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Abstract. Stanley (Advances in Math. 111, 1995, 166–194) associated with a graph G a symmetric function
XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved
various theorems generalizing results aboutXG(n), as well as new ones that cannot be interpreted on the level of the
chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it difficult to
apply the useful technique of induction. We introduce a symmetric function YG in noncommuting variables which
does have such a law and specializes to XG when the variables are allowed to commute. This permits us to further
generalize some of Stanley’s theorems and prove them in a uniform and straightforward manner. Furthermore,
we make some progress on the (3 + 1)-free Conjecture of Stanley and Stembridge (J. Combin Theory (A) J. 62,
1993, 261–279).
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1. Introduction

Let G be a finite graph with verticies V = V (G) = {v1, v2, . . . , vd} and edge set E = E(G).
We permit our graphs to have loops and multiple edges. Let XG(n) be the chromatic
polynomial of G, i.e., the number of proper colorings κ : V → {1, 2, . . . , n}. (Proper
means that vw ∈ E implies κ(v) 	= κ(w).)

In [11, 12], R. P. Stanley introduced a symmetric function, XG , which generalizes XG(n)

as follows. Let x = {x1, x2, . . .} be a countably infinite set of commuting indeterminates.
Now define

XG = XG(x1, x2, . . .) =
∑

κ

xκ(v1) . . . xκ(vd )

where the sum ranges over all proper colorings, κ : V (G) → {1, 2, . . .}. It is clear from the
definition that XG is a symmetric function, since permuting the colors of a proper coloring
leaves it proper, and is homogeneous of degree d = |V |. Also the specialization XG(1n)

obtained by setting x1 = x2 = · · · = xn = 1, and xi = 0 for all i > n yields XG(n).
Stanley used XG to generalize various results about the chromatic polynomial as well

as proving new theorems that only apply to the symmetric function. However, there is a
problem when trying to find a deletion-contraction law for XG . To see what goes wrong,
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suppose that for e ∈ E we let G\e and G/e denote G with the e deleted and contracted,
respectively. Then XG and XG\e are homogeneous of degree d while XG/e is homogeneous
of degree d − 1 so there can be no linear relation involving all three. We should note that
Noble and Welsh [14] have a deletion contraction method for computing XG equivalent to
[11, Theorem 2.5]. However, it only works in the larger category of vertex-weighted graphs
and only for the expansion of XG in terms of the power sum symmetric functions. Since
we are interested in other bases as well, we take a different approach.

In this paper we define an analogue, YG , of XG which is a symmetric function in non-
commuting variables. (Note that these symmetric functions are different from the noncom-
mutative symmetric functions studied by Gelfand and others, see [7] for example.) The
reason for not letting the variables commute is so that we can keep track of the color which
κ assigns to each vertex. This permits us to prove a Deletion-Contraction Theorem for
YG and use it to derive generalizations of results about XG in a straightforward manner by
induction, as well as make progress on a conjecture.

The rest of this paper is organized as follows. In the next section we begin with some
basic background about symmetric functions in noncommuting variables (see also [5]). In
Section 3 we define YG and derive some of its basic properties, including the Deletion-
Contraction Law. Connections with acyclic orientations are explored in Section 4. The
next three sections are devoted to making some progress on the (3 + 1)-free Conjecture of
Stanley and Stembridge [13]. Finally we end with some comments and open questions.

2. Symmetric functions in noncommuting variables

Our symmetric functions in noncommuting variables will be indexed by elements of the
partition lattice. We let �d denote the lattice of set partitions π of {1, 2, . . . , d} := [d],
ordered by refinement. We write π = B1/B2 . . . /Bk if �i Bi = [d] and call Bi a block of
π . The meet (greatest lower bound) of the elements π and σ is denoted by π ∧ σ . We use
0̂ to denote the unique minimal element, and 1̂ for the unique maximal element.

For π ∈ ∏
d we define λ(π) to be the integer partition of d whose parts are the block

sizes of π . Also, if λ(π) = (1r1 , 2r2 , . . . , drd ), we will need the constants

|π | = r1!r2! · · · rd ! and

π ! = 1!r1 2!r2 · · · d!rd .

We now introduce the vector space for our symmetric functions. Let {x1, x2, x3, . . .} be
a set of noncommuting variables. We define our monomial symmetric functions, mπ , by

mπ =
∑

i1,i2,...,id

xi1 xi2 · · · xid , (1)

where the sum is over all sequences i1, i2, . . . , id of positive integers such that i j = ik if
and only if j and k are in the same block of π . For example, we get

m13/24 = x1x2x1x2 + x2x1x2x1 + x1x3x1x3 + x3x1x3x1 + · · ·

for the partition π = 13/24.
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From the definition it is easy to see that letting the xi commute transforms mπ into
|π |mλ(π), a multiple of the ordinary monomial symmetric function. The monomial sym-
metric functions, {mπ : π ∈ ∏

d , d ∈ N}, are linearly independent over C, and we call their
span the algebra of symmetric functions in noncommuting variables.

There are two other bases of this algebra that will interest us. One of them consists of
the power sum symmetric functions given by

pπ
def=

∑
σ ≥ π

mσ =
∑

i1,i2,...,id

xi1 xi2 · · · xid , (2)

where the second sum is over all positive integer sequences i1, i2, . . . , id such that i j = ik if
j and k are both in the same block of π . The other basis contains the elementary symmetric
functions defined by

eπ
def=

∑
σ : σ∧π=0̂

mσ =
∑

i1,i2,...,id

xi1 xi2 · · · xid , (3)

where the second sum is over all sequences i1, i2, . . . , id of positive integers such that
i j 	= ik if j and k are both in the same block of π . As an illustration of these definitions,
we see that

p13/24 = x1x2x1x2 + x2x1x2x1 + · · · + x4
1 + x4

2 + · · ·
= m13/24 + m1234

and that

e13/24 = x2
1 x2

2 + · · · + x1x2
2 x1 + · · · + x2

1 x2x3 + · · · + x1x2
2 x3 + · · · + x1x2x2

3 + · · ·
+ x1x2x3x1 + · · · + x1x2x3x4 · · ·

= m12/34 + m14/23 + m12/3/4 + m1/23/4 + m1/2/34 + m14/2/3 + m1/2/3/4.

Allowing the variables to commute transforms pπ into pλ(π) and eπ into π !eλ(π). We may
also use these definitions to derive the change-of-basis formulae found in the appendix of
Doubilet’s paper [3] which show

mπ =
∑
σ ≥ π

µ(π, σ )pσ , (4)

mπ =
∑
τ ≥ π

µ(π, τ)

µ(0̂, τ )

∑
σ ≤ τ

µ(σ, τ )eσ , (5)

eπ =
∑
σ ≤ π

µ(0̂, σ )pσ , and (6)

pπ = 1

µ(0̂, π)

∑
σ ≤ π

µ(σ, π)eσ , (7)

where µ(π, σ ) is the Möbius function of �n .
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It should be clear that these functions are symmetric in the usual sense, i.e., they are
invariant under the usual symmetric group action on the variables. However, it will be useful
to define a new action of the symmetric group on the symmetric functions in noncommuting
variables which permutes the positions of the variables. For δ ∈ Sd , we define

δ ◦ mπ
def= mδ(π),

where the action of δ ∈ Sd on a set partition of [d] is the obvious one acting on the elements
of the blocks. It follows that for any δ this action induces a vector space isomorphism, since
it merely produces a permutation of the basis elements. Alternatively we can consider this
action to be defined on the monomials so that

δ ◦ (
xi1 xi2 · · · xik

) def= xiδ−1(1)
xiδ−1(2)

· · · xiδ−1(k)

and extend linearly.
Utilizing the first characterization of this action, it follows straight from definitions (2)

and (3) that δ ◦ pπ = pδ(π) and δ ◦ eπ = eδ(π).

3. YG, The noncommutative version

We begin by defining our main object of study, YG .

Definition 3.1 For any graph G with vertices labeled v1, v2, . . . , vd in a fixed order, define

YG =
∑

κ

xκ(v1)xκ(v2) · · · xκ(vd ) =
∑

κ

xκ ,

where again the sum is over all proper colorings κ of G, but the xi are now noncommuting
variables.

As an example, for P3, the path on three vertices with edge set {v1v2, v2v3}, we can
calculate

YP3 = x1x2x1 + x2x1x2 + x1x3x1 + · · · + x1x2x3 + x1x3x2 + · · · + x3x2x1 + · · ·
= m13/2 + m1/2/3.

Note that if G has loops then this sum is empty and YG = 0. Furthermore, YG depends
not only on G, but also on the labeling of its vertices.

In this section we will prove some results about the expansion of YG in various bases for
the symmetric functions in noncummuting variables and show that it satisfies a Deletion-
Contraction Recursion. To obtain the expansion in terms of monomial symmetric functions,
note that any partition P of V induces a set partition π(P) of [d] corresponding to the
subscripts of the vertices. A partition P of V is stable if any two adjacent vertices are in
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different blocks of P . (If G has a loop, there are no stable partitions.) The next result
follows directly from the definitions.

Proposition 3.2 We have

YG =
∑

P

mπ(P)

where the sum is over all stable partitions, P , of V .

In order to show that YG satisfies a Deletion-Contraction Recurrence it is necessary to
have a distinguished edge. Most of the time we will want this edge to be between the last
two vertices in the fixed order, but to permit an arbitrary edge choice we will define an
action of the symmetric group Sd on a graph. For all δ ∈ Sd we let δ act on the vertices of
G by δ(vi ) = vδ(i). This creates an action on graphs given by δ(G) = H , where H is just
a relabeling of G.

Proposition 3.3 (Relabeling Proposition) For any graph G, we have

δ ◦ YG = Yδ(G),

where the vertex order v1, v2, . . . , vd is used in both YG and Yδ(G).

Proof: Let δ(G) = H . We note that the action of δ produces a bijection between the
stable partitions of G and H . Utilizing the previous proposition and denoting the stable
partitions of G and H by PG and PH , respectively, we have

YH =
∑
PH

mπ(PH ) =
∑
PG

mδ(π(PG )) =
∑
PG

δ ◦ mπ(PG ) = δ ◦
∑
PG

mπ(PG ) = δ ◦ YG . ✷

Using the Relabeling Proposition allows us, without loss of generality, to choose a labeling
of G with the distinguished edge for deletion-contraction being e = vd−1vd . It is this edge
for which we will derive the basic recurrence for YG .

Definition 3.4 We define an operation called induction,↑, on the monomial
xi1 xi2 · · · xid−2 xid−1 , by

(
xi1 xi2 · · · xid−2 xid−1

)↑ = xi1 xi2 · · · xid−2 x2
id−1

and extend this operation linearly.

Note that this function takes a symmetric function in noncommuting variables which is
homogeneous of degree d − 1 to one which is homogeneous of degree d. Context will
make it clear whether the word induction refers to this operation or to the proof technique.

Sometimes we will also need to use induction on an edge e = vkvl so we extend the defini-
tion as follows. For k < l, define an operation↑l

k on symmetric functions in noncommuting
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variables which simply repeats the variable in the kth position again in the lth. That is, for
a monomial xi1 · · · xik · · · xid−1 , define

(
xi1 · · · xik · · · xil−1 xil · · · xid−1

)↑l
k = xi1 · · · xik · · · xil−1 xik xil · · · xid−1

and extend linearly.
Provided G has an edge which is not a loop, we will usually start by choosing a labeling

such that e = vd−1vd . We also note here that if there is no such edge, then

YG =
{

p1/2/···/d = e1/2/···/d if G = K̄d

0 if G has a loop,
(8)

where K̄d is the completely disconnected graph on d vertices. We note that contracting an
edge e can create multiple edges (if there are vertices adjacent to both of e’s endpoints) or
loops (if e is part of a multiple edge), while contracting a loop deletes it.

Proposition 3.5 (Deletion-Contraction Proposition) For e = vd−1vd , we have

YG = YG\e − YG/e↑,

where the contraction of e = vd−1vd is labeled vd−1.

Proof: The proof is very similar to that of the Deletion-Contraction Property for XG . We
consider the proper colorings of G\e, which can be split disjointly into two types:

1. proper colorings of G\e with vertices vd−1 and vd different colors;
2. proper colorings of G\e with vertices vd−1 and vd the same color.

Those of the first type clearly correspond to proper colorings of G. If κ is a coloring of
G\e of the second type then (since the vertices vd−1 and vd are the same color) we have

xκ(v1)xκ(v2) · · · xκ(vd−1)xκ(vd ) = (
xκ(v1)xκ(v2) · · · xκ(vd−1)

)↑ = xκ̃↑

where κ̃ is a proper coloring of G/e. Thus we have YG\e = YG + YG/e↑. ✷

We note that if e is a repeated edge, then the proper colorings of G\e are exactly the same
as those of G. The fact that there are no proper colorings of the second type corresponds
to the fact that G/e has at least one loop, and so it has no proper colorings. Also note that
because of our conventions for contraction we always have

|E(G \ e)| = |E(G/e)| = |E(G)| − 1

where | · | denotes cardinality.
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It is easy to see how the operation of induction affects the monomial and power sum
symmetric functions. For π ∈ �d−1 we let π + (d) ∈ �d denote the partition π with d
inserted into the block containing d − 1. From Eqs. (1) and (2) it is easy to see that

mπ↑ = mπ+(d) and pπ↑ = pπ+(d).

With this notation we can now provide an example of the Deletion-Contraction Proposition
for P3, where the vertices are labeled sequentially, and the distinguished edge is e = v2v3:

YP3 = YP2�{v3} − YP2↑ .

It is not difficult to compute

YP2 = m1/2,

YP2↑ = m1/23,

YP2�{v3} = m1/2/3 + m1/23 + m13/2.

This gives us

YP3 = m1/2/3 + m1/23 + m13/2 − m1/23

= m1/2/3 + m13/2,

which agrees with our previous calculation.
We may use the Deletion-Contraction Proposition to provide inductive proofs for non-

commutative analogues of some results of Stanley [11].

Theorem 3.6 For any graph G,

YG =
∑
S ⊆ E

(−1)|S| pπ(S),

where π(S) denotes the partition of [d] associated with the vertex partition for the connected
components of the spanning subgraph of G induced by S.

Proof: We induct on the number of non-loops in E . If E consists only of n loops, for
n ≥ 0, then for all S ⊆ E(G), we will have π(S) = 1/2/ · · · /d. So

∑
S⊆E

(−1)|S| pπ(S) =
∑
S⊆E

(−1)|S| p1/2/.../d =
{

p1/2/.../d if n = 0,

0 if n > 0.

This agrees with Eq. (8).
Now, if G has edges which are not loops, we use the Relabeling Proposition to obtain a

labeling for G with e = vd−1vd . From the Deletion-Contraction Proposition we know that
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YG = YG\e − YG/e↑ and by induction

YG =
∑

S ⊆ E(G\e)

(−1)|S| pπ(S) −
∑

S̃ ⊆ E(G/e)

(−1)|S̃| pπ(S̃)↑ .

It should be clear that

∑
S ⊆ E(G\e)

(−1)|S| pπ(S) =
∑

S ⊆ E(G)
e 	 ∈ S

(−1)|S| pπ(S).

Hence it suffices to show that

−
∑

S̃ ⊆ E(G/e)

(−1)|S̃| pπ(S̃)↑ =
∑

S ⊆ E(G)
e ∈ S

(−1)|S| pπ(S). (9)

To do so, we define a map � : {S̃ ⊆ E(G/e)} → {S ⊆ E(G) : e ∈ S} by

�(S̃) = S, where S = S̃ ∪ e.

Then, because of our conventions for contraction, � is a bijection. Clearly π(S) = π(S̃)+
(d) giving pπ(S) = pπ(S̃)↑. Furthermore |S| = |S̃|+1 so Eq. (9) follows and this completes
the proof. ✷

By letting the xi commute, we get Stanley’s Theorem 2.5 [11] as a corollary. Another
result which we can obtain by this method is Stanley’s generalization of Whitney’s Broken
Circuit Theorem.

A circuit is a closed walk, v1, v2, . . . , vm, v1, with distinct vertices and edges. Note that
since we permit loops and multiple edges, we can have m = 1 or 2. If we fix a total order
on E(G), a broken circuit is a circuit with its largest edge (with respect to the total order)
removed. Let BG denote the broken circuit complex of G, which is the set of all S ⊆ E(G)

which do not contain a broken circuit. Whitney’s Broken Circuit Theorem states that the
chromatic polynomial of a graph can be determined from its broken circuit complex. Before
we prove our version of this theorem, however, we will need the following lemma, which
appeared in the work of Blass and Sagan [1].

Lemma 3.7 For any non-loop e, there is a bijection between BG and BG\e ∪ BG/e given
by

S −→
{

S̃ = S − e ∈ BG/e if e ∈ S

S̃ = S ∈ BG\e if e /∈ S,

where we take e to be the first edge of G in the total order on the edges.
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Using this lemma, we can now obtain a characterization of YG in terms of the broken
circuit complex of G for any fixed total ordering on the edges.

Theorem 3.8 We have

YG =
∑
S∈BG

(−1)|S| pπ(S),

where π(S) is as in Theorem 3.6.

Proof: We again induct on the number of non-loops in E(G). If the edge set consists
only of n loops, it should be clear that for n > 0 we will have every edge being a circuit,
and so the empty set is a broken circuit. Thus we have

YG =




∑
S∈{φ}

(−1)|S| pπ(S) = p1/2/.../d if n = 0,

∑
S∈φ

(−1)|S| pπ(S) = 0 if n > 0,

which matches Eq. (8).
For n > 0 and e a non-loop, we consider YG = YG\e −YG/e↑, and again apply induction.

From Lemma 3.7 and arguments as in Proposition 3.6, we have∑
S ∈ BG
e /∈ S

(−1)S pπ(S) =
∑

S ∈ BG\e

(−1)S pπ(S)

and ∑
S ∈ BG
e ∈ S

(−1)|S| pπ(S) = −
∑

S̃∈BG/e

(−1)|S̃| pπ(S̃)↑,

which gives the result. ✷

4. Acyclic orientations

An orientation of G is a digraph obtained by assigning a direction to each of its edges. The
orientation is acyclic if it contains no circuits. A sink of an orientation is a vertex v0 such
that every edge of G containing it is oriented towards v0. There are some interesting results
which relate the chromatic polynomial of a graph to the number of acyclic orientations of
the graph and the sinks of these orientations. The one which is the main motivation for this
section is the following theorem of Greene and Zaszlavsky [8]. To state it, we adopt the
convention that the coefficient of ni in X is ai .

Theorem 4.1 For any fixed vertex v0, the number of acyclic orientations of G with a
unique sink at v0 is |a1|.
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The original proof of this theorem uses the theory of hyperplane arrangements. For
elementary bijective proofs, see [6]. Stanley [11] has a related result.

Theorem 4.2 If XG = ∑
λ cλeλ, then the number of acyclic orientations of G with j sinks

is given by
∑

l(λ)= j cλ.

We can prove an analogue of this theorem in the noncommutative setting by using
techniques similar to his, but have not been able to do so using induction. We can, however,
inductively demonstrate a related result which, unlike Theorem 4.2 implies Theorem 4.1 For
this result we need a lemma from [6]. To state it, we denote the set of acyclic orientations of
G by A(G), and the set of acyclic orientations of G with a unique sink at v0 by A(G, v0).
For completeness, we provide a proof.

Lemma 4.3 For any fixed vertex v0, and any edge e = uv0, u 	= v0, the map

D −→
{

D\e ∈ A(G\e, v0) if D\e ∈ A(G\e, v0)

D/e ∈ A(G/e, v0) if D\e /∈ A(G\e, v0),

is a bijection between A(G, v0) and A(G\e, v0) � A(G/e, v0), where the vertex of G/e
formed by contracting e is labeled v0.

Proof: We must first show that this map is well-defined, i.e., that in both cases we obtain
an acyclic orientation with unique sink at v0. This is true in the first case by definition. In
case two, where D\e /∈ A(G\e, v0), it must be true that D\e has sinks both at u and at v0

(since deleting a directed edge of D will neither disturb the acyclicity of the orientation nor
cause the sink at v0 to be lost). Since u and v0 are the only sinks in D/uv0 the contraction
must have a unique sink at v0, and there will be no cycles formed. Thus the orientation D/e
will be in A(G/e, v0) and this map is well-defined.

To see that this is a bijection, we exhibit the inverse. This is obtained by simply orienting
all edges of G as in D\uv0 or D/uv0 as appropriate, and then adding in the oriented edge
−→uv0. Clearly this map is also well-defined. ✷

We can now apply deletion-contraction to obtain a noncommutative version of
Theorem 4.1.

Theorem 4.4 Let YG = ∑
π∈�d

cπeπ . Then for any fixed vertex, v0, the number of acyclic
orientations of G with a unique sink at v0 is (d − 1)!c[d].

Proof: We again induct on the number of non-loops in G. In the base case, if all the edges
of G are loops, then

YG =
{

e1/2/.../d if G has no edges

0 if G has loops.
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So

c[d] =
{

1 if G = K1

0 if d > 1 or G has loops

}
= |A(G, v0)|.

If G has non-loops, then by the Relabeling Proposition we may let e = vd−1vd . We know
that YG = YG\e − YG/e↑. Since we will only be interested in the leading coefficient, let

YG = ae[d] +
∑
σ<[d]

aσ eσ ,

YG\e = be[d] +
∑
σ<[d]

bσ eσ ,

and

YG/e = ce[d−1] +
∑

σ<[d−1]

cσ eσ

where ≤ is the partial order on set partitions. By induction and Lemma 4.3, it is enough to
show that (d − 1)!a = (d − 1)!b + (d − 2)!c.

Utilizing the change-of-basis formulae (6) and (7) as well as the fact that for π ∈ �d−1

we have pπ↑= pπ+(d), we obtain

eπ↑ =
∑
σ≤π

µ(0̂, σ )

µ(0̂, σ + (d))

∑
τ≤σ+(d)

µ(τ, σ + (d))eτ . (10)

With this formula, we compute the coefficient of e[d] from YG/e↑. The only term which
contributes comes from ce[d−1]↑, which gives us

ce[d−1]↑ = c
∑

σ∈�d−1

µ(0̂, σ )

µ(0̂, σ + (d))

∑
τ≤σ+(d)

µ(τ, σ + (d))eτ

= c
µ(0̂, [d − 1])

µ(0̂, [d])
e[d] +

∑
τ<[d]

dτ eτ

= −c

d − 1
e[d] +

∑
τ<[d]

dτ eτ

Thus, from YG = YG\e − YG/e↑ we have that

(d − 1)!a = (d − 1)!b + (d − 1)!
c

d − 1
= (d − 1)!b + (d − 2)!c,

which completes the proof. ✷
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This result implies Theorem [4.1] since under the specialization x1 = x2 = · · · = xn = 1,
and xi = 0 for i > n, eπ becomes

k∏
i=1

n(n − 1)(n − 2) · · · (n − |Bi | + 1)

where π = B1/B2/ . . . /Bk . So if k ≥ 2 this polynomial in n is divisible by n2. Thus the
only summand contributing to the linear term of XG(n) is when π = [d] and in that case
the coefficient has absolute value (d − 1)!c[d].

The next corollary follows easily from the previous result.

Corollary 4.5 If YG = ∑
π∈�d

cπeπ , then the number of acyclic orientations of G with
one sink is d!c[d].

5. Inducing eπ

We now turn our attention to the expansion of YG in terms of the elementary symmetric
function basis. We recall that for any fixed π ∈ �d we use π + (d + 1) to denote the
partition of [d + 1] formed by inserting the element (d + 1) into the block of π which
contains d . We will denote the block of π which contains d by Bπ . We also let π/d + 1 be
the partition of [d + 1] formed by adding the block {d + 1} to π .

It is necessary for us to understand the coefficients arising in eπ↑ if we want to understand
the coefficients of YG which occur in its expansion in terms of the elementary symmetric
function basis. We have seen in Eq. (10) that the expression for eπ↑ is rather complicated.
However, if the terms in the expression of eπ ↑ are grouped properly, the coefficients in
many of the groups will sum to zero. Specifically, we need to combine the coefficients from
set partitions which are of the same type (as integer partitions), and whose block containing
d + 1 have the same size. Keeping track of the size of the block containing d + 1 will
allow us to use deletion-contraction repeatedly. To do this formally, we introduce a bit of
notation. Suppose α = (α1, α2, . . . , αl) is a composition, i.e., an ordered integer partition.
Let P(α) be the set of all partitions τ = B1/B2/ . . . /Bl of [d + 1] such that

1. τ ≤ π + (d + 1),
2. |Bi | = αi for 1 ≤ i ≤ l, and
3. d + 1 ∈ B1.

The proper grouping for the terms of eπ↑ is given by the following lemma.

Lemma 5.1 If eπ ↑ = ∑
τ∈�d+1

cτ eτ , then cτ = 0 unless τ ≤ π + (d + 1), and for any
composition α, we have

∑
τ∈P(α)

cτ =




1/|Bπ | if P(α) = {π/d + 1},
−1/|Bπ | if P(α) = {π + (d + 1)},
0 else.
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Proof: Fix π ∈ �d . By Eq. (10)

eπ↑ =
∑
σ≤π

µ(0̂, σ )

µ(0̂, σ + (d + 1))

∑
τ≤ σ+(d+1)

µ(τ, σ + (d + 1))eτ .

Hence we may express

eπ↑ =
∑

τ≤ π+(d+1)

cτ eτ ,

where for any fixed τ ≤ π + (d + 1) we have

cτ =
∑
σ≤ π

σ+(d+1)≥τ

−1

|Bσ |µ (τ, σ + (d + 1)) . (11)

We first note that if τ = π/d + 1 ∈ P(α), then |P(α)| = 1 and we have the interval
[τ, π + (d + 1)] ∼= �2. A simple computation shows that cπ/d+1 = 1/|Bπ |. Similarly, if
τ = π + (d + 1) ∈ P(α), then again |P(α)| = 1 and we can easily compute cπ+(d+1) =
−1/|Bπ |.

We now fix τ = B1/B2/ · · · /Bq+2/ · · · /Bl ∈ P(α) and without loss of generality we
can let B1, B2, · · · , Bq+2 where q ≥ −1 be the blocks of τ which are contained in Bπ+(d+1).
For notational convenience, we will also let |Bπ+(d+1)| = m + 1, where m ≥ 1. Finally,
let β denote the partition obtained from τ by merging the blocks of τ which contain d and
d + 1, allowing β = τ if d and d + 1 are in the same block of τ . Replacing σ + (d + 1)

by σ ∈ �d+1 in Eq. (11), we see that

cτ =
∑

β≤ σ≤ π+(d+1)

−1

|Bσ | − 1
µ(τ, σ ).

Now for any B ⊆ [d + 1] we will consider the sets

L(B) = {σ ∈ �d+1 : {d, d + 1} ⊆ B ∈ σ, where β ≤ σ ≤ π + (d + 1)}.

The nonempty L(B) partition the interval [β, π + (d + 1)] according to the content of the
block containing {d, d + 1} and so we may express

cτ =
∑

B

−1

|B| − 1

∑
σ∈L(B)

µ(τ, σ ).

To compute the inner sum, we need to consider the following 2 cases.
Case (1) For some k > q + 2, Bk is strictly contained in a block of π + (d + 1). In this
case, we see that each non-empty L(B) forms a non-trivial cross-section of a product of
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partition lattices, and so for this case∑
σ∈L(B)

µ(τ, σ ) = 0.

Thus these τ will not contribute to
∑

τ∈P(α)

cτ .

