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Abstract. Let Xn be either the symmetric group on n letters, the set of planar binary n-trees or the set of vertices
of the (n −1)-dimensional cube. In each case there exists a graded associative product on

⊕
n≥0 K [Xn]. We prove

that it can be described explicitly by using the weak Bruhat order on Sn , the left-to-right order on planar trees, the
lexicographic order in the cube case.
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Introduction

Let Sn be the symmetric group acting on n letters. In [6] Malvenuto and Reutenauer showed
that the shuffle product induces a graded associative product, denoted ∗, on the graded space
K [S∞] := ⊕

n≥0 K [Sn] (here K is a field). By using the weak Bruhat order on Sn we give
a closed formula for the product of basis elements as follows. Let σ ∈ Sp and τ ∈ Sq be
two permutations. We define two operations called respectively ‘over’ and ‘under’:

σ/τ = σ × τ ∈ Sp+q and σ\τ = ξp,q · σ × τ ∈ Sp+q ,

where ξp,q is the permutation whose image is (q + 1 q + 2 . . . q + p 1 2 . . . q).
It turns out that σ/τ ≤ σ\τ for the weak Bruhat order of Sp+q . We prove that the product

∗ on K [S∞] is given on the generators by the sum of all permutations in between σ/τ and
σ\τ :

σ ∗ τ =
∑

σ/τ≤ω≤σ\τ
ω. (1)

Let Yn be the set of planar binary trees with n interior vertices (so the number of elements
in Yn is the Catalan number (2n)!

n!(n+1)! ). In [4] it is shown that there is a graded associative
product on the graded space K [Y∞] := ⊕

n≥0 K [Yn] induced by the “dendriform algebra”
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structure of K [Y∞]. We give a closed formula for the product of basis elements as follows.
There is a partial order on Yn induced by ❅

❅
❅❅

�
�

����

< ❅
❅

❅❅

�
�

��❅❅

. Let u ∈ Yp and v ∈ Yq be two planar
binary trees. We define two operations called respectively ‘over’ and ‘under’ as follows.
The element u/v ∈ Yp+q (resp. u\v ∈ Yp+q ) is obtained by identifying the root of u with
the left most leaf of v (resp. the right most leaf of u with the root of v). It turns out that
u/v ≤ u\v for the ordering of Yp+q . We prove that the product ∗ on K [Y∞] is given on the
generators by

u ∗ v =
∑

u/v≤t≤u\v
t. (2)

Let us mention that these operations ‘over’ and ‘under’ on planar binary trees appear in the
theory of renormalisation, cf. [2].

Observe that, since Yn does not bear a group structure (unlike Sn), the product ∗ is defined
in [5] by a recursive formula. So, a priori, the explicit computation of a product u ∗ v needs
the computation of many terms. The above formula greatly simplifies this computation.

Let Qn = {±1}n−1. There is a graded associative product on the graded vector space
K [Q∞] := ⊕

n≥0 K [Qn], where K [Qn] is identified with the Solomon descent algebra
(cf. [5, 6]). It is in fact a Hopf algebra called the algebra of noncommutative symmetric
functions, which is dual to the algebra of quasi-symmetric functions, cf. [3]. We give a
closed formula for the product of basis elements as follows. There is a partial order on Qn

induced by −1 < +1. Let ε ∈ Q p and δ ∈ Qq . We define two operations called respectively
‘over’ and ‘under’ as follows: ε/δ := (ε, −1, δ) ∈ Q p+q and ε\δ := (ε, +1, δ) ∈ Q p+q .
It is immediate that ε/δ ≤ ε\δ for the ordering of Q p+q . We prove that the product ∗ on
K [Q∞] is given on the generators by

ε ∗ δ =
∑

ε/δ≤α≤ε\δ
α = ε/δ + ε\δ. (3)

In [5] we constructed explicit maps

Sn
ψn→ Yn

φn→ Qn

(see also [8], p. 24) and we observed that they are in fact restrictions of cellular maps from
the cube to the Stasheff polytope and from the Stasheff polytope to the permutohedron
respectively. Moreover, we showed that, after dualization and linear extension, the maps

K [Q∞]
φ∗
→ K [Y∞]

ψ∗
→ K [S∞]

are injective homomorphisms of graded associative algebras. We take advantage of this
result to deduce formulas (2) and (3) from formula (1).

The content of this paper is as follows. In the first part (Sections 1, 2 and 3) we deal with
the partial orders on Sn , Yn and Qn respectively, and we show that the maps ψn and φn are
compatible with the orders. In the second part (Sections 4, 5 and 6) we prove formulas (1),
(2) and (3). In the case of the symmetric group and in the case of planar binary trees the
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algebras K [S∞] and K [Y∞] have a more refined structure: they are dendriform algebras
(cf. [4]). We show that in both cases the products ≺ and � can also be formulated in terms
of the order structure.

In this paper we apply some results about Coxeter groups to the particular case of the
symmetric groups. For the convenience of the reader we recall them in the Appendix.

We thank the referees for their careful reading and valuable suggested improvements of
the submitted version.
Convention. The vector space over Q generated by the set X is denoted Q[X ]. The linear
dual Q[X ]∗ is identified with Q[X ] under the identification of the basis with its dual. The
image of a permutation σ ∈ Sn is denoted by (σ (1) σ (2) . . . σ (n)).

1. Weak Bruhat order on the symmetric group Sn

Let (W, S) be the Coxeter group (Sn, {s1, . . . , sn−1}), where Sn is the symmetric group
acting on {1, . . . , n}, and si is the transposition of i and i + 1. We denote by · the group
law of Sn and by 1n the unit. In this section we compare the weak Bruhat order on Sn and
the shuffles by applying the result of the Appendix. We also introduce in 1.9 the operations
‘over’ / and ‘under’ \ from Sp × Sq to Sp+q that are to be used in the Appendix.

For any permutation ω ∈ Sn , its length l(ω) is the smallest integer k such that ω can be
written as a product of k generators: ω = si1 · si2 · . . . · sik . Observe that the length of a
permutation counts the number of inversions of its image.

By definition, a permutation σ ∈ Sn has a descent at i , 1 ≤ i ≤ n −1, if σ (i) > σ (i +1).
The set of descents of a permutation σ is Desc(σ ) := {si | σ has a descent at i}. Hence, for
any subset J ⊆ {s1, . . . , sn−1} the set

Xn
J := {σ ∈ Sn | l(σ · si ) > l(σ ), for all si ∈ J }

described in the Appendix is the set of all permutations σ ∈ Sn such that Desc(σ ) ⊆
{s1, . . . , sn−1} \ J .

In order to simplify the notation, we denote the subset {s1, . . . , sp−1, sp+1, . . . , sp+q−1}
of {s1, . . . , sp+q−1} by {sp}c. The set X p+q

{sp}c is the set of all (p, q)-shuffles of Sp+q , that is

Sh(p, q) := {σ ∈ Sp+q | σ (1) < · · · < σ (p) and σ (p + 1) < · · · < σ (p + q)}.

There exists a canonical inclusion ι : Sp × Sq ↪→ Sp+q , which maps the generator si of Sp

to si in Sp+q , and the generator s j of Sq to s j+p in Sp+q . In other words we let a permutation
of Sp act on {1, . . . , p} and we let a permutation of Sq act on {p + 1, . . . , p + q}. In what
follows we identify Sp × Sq with its image in Sp+q .

Observe that, for J = {sp}c, the standard parabolic subgroup W{sp}c defined in the Appendix
is precisely Sp × Sq in Sp+q .

Proposition A.2 of the Appendix takes the following form for the Coxeter group Sn:

Lemma 1.1 Let p, q ≥ 1.
(a) For any σ ∈ Sp+q there exist unique elements ξ ∈ Sh(p, q) and ω ∈ Sp × Sq such that

σ = ξ · ω.
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(b) For any ξ ∈ Sh(p, q) and any ω ∈ Sp × Sq the length of ξ · ω ∈ Sp+q is the sum:
l(ξ · ω) = l(ξ ) + l(ω).

(c) There exists a longest element in Sh(p, q), denoted ξp,q , and ξp,q = (q + 1 q + 2 . . .

q + p 1 2 . . . q).

Definition 1.2 For n ≥ 1, the weak ordering (also called weak Bruhat order) on Sn is
defined as follows:

ω ≤ σ in Sn, if there exists τ ∈ Sn such that σ = τ · ω with l(σ ) = l(τ ) + l(ω).

The set of permutations Sn , equipped with the weak ordering is a partially ordered set,
with minimal element 1n , and maximal element the cycle ω0

n := (n n −1 . . . 2 1) (cf. [1]).
For instance, for n = 2 we get

12 → s1

and for n = 3 we get

13

↙ ↘
s2 s1

↓ ↓
s1s2 s2s1

↘ ↙
s1s2s1

since s1s2s1 = s2s1s2. Here a → b means a < b.
For n ≥ 1 and 1 ≤ i ≤ j ≤ n − 1, let ci, j ∈ Sn be the permutation:

ci, j := si · si+1 · . . . · s j .

Given ω ∈ Sh(p, q), it is easy to check that, if ω �= 1p+q , then there exist integers l ≥ 0,
1 ≤ i1 < i2 < · · · < il+1 ≤ p + q − 1, and ik ≤ p + k − 1, for 1 ≤ k ≤ l + 1, such that:

ω = cil+1,p+l · cil ,p+l−1 · . . . · ci1,p.

Under this notation one has

ξp,q = cq,p+q−1 · cq−1,p+q−2 · . . . · c1,p.

Corollary A.4 of the Appendix and Lemma 1.1 imply the following result:

Lemma 1.3 Let p, q ≥ 1 be two integers. The longest element of the set Sh(p, q) (all
(p, q)-shuffles) is ξp,q . Moreover, one has

Sh(p, q) = {ω ∈ Sp+q | ω ≤ ξp,q}.
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Lemma 1.4 If σ, σ ′ ∈ Sp and τ, τ ′ ∈ Sq are permutations verifying σ ≤ σ ′ and τ ≤ τ ′,
then σ × τ ≤ σ ′ × τ ′.

Proof: The permutations σ × τ and σ ′ × τ ′ belong to the subgroup Sp × Sq of Sp+q .
Since σ ≤ σ ′ and τ ≤ τ ′, there exist δ ∈ Sp and ε ∈ Sq such that σ ′ = δ · σ and

τ ′ = ε · τ , with l(σ ′) = l(δ) + l(σ ) and l(τ ′) = l(ε) + l(τ ).
One has σ ′ × τ ′ = δ · σ × ε · τ = (δ × ε) · (σ × τ ), with l(σ ′ × τ ′) = l(σ ′) + l(τ ′) =

l(δ × ε) + l(σ × τ ).

Lemma 1.5 Let p and q be two nonnegative integers, and let σ ∈ Sp and τ ∈ Sq be two
permutations. If ω1 and ω2 are two elements of Sh(p, q) such that ω1 < ω2, then

ω1 · (σ × τ ) < ω2 · (σ × τ ).

Proof: The result follows immediately from Lemma 1.1.

Definition 1.6 The grafting of σ ∈ Sp and τ ∈ Sq is the permutation σ ∨ τ ∈ Sp+q+1

given by:

(σ ∨ τ )(i) :=




σ (i) if 1 ≤ i ≤ p,

p + q + 1 if i = p + 1,

τ (i − p − 1) + p if p + 2 ≤ i ≤ p + q + 1.

It is easily seen that,

σ ∨ τ = (σ × τ × 11) · sq+p · sq+p−1 · . . . · sp+1,

for σ ∈ Sp and τ ∈ Sq .

Lemma 1.7 If σ ≤ σ ′ in Sp and τ ≤ τ ′ in Sq , then σ ∨ τ ≤ σ ′ ∨ τ ′ in Sp+q+1.

Proof: Suppose σ ′ = ε · σ and τ ′ = δ · τ , for some ε ∈ Sp and δ ∈ Sq such that l(σ ′) = l(ε)
+ l(σ ) and l(τ ′) = l(δ) + l(τ ). Clearly, σ ′ ∨ τ ′ = (ε × δ × 11) · (σ ∨ τ ).

The permutations σ × τ × 11 and σ ′ × τ ′ × 11 belong to the subgroup Sp+q × S1 of
Sp+q+1.

It is immediate to check that l((sp+1 · . . . · sp+q ) · si ) > l(sp+1 · . . . · sp+q ), for any
1 ≤ i ≤ p + q − 1, that is sp+1 · . . . · sp+q ∈ Sh(p + q, 1). Since sp+1 . . . sp+q = cp+1,p+q ,
by Lemma 1.1 one has l((sp+1 · . . . · sp+q ) · ω) = q + l(ω), for any ω ∈ Sp+q × S1. So

l(σ ′ ∨ τ ′) = l((σ ′ ∨ τ ′)−1) = l(σ ′) + l(τ ′) + q

= l(ε) + l(δ) + l(σ ) + l(τ ) + q

= l(ε × δ × 11) + l(σ ∨ τ ).

Proposition 1.8 Let σ ∈ Sn be a permutation such that σ (i) = n, for some 1 ≤ i ≤ n.
There exist unique elements σ l ∈ Si−1, σ r ∈ Sn−i and γ ∈ Sh(i − 1, n − i) such that:

σ = (γ × 11) · (σ l ∨ σ r ).
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Proof: Since σ (i) = n, the element σ may be written as σ = σ ′ · sn−1 · sn−2 · . . . · si , with
σ ′ ∈ Sn−1 × S1 and l(σ ) = l(σ ′) + n − i .

Lemma 1.1 implies that there exist unique elements ε ∈ Sh(i − 1, n − i + 1) and δ ∈
Si−1 × Sn−i+1, such that σ ′ = ε · δ. Since the permutation sn−1 does not appear in a reduced
expression of σ ′, the following assertions hold:

– the element ε is of the form ε = γ × 11 for some γ ∈ Sh(i − 1, n − i).
– the element δ belongs to Si−1 × Sn−i × S1. So, δ = σ l × σ r × 11, for unique σ l ∈ Si−1

and σ r ∈ Sn−i .

Finally, we get that σ = (γ × 11) · (σ l ∨ σ r ). The uniqueness of γ , σ l and σ r follows
easily.

Definition 1.9 For p, q ≥ 1, the operations ‘over’ / and ‘under’ \ from Sp × Sq to Sp+q ,
are defined as follows:

σ/τ := σ × τ, and σ\τ := ξp,q · (σ × τ ),

for σ ∈ Sp and τ ∈ Sq .

Since σ × τ ∈ Sp × Sq , for any σ ∈ Sp and τ ∈ Sq , and ξp,q ∈ Sh(p, q), the following
relation holds:

σ/τ ≤ σ\τ.

Lemma 1.10 The operations / and \ are associative.

Proof: Let σ ∈ Sp, τ ∈ Sq and δ ∈ Sr . It is clear that

(σ × τ ) × δ = σ × τ × δ = σ × (τ × δ).

The formula above and the equality

ξp+q,r · (ξp,q × 1r ) = ξp,q+r · (1p × ξq,r )

imply that the operation \ is associative too.

2. Weak ordering on the set of planar binary trees

For n ≥ 1, let Yn denote the set of planar binary trees with n vertices:

Y0 = {|}, Y1 = {
❅

❅
❅❅

�
�

�� }
, Y2 = {

❅
❅

❅❅

�
�

����

, ❅
❅

❅❅

�
�

��❅❅ }
, Y3 = {
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❅
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����
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�
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��❅❅
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, ❅
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❅❅
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�

��
❅

❅❅ ❅❅ }
.

The grafting of a p-tree u and a q-tree v is the (p + q + 1)-tree u ∨ v obtained by joining
the roots of u and v to a new vertex and create a new root. For any tree t there exist unique
trees t l and tr such that t = t l ∨ tr . As a result we have Yn = ∐

p+q+1=n Yp × Yq .
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Definition 2.1 Let ≤ be the weak ordering on Yn generated transitively by the following
relations:

(a) if u ≤ u′ ∈ Yp and v ≤ v′ ∈ Yq , then u ∨ v ≤ u′ ∨ v′ in Yp+q+1,
(b) if u ∈ Yp, v ∈ Yq and w ∈ Yr , then (u ∨ v) ∨ w ≤ u ∨ (v ∨ w).

The pair (Yn, ≤) is a poset.

Definition 2.2 The operations ‘over’ / and ‘under’ \ from Yp × Yq to Yp+q are defined
as follows:

– u/v is the tree obtained by identifying the root of u with the left most leaf of v,
– u\v is the tree obtained by identifying the right most leaf of u with the root of v,

❅
❅

❅
❅

❅
❅❅

�
�

�
�

�
��

�
�

��u
v

u/v = ❅
❅

❅
❅

❅
❅❅

�
�

�
�

�
��

❅
❅

❅❅

u
v

u\v =

It is immediate to check that / and \ are associative.

Equivalently these operations can be defined recursively as follows:

– t/| := t =: |\t and t\| := t =: |/t for t ∈ Yn ,
– for u = ul ∨ ur and v = vl ∨ vr one has

u/v := (u/vl) ∨ vr , and u\v := ul ∨ (ur\v).

Lemma 2.3 For any trees u ∈ Yp and v ∈ Yq one has

u/v ≤ u\v.

Proof: This is an immediate consequence of condition (b) of Definition 2.1.

The surjective map ψn : Sn → Yn considered in [5] (see also [8] p. 24) is defined as
follows:

– ψ0([ ]) = | ∈ Y0,
– ψ1(11) = ❅

❅
❅❅

�
�

�� ∈ Y1,
– the image of a permutation σ ∈ Sn is made of two sequences of integers: the sequence on

the left of n and the sequence on the right of n in (σ (1), . . . , σ (n)). These permutations
are precisely the ones appearing in Proposition 1.8. Observe that one of them may be
empty. By relabelling the integers in each sequence so that only consecutive integers
(starting with 1) appear, one gets two permutations σ l and σ r . For instance (341625)
gives the two sequences (341) and (25), which, after relabelling, give (231) and (12).
Recursively ψn(σ ) is defined as ψp(σ l) ∨ ψq (σ r ).
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Notation For n ≥ 1, let St be the subset of Sn such that a permutation σ ∈ Sn belongs to
St if and only if ψn(σ ) = t , i.e.

St := ψ−1
n (t) ⊂ Sn.

This subset admits the following description in terms of shuffles.

For n = 1, one has S
❅

❅
❅❅

�
�

�� := {11} = S1.

For n ≥ 2, let t = t l ∨ tr , with t l ∈ Yq and tr ∈ Yp and q + p = n − 1. We have

St = {(γ × 11) · (σ ∨ τ ) | γ ∈ Sh(p, q), σ ∈ Stl and τ ∈ Str },

for 1 ≤ q ≤ n − 2. If q = 0, then S|∨tr = {| ∨ σ, for σ ∈ Str }. And, if q = n − 1, then
Stl∨| = {σ ∨ |, for σ ∈ Stl }.

For instance when n = 2, S
❅

❅
❅❅

�
�

���� := {12} and S
❅

❅
❅❅

�
�

��❅❅ := {s1}.

Definition 2.4 For n ≥ 0, let Min and Max be the maps from Yn into Sn defined as follows:

• For n = 1, Min( ❅
❅

❅❅

�
�

��

) := 11 =: Max( ❅
❅

❅❅

�
�

��

).
• For n = 2, Min( ❅

❅
❅❅

�
�

����

) := 12 =: Max( ❅
❅

❅❅

�
�

����

), and Min( ❅
❅

❅❅

�
�

��❅❅

) := s1 =: Max( ❅
❅

❅❅

�
�

��❅❅

).
• For n ≥ 3, let t = t l ∨ tr , with t l ∈ Yq and tr ∈ Yp and p + q = n − 1.

The permutations Min(t) and Max(t) are defined as follows:

– If 1 ≤ q ≤ n − 2, then Min(t) := Min(t l) ∨ Min(tr ), and Max(t) := (ξq,p × 11) ·
(Max(t l) ∨ Max(tr )).

– If q = 0, then Min(t) := ξn−1,1 · (11 × Min(tr )) and Max(t) := ξn−1,1 · (11 × Max(tr )).
– If q = n − 1, then Min(t) := Min(t l) × 11 and Max(t) := Max(t l) × 11.

Clearly, Min(t) and Max(t) belong to St , for any tree t ∈ Yn .

Theorem 2.5 Let n ≥ 1 and t ∈ Yn. The following equality holds:

St = {ω ∈ Sn | Min(t) ≤ ω ≤ Max(t)}.

Proof: Suppose t = t l ∨ tr , with t l ∈ Yq , tr ∈ Yq and n = q + p + 1.
Step 1. Let γ and γ ′ be elements of Sh(p, q) such that γ ≤ γ ′. Suppose that σ ≤ σ ′ in Sp

and τ ≤ τ ′ in Sq .
Lemma 1.7 implies that σ ∨τ ≤ σ ′ ∨τ ′. Now, γ ×11 and γ ′ ×11 belong to Sh(p, q +1),

and σ ∨ τ and σ ′ ∨ τ ′ are elements of Sp × Sq+1; from Lemma 1.1 one gets,

(γ × 11) · (σ ∨ τ ) ≤ (γ ′ × 11) · (σ ′ ∨ τ ′).

For any γ ∈ Sh(p, q), Lemma 1.3 states that 1p+q ≤ γ ≤ ξp,q . It follows that all ω ∈ St

satisfies Min(t) ≤ ω ≤ Max(t).
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Step 2. Conversely, let ω ∈ Sn be such that Min(t) ≤ ω ≤ Max(t).
Since Min(t) ≤ ω, there exists ω1 ∈ Sn such that ω = ω1 · sp+q · . . . · sp+1, with

l(ω) = l(ω1) + l(sp+q · · · . . . · sp+1) = l(ω1) + q.
By Lemma 1.1, there exist unique elements ω2 ∈ Sh(p, q +1) and ω3 ∈ Sp × Sq+1, such

that ω1 = ω2 · ω3, with l(ω1) = l(ω2) + l(ω3).
Since ω ≤ Max(t), there exists δ ∈ Sn such that

(ξp,q × 11) · (Max(t l) × Max(tr ) × 11) = δ · ω1,

with l(ξp,q ) + l(Max(t l)) + l(Max(tr )) = l(δ) + l(ω1).
The permutation sp+q does not appear in a reduced expression ofω1. So,ω2 ∈ Sh(p, q + 1)

and ω2(n) = n, which implies that ω2 ≤ ξp,q × 11.
On the other hand, the element ω3 ∈ Sp × Sq+1 and sp+q does not appear in a reduced de-

composition ofω3. So,ω3 ∈ Sp × Sq × S1. Consequentlyω3 is of the formω3 = σ4 × τ4 × 11,
for unique permutations σ4 ∈ Sp and τ4 ∈ Sq . Moreover, the inequalities

(Min(t l) × Min(tr ) × 11) · sp+q · . . . · sp+1

≤ ω2 · (σ4 × τ4 × 11) · sp+q · . . . · sp+1

≤ (ξp,q × 11) · (Max(t l) × Max(tr ) × 11) · sp+q · . . . · sp+1

imply

Min(t l) × Min(tr ) × 11 ≤ ω2 · (σ4 × τ4 × 11)

≤ (ξp,q × 11) · (Max(t l) × Max(tr ) × 11).

Since 1n ≤ ω2 ≤ ξp,q × 11 in Sh(p, q + 1), by applying Lemma 1.5 we get

Min(t l) × Min(tr ) ≤ σ4 × τ4 ≤ Max(t l) × Max(tr ).

The elements σ4 and τ4 satisfy that Min(t l) ≤ σ4 ≤ Max(t l) and Min(tr ) ≤ τ4 ≤ Max(tr ).
A recursive argument states that σ4 ∈ Stl and τ4 ∈ Str , and the proof is complete.

Corollary 2.6 The weak ordering of Sn induces a partial order ≤B on Yn. This order is
compatible with ψn : Sn → Yn:

σ ≤ τ ⇒ ψn(σ ) ≤B ψn(τ ).

Proposition 2.7 The order ≤B induced by the weak order on Yn coincides with the order ≤
of Definition 2.1.

Proof: We want to see that the order ≤B satisfies conditions (a) and (b) of Definition 2.1.
Given t ∈ Yn and w ∈ Ym recall that, for any σ ∈ St and any τ ∈ Sw, the permutation

σ ∨ τ belongs to St∨w. Lemma 1.7 implies that ≤B verifies condition (a).
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Let t ∈ Yn , u ∈ Yr and w ∈ Ym be three trees. Suppose that σ ∈ St , δ ∈ Su and τ ∈ Sw.
One has that (σ ∨ δ)∨ τ belongs to S(t∨u)∨w, while σ ∨ (δ ∨ τ ) belongs to St∨(u∨w). To prove
condition (b), it suffices to check that (σ ∨ δ) ∨ τ ≤ σ ∨ (δ ∨ τ ) in Sn+r+m+2.

Now, an easy calculation shows that:

(σ ∨ δ) ∨ τ = (σ × δ × 11 × τ × 11) · sn+r+m+1 · . . . · sn+r+2 · sn+r · . . . · sn+1,

and

σ ∨ (δ ∨ τ ) = (σ × δ × τ × 12) · sn+r+m · . . . · sn+r+1 · sn+r+m+1 · . . . · sn+1.

We need to show that (σ × δ × 11 × τ × 11) · sn+r+m+1 · . . . · sn+r+2 is smaller than
(σ × δ × τ × 12) · sn+r+m · . . . · sn+r+1 · sn+r+m+1 · . . . · sn+r+1. We use the relation

sn+r+m · . . . · sn+r+1 · sn+r+m+1 · . . . · sn+r+1

= sn+r+m+1 · . . . · sn+r+1 · sn+r+m+1 · . . . · sn+r+2.

We have to prove that

(σ × δ × 11 × τ × 11) ≤ (σ × δ × τ × 12) · sn+r+m+1 · . . . · sn+r+1;

which is a consequence of the formula:

(11 × τ × 11) ≤ (τ × 12) · sm+1 · . . . · s1, for any τ ∈ Sm, m ≥ 1. (2.6.1)

To prove (2.6.1) it suffices to check that

l(sm+1 · . . . · s1 · (11 × τ × 11)) = m + 1 + l(11 × τ × 11).

This is clearly the case since sm+1 · . . . · s1 is in Sh(1, m + 1) and 11 × τ × 11 belongs to
S1 × Sm+1. To end the proof, it suffices to observe that

(τ × 12) · sm+1 · . . . · s1 = sm+1 · . . . · s1 · (11 × τ × 11), for any τ ∈ Sm, m ≥ 0.

Corollary 2.8 The map ψn : Sn → Yn is a morphism of posets.

Theorem 2.9 Let σ ∈ Sp and τ ∈ Sq be two permutations. The following equalities hold:

ψp+q (σ/τ ) = ψp(σ )/ψq (τ ) and ψp+q (σ\τ ) = ψp(σ )\ψq (τ ).

Proof: In σ/τ = σ × τ , under the map Sp × Sq → Sp+q , the symbols permuted by σ are
strictly smaller and all to the left of the symbols permuted by τ . Hence under the definition
of ψn as given after Lemma 2.3, one has ψp+q (σ × τ ) = ψp(σ )/ψq (τ ). The proof of the
other case is symmetric.
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3. Weak ordering on the set of vertices of the hypercube

For n ≥ 2, let Qn := {+1, −1}n−1 be the set of vertices of the hypercube. There is a
surjective map φn : Yn → Qn , which is defined as follows. First we label the interior
leaves from left to right by 1, 2, . . . , n − 1. Second, we put φn(t) = (ε1, . . . , εn−1), where
εi is −1 when the stem of the i th leaf of t is right oriented (more precisely SW-NE), and
+1 when it is left oriented (more precisely SE-NW). We take into account only the interior
leaves of t , since the orientation of the two extreme ones does not depend on t . For instance
φ2( ❅

❅
❅❅

�
�

��❅❅

) = (+1) and φ2( ❅
❅

❅❅

�
�

����

) = (−1). By convention Q1 = {(−1)1} and φ1( ❅
❅

❅❅

�
�

��

) = (−1)1.
We consider Q2 as the partially ordered set Q2 := {−1 < +1}.

Definition 3.1 The set Qn of vertices of the hypercube is a partially ordered set for the
order:

ε ≤ η if and only if εi ≤ ηi , for all 1 ≤ i ≤ n − 1.

We denote by (−1)n the minimal element of Qn , and by (+1)n its maximal element.

