ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Blocking Sets and Derivable Partial Spreads

G. Lunardon and O. Polverino

DOI: 10.1023/A:1011265919847

Abstract

We prove that a GF( q)-linear Rédei blocking set of size q t + q t-1 + ;;; + q + 1 of PG(2, q t) defines a derivable partial spread of PG(2 t - 1, q). Using such a relationship, we are able to prove that there are at least two inequivalent Rédei minimal blocking sets of size q t + q t-1 + ;;; + q + 1 in PG(2, q t), if t ge 4.

Pages: 49–56

Keywords: spread; translation plane; blocking set

Full Text: PDF

References

1. S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme, and T. Sz\ddot onyi, “On the number of slopes of the graph of a function defined on a finite field,” J. Comb. Theory (A), 86 (1999), 187-196. LUNARDON AND POLVERINO
2. A.E. Brouwer and H.A. Wilbrink, “Blocking sets in translation planes,” J. Geom. 19 (1982), 200.
3. A. Bruen, “Blocking sets in finite projective planes,” Siam J. Appl. Math. 21 (3) (1971), 380-392.
4. A. Bruen, “Partial spreads and replaceable nets,” Can. J. Math. XX (3) (1971), 381-391.
5. P. Dembowski, Finite Geometries, Springer-Verlag, Berlin, 1968.
6. H. L\ddot uneburg, Translation Planes, Springer-Verlag, Berlin, 1980.
7. G. Lunardon, “Normal spreads,” Geom. Dedicata 75 (1999), 245-261.
8. G. Lunardon, “Linear k-blocking sets,” Combinatorica, to appear.
9. G. Lunardon, P. Polito, and O. Polverino, “A geometric characterisation of linear k-blocking sets,” J. Geom., to appear.
10. P. Polito and O. Polverino, “Blocking sets in André planes,” Geom. Dedicata 75 (1999), 199-207.
11. T.G. Ostrom, “Replaceable nets, net collineations, and net extensions,” Can. J. Math. 18 (1966), 666-672.
12. T. Sz\ddot onyi, “Blocking sets in desarguesian affine and projective planes,” Finite Fields Appl. 3 (1997), 187-202.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition