Y ′′
r . Theorem 2 completes the proof.

From now on, we shall refer to Corollary 1 as Row-Decomposition (RD).

Example 3 Figure 4 illustrates Corollary 1 for T (9, 9, 9, 9, 7, 7, 7, 7, 4).
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3. Column decomposition

Definition 11 The column decomposition C(Y ) of Y is defined by:

C(Y ) =
∑

C

((Y t )Ct )t

where C runs over all cells in the rightmost column of Y , and Ct is the image of the cell C
after transposing Y .

Note that the column decomposition C(Y ) can be obtained directly from Y without going
through the transpose Y t : for a cell C in the rightmost column of Y , mark the south-west
corner of C , draw the 45◦ ray in south-west direction until it intersects the border of Y ,
delete the cross of C and define analogously the product YC = AC × BC .

As with row decomposition, we denote by Y ′
c the diagram resulting from Y by deleting

the right corner cell Ct , and by Y ′′
c the summand in C(Y ) corresponding to the cell Ct−1

right above Ct . By definition, it is clear that

C(Y ) = Y ′
c + Y ′′

c .

It is not obvious, however, why the same formula should be true after applying the function
T to all terms: why is Y ≡ Y ′

c + Y ′′
c ?

Lemma 2 The following statements are equivalent:
(i) (213)

s∼ (132).
(ii) Y ≡ Y t for all Young diagrams Y .

(iii) Y ≡ Y ′
c + Y ′′

c .

Proof: Let Tτ (Y ) be the number of traversals of Y avoiding permutation τ . In our previous
notation, T (Y ) = T(213)(Y ). Since M(132) = M(213)t , T(132)(Y ) = T(213)(Y t ). By definition
of SWE, (i) and (ii) are equivalent.

We will show the equivalence of (ii) and (iii) by induction on the size n of Y . When
n ≤ 3, (ii) and (iii) can be easily checked by hand. Note that from the definitions of column
reduction, deletion and decomposition, (Y t )′c = (Y ′

r )t and (Y t )′′c = (Y ′′
r )t . Assume now that

(ii) and (iii) are equivalent for size ≤ n.
Assume first that (iii) is true for size ≤ n + 1. Then we can use (ii) for sizes ≤ n:

Y t (iii)≡ (Y t )′c + (Y t )′′c
def= (Y ′

r )t + (Y ′′
r )t (ii)≡ Y ′

r + Y ′′
r

RD≡ Y.

This shows Y ≡ Y t and completes the proof of (iii) ⇒ (ii) for size n + 1.
Conversely, assume that (ii) is true for size ≤ n + 1.

Y t (ii)≡ Y
RD≡ Y ′

r + Y ′′
r

(ii)≡ (Y ′
r )t + (Y ′′

r )t def= (Y t )′c + (Y t )′′c . (6)
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Replacing Y by Y t in (6), the above reads Y ≡ Y ′
c +Y ′′

c . This shows (ii) ⇒ (iii) for size n +1,
and completes the proof of (ii) ⇔ (iii) and of Lemma 2.

From now on, we shall refer to statement (iii) as Column-Decomposition (CD).

4. Commutativity of row and column decompositions

Lemma 3 Y ≡ Y ′
c + Y ′′

c for all Young diagrams Y .

Proof: Assume that the statement is true for all diagrams of size smaller than the size of
Y . The idea is to apply RD and the assumed CD one after the other in different orders: this
results in representing both sides of the equality as sums of the same four terms. Let us start
with Y . Recall that Cb and Ct are the bottom and right corners of Y , respectively. Apply
first RD:

Y
RD≡ Y ′

r + Y ′′
r .

Next, apply the assumed CD to Y ′
r , and to the factor of Y ′′

r that still contains Ct , leaving the
other factor of Y ′′

r unchanged:

Y ′
r

CD≡ (Y ′
r )′c + (Y ′

r )′′c , Y ′′
r

CD≡ (Y ′′
r )′c + (Y ′′

r )′′c . (7)

Now start with Y ′
c + Y ′′

c , and apply RD to Y ′
c, and to the factor of Y ′′

c that still contains Cb,
leaving the other factor of Y ′′

c unchanged:

Y ′
c + Y ′′

c
RD≡ (Y ′

c)′r + (Y ′
c)′′r + (Y ′′

c )′r + (Y ′′
c )′′r . (8)

In both Eqs. (7) and (8), by abuse of notation, we wrote (Y ′′
r )′c, (Y ′′

r )′′c , (Y ′′
c )′r and (Y ′′

c )′′r for the
cross-products of diagrams resulting from applying CD, resp. RD, to the factors containing
Ct , resp. Cb. From the definition of row and column deletion, it is clear that the first terms
in (7) and (8) are equal: (Y ′

r )′c = Y − Cb − Ct = (Y ′
c)′r . We claim that the remaining three

terms also pair up as:

(Y ′
r )′′c = (Y ′′

c )′r , (Y ′′
r )′c = (Y ′

c)′′r , (Y ′′
r )′′c = (Y ′′

c )′′r , (9)

except in Case IV below where

(Y ′
r )′′c ≡ (Y ′

c)′′r , (Y ′′
r )′c ≡ (Y ′′

c )′r , (Y ′′
r )′′c ≡ (Y ′′

c )′′r . (10)

Before we embark on the proofs of (9–10), note how they fit in the general outline of the
proof of CD:

Y
RD≡ Y ′

r + Y ′′
r (known)

CD≡ (Y ′
r )′c + (Y ′

r )′′c + (Y ′′
r )′c + (Y ′′

r )′′c (assumed)

≡ (Y ′
c)′r + (Y ′

c)′′r + (Y ′′
c )′r + (Y ′′

c )′′r (by examining cases below)

≡ Y ′
c + Y ′′

c (converse RD, known).
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One of the reasons that this works is that the CD-factor in Y ′
r can be anticipated from B, the

CD-factor in the original Y .
The proof of (9–10) depends solely on how the row and column decomposition interact

with each other in any given Young diagram Y , more precisely, on the relative position of
the two 45◦ segments used in the decompositions. Let the RD-segment be the segment used
in RD, and let the RD-factor be the subdiagram AC determined by the RD-segment, and
similarly for CD. Set A := RD-factor, and B := CD-factor in Y . To see that Eqs. (9) and
(10) are true, divide all Young diagrams Y into four cases: since the RD- and CD-segments
are parallel to each other, there are only four possible relative positions for them. We will
use

sym⇒ ,
sym= and

sym≡ as shorthand for “by symmetry arguments”.

Case I The RD- and CD-factors do not overlap (A∩B= ∅), i.e. the RD- and CD-segments
hit Y ’s border before they “come close” to each other (figure 12). Then

(Y ′
r )′′c = (Y − Cb)′′c = (Y − Cb)/{(1,n),B} × B

= (
Y/{(1,n),B}

)′
r
× B= (Y ′′

c )′r ;
sym⇒ (Y ′

c)′′r = (Y − Ct )/{(n,1),A} × A=(Y ′′
r )′c;

(Y ′′
r )′′c = (

Y/{(n,1),A} × A
)′′

c = (
Y/{(n,1),A}

)′′
c ×A

= Y/{(n,1),(1,n),B,A} × B × A sym= (Y ′′
c )′′r .

Case II The RD-factor contains the CD-factor (A⊃B), i.e. the RD-segment runs “on the
inside” of the CD-segment (see figure 13). As in Case II, (Y ′

r )′′c = (Y ′′
c )′r . Note that Ct ∈A,

and therefore Y/A is a square. This justifies step (∗) below, where Atr denotes the top right
cell of A. Note that Atr has the same function in A as the cell (1, n) has in Y . The proof
works even in the extreme case where Atr = (1, n).

(Y ′
c)′′r = (Y − Ct )

′′
r = (A − Ct ) × Y/{(n,1),A}

= A′
c × Y/{(n,1),A} = (

A × Y/{(n,1),A}
)′

c
= (Y ′′

r )′c;

(Y ′′
r )′′c = (

A × Y/{(n,1),A}
)′′

c =A′′
c × Y/{(n,1),A}

= A/{B,Atr } × B × Y/{(n,1),A};
(∗)= (

Y/{(1,n),B}
)′′

r × B= (
Y/{(1,n),B} × B

)′′
r = (Y ′′

c )′′r .

Case III The CD-factor contains the RD-factor (B⊃A), i.e. the CD-segment runs “on
the inside” of the RD-segment. This case is symmetric to Case II.

Case IV The RD- and CD-segments overlap (see figure 14). This happens exactly when the
RD- and CD-segments differ from each other only in their final cells: the RD-segment inter-
sects the rightmost column of Y , while the CD-segment intersects the bottom row of Y . Let
D :=B/Cb−1 =A/Ct−1 . Since B−Cb and A−Ct contain exactly one bottom, resp. rightmost,
cell, then B−Cb ≡D ≡ A−Ct and B′′

r =D=A′′
c . Clearly, S := Y/D is a square. Moreover,

Sb =B/D = Cb−1, St =A/D = Ct−1; the top right cell of S is the cell (1, n) of Y , and the



A NEW CLASS OF WILF-EQUIVALENT PERMUTATIONS 283

bottom left cell of S is the cell (n, 1) of Y . From this, we see that Y/{C,(1,n)} = Y/{D,(n,1)} and
Y/{B,(1,n)} = Y/{A,(n,1)}. Therefore,

(Y ′
r )′′c = (Y − Cb)′′c =B/Cb−1 × Y/{B/Cb−1 ,(1,n)}

= D × Y/{D,(1,n)} = D × Y/{D,(n,1)}
sym= (Y ′

c)′′r ;

(Y ′′
c )′r = (

Y/{B,(1,n)} × B
)′

r
= Y/{B,(1,n)} × (B − Cb)

≡ Y/{B,(1,n)} × D = Y/{A,(n,1)} × D sym≡ (Y ′′
r )′c;

(Y ′′
r )′′c = (

A × Y/{A,(n,1)}
)′′

c
= A′′

c × Y/{A,(n,1)}

= D × Y/{A,(n,1)} = D × Y/{B,(1,n)}
sym= (Y ′′

c )′′r .

The three special subcases when Cb−1 = (n, 1) (and hence Ct−1 = (1, n)), when Cb = (n, 1)
(and hence Ct = (1, n)) and when Cb = Ct (i.e. Y is a square), are easily checked to satisfy
the desired equalities.

The discussion of these four cases completes the proof of Lemma 3.

We remark that, due to the degenerate nature of Case IV, two of the final cross-products
turn out to be equal: (Y ′′

c )′r = (Y ′′
c )′′r , and hence (Y ′′

c )′′r has only two factors, rather than the
three it has in Cases I–III.

5. New Wilf equivalences and consequences

Lemmas 2 and 3 imply the main result of the paper: (213)
s∼ (132), which we repeat below

as Theorem 1. Combined with Proposition 1, this establishes a new class of Wilf-equivalent
permutations.

Theorem 1 The permutations (213) and (132) are shape-Wilf-equivalent. Consequently,
for any τ ∈ Sn−3, the permutations (n − 1, n − 2, n, τ ) and (n − 2, n, n − 1, τ ) are Wilf-
equivalent.

In particular, this completes the classification up to Wilf-equivalences of Sn , for n ≤ 7.
Figure 5 lists the number of symmetry classes and Wilf-classes in each such Sn .

An amusing corollary about numerical equivalence of Young diagrams can be deduced
from the above theorem and the row-decomposition formula. Recall that St is the standard
staircase diagram. The k-staircase Stk is the Young diagram which consists of St plus the
full k −1 diagonals below the diagonal of St . In particular, St is St1, and the square n × n is

Figure 5. Number of symmetry vs. Wilf classes in Sn , n ≤ 7.



284 STANKOVA AND WEST

Figure 6. St2 ∪ St1
2 ∪ St2

2 ∪ St3
2 ≡ St2 ∪ (St2

2 )t ∪ St3
2 ∪ St1

2 .

Stn . The critical staircase Stk of Y is the first staircase whose complement Y\Stk is a union
of at least two connected components. Label such components by St j

k , for j = 1, 2, . . . ,

starting at the bottom left corner of Y . Thus, for every Y with critical staircase Stk , we have
the critical decomposition Y = Stk ∪ j St j

k .

Corollary 2 Let Y = Stk ∪	
j=1 St j

k be the critical decomposition of Y . The operations of
permuting and of transposing the components St j

k result in Young diagrams numerically
equivalent to Y .

In other words, let τ ∈ S	 be any permutation, and let �t = (t1, t2, . . . , t	) ∈ {1, t}	 corre-
spond to a choice t j = t to transpose, resp. t j = 1 not to transpose, the component Stτ ( j)

k . Then
the following (ordered) critical decompositions represent numerically equivalent Young di-
agrams (cf. figure 6):

Stk
	⋃

j=1

St j
k ≡ Stk

	⋃
j=1

(
Stτ ( j)

k

)t j
.

Proof: We use induction on the size of Y . The initial cases are easily verified. Moreover,
when there is only one “hanging” shape, the corollary simply states that transposing Y will
yield a numerically equivalent diagram Y t: this is the content of Theorem 1.

Suppose now that there are at least two hanging shapes: St1
k is the bottom shape, and let’s

name the remaining shapes the “upper” shapes. Choose a permutation σ and a transposition
vector �t both of which leave the bottom shape St1

k fixed, and operate on the upper shapes
of Y . Apply the row-decomposition formula to Y : when C runs over all bottom cells of Y ,
we have

Y ≡
∑

C

YC =
∑

C

AC × BC . (11)

From the definition of the critical decomposition of Y , all RD-factors AC are parts of the
bottom shape St1

k , except for the first and the last RD-factors: there AC = Yr or AC = ∅.
In any case, none of the upper shapes St2

k , St3
k , . . . are broken up in (11). Thus, by in-

duction hypothesis, we can apply σ and �t to each YC : (Y σ
C )�t = AC × (Bσ

C )�t . We can then
put back together the resulting diagrams via another application of the row-decomposition
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formula:

Y ≡
∑

C

YC =
∑

C

AC × BC
ind.≡

∑
C

AC × (
Bσ

C

)�t ≡ (Y σ )�t .

This shows that leaving the bottom shape fixed, we can permute and transpose the upper
shapes in any way we like. We also know, again from Theorem 1, that transposing the whole
diagram Y yields a numerically equivalent diagram Y t . It is an easy exercise in algebra to
verify that these two types of operations generate the whole group of operations required
in Corollary 2.

The conclusion of Corollary 2 holds under a slightly relaxed hypothesis regarding which
staircases can be used instead of the critical staircase: as long as the RD (or CD) formula
breaks up only the bottom (or only the top) hanging shape, the above proof goes through
without modifications. Further generalizations are also possible, for instance, applying
recursively the Corollary just within a hanging shape. Finally, this can all be used to write
down a generating function for the numbers T(213)(Y ), but we will not do this here since it
will take us too far a field.

6. Further discussion

A careful investigation of the new Wilf-pair (546213) ∼ (465213) in S6 leads to the obser-
vation that both permutation matrices can be decomposed into two blocks of 3 × 3 matrices,
and further, that moving from one decomposition to the other involves a transposition of
one of the blocks. Thus, one might be lead to conjecture that for any permutation matrices
A and B, the following permutation matrices are Wilf-equivalent:

(
A 0
0 B

)
∼

(
At 0
0 B

)
· (12)

In order for (12) to give any new Wilf-classes, other than those obtained by symmetry or
It

s∼ Jt , both A and B must be non-symmetric matrices. In S6, there is only one such pair
up to symmetry (denote the 1’s by dots, and omit all 0’s):

M(546213) =



•
•

•
•

•
•


 ∼




•
•

•
•

•
•


 = M(465213)·

In S7, there are essentially 7 new Wilf-pairs which are covered by (12). Not surprisingly,
these are the pairs appearing in figure 7. One possible approach to prove (12) would be to
show A

s∼ At for any permutation matrix A. Unfortunately, this is not true; it fails already
in S4, e.g. (3142) � s∼ (2413) since

∣∣S(6,6,6,6,5,5)(3142)
∣∣ = 394 < 395 = ∣∣S(6,6,6,6,5,5)(2413)

∣∣.
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Figure 7. Final Wilf-equivalences in S7.

The Wilf-equivalence in (12) also fails in S8. For example:

M(68572413) =




•
•

•
•

•
•

•
•


 �∼




•
•

•
•

•
•

•
•


 = M(75862413)·

The two permutations are equinumerant up to level 11, but they split on level 12:

|S12(75862413)| = 476576750 < 476576751 = |S12(68572413)|.

This forces a reexamination of the 8 new Wilf-pairs in S6 and S7. If we choose the “right”
representatives of the symmetry classes, we can see that each permutation matrix contains
a block corresponding to (213) or (132). This led to conjecturing and proving the shape-
Wilf-equivalence (213)

s∼ (132). As we can see, this SWE is far from coincidental, and it
is the reason for the infinitely many new Wilf-equivalences of Theorem 1.

Let us now shift the emphasis of our discussion to a slightly different question. If we
write down a table enumerating |Sn(τ )| for τ ∈ S4 as n increases, we notice a very plausible
long-standing conjecture, which was first mentioned in [18] as a question:

Question 1 Is it true that if |Sk(τ )| < |Sk(σ )| for some k, then |Sn(τ )| < |Sn(σ )| for all
n ≥ k? In other words, modulo Wilf-equivalence, can we order linearly all permutations in
Sn according to their relative restrictiveness: τ < σ if |Sk(τ )| < |Sk(σ )| for some k?

S4 is the first non-trivial case of Question 1. It was partially answered positively by Bóna
in [4], where he shows |Sn(1423)| < |Sn(1324)| for n ≥ 6 and |Sn(1234)| < |Sn(1324)| for
n ≥ 7, in relation to a conjecture of Wilf and Stanley. To the best of our knowledge, no
one had published a counterexample to Question 1, until we found a counterexample in S5,
followed by various types of counterexamples in S6 and S7.

As figure 8 suggests, (53241) and (43251) cannot be ordered since Sk(53241) < Sk(43251)
for k ≤ 12, but S13(53241) > S13(43251). Figures 9 and 10 list all counterexamples up to
level 13 in S6, and some counterexamples in S7. The asterisks indicate the first level at which
the corresponding permutations “switch” their relative restrictiveness, and hence cannot be
ordered as in Conjecture 1. The “!!” in figure 9 refers to the permutation (546213), which
is also part of the new Wilf-equivalence of Theorem 1.
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Figure 8. Classification of S5 up to Wilf equivalence.

Figure 9. Counterexamples to Question 1 in S6.

Figure 10. Some counterexamples to Question 1 in S7.
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Figure 11. Missing pair of Wilf-equivalence in S6.

Figure 12. Case I for Y (9, 9, 9, 9, 8, 8, 5, 5, 5).

However, the above counterexamples do not preclude an asymptotic ordering of all
permutations in Sn .

Definition 12 For τ, σ ∈ Sn , we say that τ is asymptotically smaller than σ if |Sk(τ )| <
|Sk(σ )| for all k  0.

Conjecture 1 We can order asymptotically all permutations in Sn , modulo Wilf-
equivalence.

Regev [12] and Bóna [5] have worked on asymptotic behavior of certain types of permu-
tations, but as of now, Conjecture 1 and some possible modifications of it are far from
proven.

Finally, we haven’t observed examples of permutations “switching” their relative posi-
tions more than once. Thus, a stronger version of the above conjecture is possible, where
assymptotic ordering is replaced by the previous usual ordering, allowing for one switch:
τ < 1σ if |Sn(τ ) ≥ | Sn(σ )| for n ≤ K and |Sn(τ ) ≤ | Sn(σ )| for n > K . Here K depends on
τ and σ , and if K = 0, τ < σ in the strongest sense as in Question 1.
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Figure 13. Case II for Y (9, 9, 9, 9, 9, 9, 7, 7, 4).

Figure 14. Case IV for Y (10, 10, 10, 9, 9, 8, 8, 6, 5, 3).



290 STANKOVA AND WEST

Conjecture 2 We can order linearly the Wilf-classes in Sn under the relation <1.
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Notes

1. To keep the resemblance with the “shape” of τ , we coordinatize M(τ ) from the bottom left corner.
2. In all tables, we skip the column corresponding to |Sn+1(τ )| if τ ∈ Sn . It is easy to see that all permutations in

Sn are equinumerant on level n + 1 (for example, cf. [11]).
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