Definition 3.2 Given an element ε = (ε1, . . . , εp−1) ∈ Q p and an element η = (η1, . . . ,

ηq−1) ∈ Qq the grafting of ε and η, denoted ε ∨ η, is the element of Q p+q+1 given by:

ε ∨ η := (ε1, . . . , εp−1, −1, +1, η1, . . . , ηq−1).

The operations over / and under \ from Q p × Qq to Q p+q are defined by

ε/η := (ε1, . . . , εp−1, −1, η1, . . . , ηq−1),

ε\η := (ε1, . . . , εp−1, +1, η1, . . . , ηq−1).

Remark 3.3 It is easily seen that the maps φn preserve the operations grafting ∨, over /,
and under \.

Lemma 3.4 Let t be an element of Yn such that its i th leaf points to the right, for some
1 ≤ i ≤ n − 1. If w is another tree in Yn such that w ≤ t, then the i th leaf of w is right
oriented too.

Proof: The result is obvious for n ≤ 2.
Since the order ≤ on Yn is transitively generated by the relations given in Definition 2.1,

it suffices to show that the assertion is true for the situations described in (a) and (b) of this
Definition.

For (a): If w = wl ∨ wr and t = t l ∨ tr , with wl ≤ t l and wr ≤ tr , then the results is an
immediate consequence of the inductive hypothesis.

For (b): Suppose w = (u ∨ v) ∨ s and t = u ∨ (v ∨ s), for some u ∈ Yp, v ∈ Yq and
s ∈ Yr . If q ≥ 1, then the kth leaf of w is oriented in the same direction that the kth leaf
of t , for all 1 ≤ k ≤ n − 1.
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If q = 0, then the kth leaf of w is oriented in the same direction that the kth leaf of t , for
all k �= p + 2. And the (p + 2)th leaf of w is right oriented, while (p + 2)th leaf of t is left
oriented.

Proposition 3.5 For all n ≥ 1 and all ε ∈ Qn there exist two trees in Yn, denoted min(ε)
and max(ε) respectively, such that the inverse image of ε by φn : Yn → Qn satisfies:

φ−1(ε) = {t ∈ Yn | min(ε) ≤ t ≤ max(ε)}.

Proof: Step 1. The inverse image φ−1
n ((−1)n) of the minimal element of Qn is the minimal

tree an of Yn which has all its leaves pointing to the right. Similarly, the inverse image
φ−1

n ((+1)n) of the maximal element of Qn is the maximal tree zn of Yn which has all its
leaves pointing to the left. So, the theorem is obviously true for ε ∈ {(−1)n, (+1)n} if we
define:

min((−1)n) := an =: max((−1)n), and min((+1)n) := zn =: max((+1)n).

If ε /∈ {(−1)n; (+1)n}, we define max and min recursively, as follows:

(a) If ε1 = −1 there exist k ≥ 1 and ε′ ∈ Qn−k such that ε = (−1)k/ε
′. Define min(ε) :=

ak/ min(ε′).
If ε1 = +1, there exist k ≥ 2 and ε′ ∈ Qn−k such that ε = (+1)k/ε

′. Define min(ε) :=
zk/ min(ε′).

(b) If εn−1 = −1, there exist k ≥ 2 and ε′ ∈ Qn−k such that ε = ε′\(−1)k . Define
max(ε) := max(ε′)\ak .
If εn−1 = +1, there exist k ≥ 1 and ε′ ∈ Qn−k such that ε = ε′\(+1)k . Define
max(ε) := max(ε′)\zk .

Step 2. It is easy to prove, by induction on n, that if t ∈ φ−1
n (ε), then min(ε) ≤ t ≤ max(ε).

Conversely, let t be a tree such that min(ε) ≤ t ≤ max(ε). Since min(ε) ≤ t , Lemma
3.4 implies that the i th leaf of t is left oriented, for all i such that εi = +1. Similarly,
t ≤ max(ε) and Lemma 3.4 imply that the i th leaf of t is right oriented, for all i such that
εi = −1. So, t belongs to φ−1

n (ε).

Corollary 3.6 For n ≥ 2, the order of Yn induces a partial order ≤B on Qn. This order
is compatible with φn : Yn → Qn.

Proposition 3.7 The order ≤B of Qn coincides with the order ≤ of Definition 3.1.

Proof: If w and t are two trees in Yn such that w ≤ t , then Lemma 3.4 implies that
φn(w) ≤ φn(t). It proves that if ε ≤B η in Qn , then ε ≤ η.
To prove that ε ≤ η in Qn implies that ε ≤B η, it suffices to show that

(ε1, . . . , εp−1, −1, εp+1, . . . , εn−1) ≤B (ε1, . . . , εp−1, +1, εp+1, . . . , εn−1),
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for all 1 ≤ p ≤ n − 1 and all elements εi ∈ {−1, +1}, 1 ≤ i ≤ n − 1, i �= p. Consider the
element κ := (ε1, . . . , εp−1) in Q p, and the element ρ := (εp+1, . . . , εn−1) ∈ Qn−p. Let
t ∈ Yp be a tree in φ−1

p (κ) and w ∈ Yn−p be a tree in φ−1
n−p(ρ). It is easy to check that

φn(t/w) = (ε1, . . . , εp−1, −1, εp+1, . . . , εn−1) and

φn(t\w) = (ε1, . . . , εp−1, +1, εp+1, . . . , εn−1).

Since Lemma 2.3 states that t/w ≤ t\w in Yn , one gets the result.

Corollary 3.8 The map φn : Yn → Qn is a morphism of posets.
(See also [8], p. 24.)

4. The graded algebra of permutations Q[S∞]

Consider the graded vector space Q[S∞] := ⊕
n≥0Q[Sn], equipped with the shuffle prod-

uct ∗ defined by:

σ ∗ τ :=
∑

x∈Sh(p,q)

x · (σ × τ ), for σ ∈ Sp and τ ∈ Sq .

In [6], C. Malvenuto and C. Reutenauer prove that (Q[S∞], ∗) is an associative algebra over
Q. We denote by Q[S∞] the augmentation ideal.

Theorem 4.1 Let σ ∈ Sp and τ ∈ Sq be two permutations. The product σ ∗ τ is the sum
of all permutations ω ∈ Sp+q verifying
σ × τ ≤ ω ≤ ξp,q · (σ × τ ), in other words:

σ ∗ τ =
∑

σ/τ≤ω≤σ\τ
ω.

Proof: Lemma 1.5 implies that

σ × τ ≤ δ · (σ × τ ) ≤ ξp,q · (σ × τ ), for any δ ∈ Sh(p, q).

Suppose that ω ∈ Sp+q satisfies σ × τ ≤ ω ≤ ξp,q · (σ × τ ). Let ω1 ∈ Sp+q be such that
ω = ω1 · (σ × τ ). It is obvious that 1p+q ≤ ω1.

Since ω ≤ ξp,q · (σ × τ ), the definition of the weak ordering implies that there exists
ε ∈ Sp+q such that ξp,q · (σ × τ ) = ε · ω1 · (σ × τ ), with l(ξp,q ) = l(ε) + l(ω1). It implies,
by Lemma 1.3, that ω1 ∈ Sh(p, q). This completes the proof of the Theorem.

Definition 4.2 For p, q ≥ 0, the subsets Sh1(p, q) and Sh2(p, q) of Sh(p, q) are defined
by:

Sh1(p, q) := {ω ∈ Sh(p, q) | ω(p + q) = p + q}, and

Sh2(p, q) := {ω ∈ Sh(p, q) | ω(p) = p + q}.
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Remark 4.3 The set Sh(p, q) is the disjoint union of Sh1(p, q) and Sh2(p, q). Moreover,
one has that

Sh1(p, q) = {ω × 11 | ω ∈ Sh(p, q − 1)} = Sh(p, q − 1) × 11; and

Sh2(p, q) = {(ω × 11) · (1p−1 ∨ 1q ) | ω ∈ Sh(p − 1, q)}
= (Sh(p − 1, q) × 11) · (1p−1 ∨ 1q ).

Definition 4.4 The products ≺ and � in Q[S∞] are defined as follows:

σ ≺ τ :=
∑

ω∈Sh2(p,q)

ω · (σ × τ ), and

σ � τ :=
∑

ω∈Sh1(p,q)

ω · (σ × τ ),

for σ ∈ Sp and τ ∈ Sq .

From Remark 4.3 one gets that the associative product ∗ of Q[S∞] satisfies

σ ∗ τ = σ ≺ τ + σ � τ, for σ, τ ∈ Q[S∞].

Proposition 4.5 The operations ≺ and � satisfy the relations

(i) (a ≺ b) ≺ c = a ≺ (b ≺ c) + a ≺ (b � c),

(ii) a � (b ≺ c) = (a � b) ≺ c,

(iii) a � (b � c) = (a ≺ b) � c + (a � b) � c,

for any a, b, c ∈ Q[S∞]. Hence Q[S∞] is a dendriform algebra (as defined in [4] ).

Proof: This is a consequence of the associativity property of the shuffle together with an
inspection about the first element of the image of the permutations.

The products ≺ and � may also be described in terms of the order ≤ as follows.

Proposition 4.6 For any σ ∈ Sp and any τ ∈ Sq , one has:

σ ≺ τ =
∑

(1p−1∨1q )·(σ×τ )≤ω≤σ\τ
ω,

and

σ � τ =
∑

σ/τ≤ω≤(ξp,q−1×11)·(σ×τ )

ω .
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Proof: Lemma 1.3 and Remark 4.3 imply that

Sh1(p, q) = {ω ∈ Sp+q | ω ≤ ξp,q−1 × 11}, and

Sh2(p, q) = {ω ∈ Sp+q | 1p−1 ∨ 1q ≤ ω ≤ (ξp−1,q × 11) · (1p−1 ∨ 1q )}.
The result follows immediately from Lemma 1.5.

5. The graded algebra of planar binary trees Q[Y∞]

The graded vector space Q[Y∞] := ⊕
n≥0Q[Yn] is a graded associative algebra for the

product ∗ defined recursively as follows:

– t ∗ | = | ∗ t := t , for all t ∈ Yn, n ≥ 1,
– if t = t l ∨ tr and w = wl ∨ wr , then

t ∗ w := (t ∗ wl) ∨ wr + t l ∨ (tr ∗ w).

Moreover, the map ψ∗ :Q[Y∞] → Q[S∞], defined by

ψ∗
n (t) :=

∑
ψn (σ )=t

σ,

is an algebra homomorphism (cf. [5]).

Theorem 5.1 If t and w are two planar binary trees, then the product t ∗ w satisfies

t ∗ w =
∑

t/w≤u≤t\w
u.

Proof: Since the ordering ≤ on Yn is induced by the weak ordering of Sn , the result is a
straightforward consequence of Proposition 2.8 and Theorem 4.1.

As in the case of the algebra Q[S∞], we may describe on Q[Y∞] := ⊕
n≥1Q[Yn] two

products ≺ and �, such that

t ∗ w = t ≺ w + t � w, for any t, w ∈ Q[Y∞].

Definition 5.2 Let t ∈ Yp and w ∈ Yq . The elements t ≺ w and t � w in Q[Y∞] are given
by:

t ≺ w := t l ∨ (tr ∗ w), for t = t l ∨ tr ,

t � w := (t ∗ wl) ∨ wr , for w = wl ∨ wr .

The space Q[Y∞], equipped with the products ≺ and � is a dendriform algebra (cf. [4, 5]).
We prove now that ψ∗ : Q[Y∞] → Q[S∞] preserves ≺ and �.
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Proposition 5.3 The K -linear map ψ∗ : Q[Y∞] → Q[S∞] is a dendriform algebra
homomorphism.

Proof: We prove that ψ∗(t � w) = ψ∗(t) � ψ∗(w), for any trees t and w. The proof that
ψ∗ preserves the product ≺ is analogous.

Recall that the associativity of the shuffle product is equivalent to the following equality

Sh(p, q + r ) · (1p × Sh(q, r )) = Sh(p + q, r ) · (Sh(p, q) × 1r ).

Let t ∈ Yp, and w = wl ∨ wr ∈ Yq+r+1 with wr ∈ Yq and wl ∈ Yr . Recall from [4] that the
right product is given by t � w = (t ∗ wl) ∨ wr . So,

ψ∗(t � w) = ψ∗((t ∗ wl) ∨ wr ) =
∑

γ∈Sh(p+q,r )

(γ × 11) · (ψ∗(t ∗ wl) ∨ ψ∗(wr )).

Since

ψ∗(t ∗ wl) = ψ∗(t) ∗ ψ∗(wl) =
∑

δ∈Sh(p,q)

δ · (ψ∗(t) × ψ∗(wl)),

one has by the preceding formula

ψ∗(t � w) =
∑

γ∈Sh(p+q,r )

∑
δ∈Sh(p,q)

(γ × 11) · (δ × 1r+1) · ((ψ∗(t) × ψ∗(wl)) ∨ ψ∗(wr ))

=
∑

ω∈Sh(p,q+r )

∑
ε∈Sh(q,r )

(ω × 11) · (1p × ε × 11)

· ((ψ∗(t) × ψ∗(wl)) ∨ ψ∗(wr )).

Since

(ψ∗(t) × ψ∗(wl)) ∨ ψ∗(wr ) = (ψ∗(t) × ψ∗(wl) × ψ∗(wr ) × 11) · sp+q+r · · · sp+q

= ψ∗(t) × (ψ∗(wl) ∨ ψ∗(wr )),

we get

ψ∗(t � w) =
∑

ω∈Sh(p,q+r )

(ω × 11) ·
(

ψ∗(t) ×
∑

ε∈Sh(q,r )

(ε × 11) · (ψ∗(wl) ∨ ψ∗(wr ))

)

=
∑

ω∈Sh(p,q+r )

(ω × 11) · (ψ∗(t) × ψ∗(w)) = ψ∗(t) � ψ∗(w).
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6. The graded algebra of the cube vertices Q[Q∞]

Under taking the dual basis, the linear dual of the map φn ◦ ψn gives a map (φn ◦ ψn)∗ :
Q[Qn] → Q[Sn]. Its image is the so-called Solomon descent algebra. The direct sum
Q[Q∞] := ⊕

n≥0 Q[Qn] is a graded subalgebra of Q[Y∞] and so of Q[S∞]. Since, by
Section 3, ψn is compatible with the orders and with the ‘over’ and ‘under’ operations, the
same kind of arguments as in Section 5 implies the following result:

Theorem 6.1 For any ε ∈ Q p and any δ ∈ Qq , the product ∗ satisfies:

ε ∗ δ =
∑

ε/δ≤α≤ε\δ
α = ε/δ + ε\δ.

Recall from Section 3 that

ε/δ := (ε1, . . . , εp−1, −1, δ1, . . . , δq−1)

ε\δ := (ε1, . . . , εp−1, +1, δ1, . . . , δq−1).

Since there is obviously no element between ε/δ and ε\δ the formula for the product on
the generators takes the form ε ∗ δ = ε/δ + ε\δ, that is

(ε1, . . . , εp−1) ∗ (δ1, . . . , δq−1) = (ε1, . . . , εp−1, +1, δ1, . . . , δq−1)

+ (ε1, . . . , εp−1, −1, δ1, . . . , δq−1).

Hence we recover exactly formula 4.6 of [5, p. 307].

Appendix. The weak Bruhat order on a Coxeter group

Let (W, S) be a finite Coxeter system (cf. [1]). So W is a finite group generated by the set
S, with relations of the form

(s · s ′)m(s,s ′) = 1, for s, s ′ ∈ S,

for certain positive integers m(s, s ′), with m(s, s) = 1 for all s ∈ S.
For any element w ∈ W the length l(w) is the number of factors in a minimal expression

of w in terms of elements in S. There exists a unique element of maximal length in W ,
denoted w0.

Given a subset J ⊆ S, the standard parabolic subgroup WJ is the subgroup of W
generated by J . Clearly, the pair (WJ , J ) is a finite Coxeter system too.

Definition A.1 Let (W, S) be a finite Coxeter system and let J be a subset of S. The set
X J of elements of W that have no descent at J is defined as

X J := {w ∈ W | l(w · s) > l(w), for all s ∈ J }.

A proof of the following classical result can be found for instance in [7], p. 258.
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Proposition A.2 ([1] Ch. I V, p. 37, Example 3) Let (W, S) be a finite Coxeter system,

and let J be a subset of S. Every element of W can be written uniquely as w = x · y, where
x ∈ X J and y ∈ WJ . If x ∈ XJ and y ∈ WJ , then l(x · y) = l(x) + l(y).

Definition A.3 Let (W, S) be a finite Coxeter system, the weak Bruhat order on W is
defined by:

x ≤ x ′ if x = y · x ′, with l(x) = l(y) + l(x ′).

The group W equipped with the weak ordering is a finite poset with minimal element
1W , and maximal element w0.

Given a subset J ⊆ S, Proposition A2 implies that there exist unique elements x0
J ∈ X J

and w0
J ∈ WJ such that w0 = x0

J · w0
J . It is easy to check that w0

J is the maximal element
of (WJ , J ), and that x0

J is the longest element of XJ .

Corollary A.4 Let (W, S) be a finite Coxeter system and let J ⊆ S, then X J is the subset
of W characterized as follows:

X J = {
w ∈ W

∣∣ w ≤ x0
J

}
.

References
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