Case (2) For all k > q + 2, Bk is a block of π + (d + 1). So, by abuse of notation,
we can write τ = B1/ · · · /Bq+2 and P(α) = P(α1, . . . , αq+2). Also in this case, we can
assume q ≥ 0, since we have already computed this sum when τ = π + (d + 1). Then we
will show

1

|B| − 1

∑
σ∈L(B)

µ(τ, σ ) =




(−1)q+1(q + 1)!

m
if B = Bπ+(d+1),

(−1)qq!

m − αi
if B = Bπ+(d+1)\Bi , 2 ≤ i ≤ q + 2,

0 else.

(12)

Indeed, it is easy to see that if B = Bπ+(d+1) then L(B) = {π + (d + 1)} and so this part is
clear. Also, if B = Bπ+(d+1) \ Bi for some 2 ≤ i ≤ q + 2, then we have |L(B)| = 1 again
and

∑
σ∈L(B) µ(τ, σ ) = (−1)qq!. Otherwise, L(B) again forms a non-trivial cross-section

of a product of partition lattices, and again gives us no net contribution to the sum.
We notice that since {d, d + 1} ⊆ B, the second case in (12) will only occur if d ∈ B j

for j 	= i . Adding up all these contributing terms gives us

−cτ = (−1)qq!


q+2∑

i=2
i 	= j

1

m − αi
− q + 1

m


 .

In order to compute the sum over all τ ∈ P(α), it will be convenient to consider all
possible orderings for the block of τ containing d. So for 1 ≤ j ≤ q + 2, let

P(α, j) = {(B1, B2, . . . , Bq+2) | B1/B2/ · · · /Bq+2 ∈ P(α), d ∈ B j }.

The sequence (B1, B2, . . . , Bq+2) forms the ordered set partition τ . We also define

δi =
{

αi − 1 if i = 1

αi else,

so

|P(α, j)| =
(

m − 1

δ1, . . . , δ j − 1, . . . , δq+2

)
.
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Thus we can see that

−
∑

τ∈P(α, j)

cτ =
(

m − 1

δ1, . . . , δ j − 1, . . . , δq+2

)
(−1)qq!


q+2∑

i=2
i 	= j

1

m − αi
− q + 1

m


 .

To obtain the sum over all τ ∈ P(α) we need to sum over all P(α, j) for 1 ≤ j ≤ q + 2.
However, if we let kr be the number of blocks Bi , 1 ≤ i ≤ q + 2, which have size r , then
in the sum over all P(α, j), each τ ∈ P(α) appears �m+1

r=1 kr ! times. Combining all this
information, we see that

−
∑

τ∈P(α)

cτ = (−1)qq!∏m+1
r=1 kr !

q+2∑
j=1

(
m − 1

δ1, . . . , δ j − 1, . . . , δq+2

) 
q+2∑

i=2
i 	= j

1

m − δi
− q + 1

m


 .

Hence it suffices to show that

q+2∑
j=1

(
m − 1

δ1, . . . , δ j − 1, . . . , δq+2

) 
q+2∑

i=2
i 	= j

1

m − δi
− q + 1

m


 = 0.

Using the multinomial recurrence we have,

q+2∑
j=1

(
m − 1

δ1, . . . , δ j − 1, . . . , δq+2

)
=

(
m

δ1, . . . , δ j , . . . , δq+2

)

and so we need only show that

q+2∑
j=1

(
m − 1

δ1, . . . , δ j − 1, . . . , δq+2

) q+2∑
i=2
i 	= j

1

m − δi
= q + 1

m

(
m

δ1, . . . , δ j , . . . , δq+2

)
.

However, we may express

q+2∑
j=1

(
m − 1

δ1, . . . , δ j − 1, . . . , δq+2

) q+2∑
i=2
i 	= j

1

m − δi

=
q+2∑
j=1

( m
δ1,...,δ j ,...,δq+2

)
δ j

m

q+2∑
i=2
i 	= j

1

m − δi
=

( m
δ1,...,δ j ,...,δq+2

)
m

q+2∑
j=1

q+2∑
i=2
i 	= j

δ j

m − δi
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=
( m
δ1,...,δ j ,...,δq+2

)
m

q+2∑
i=2

1

m − δi

q+2∑
j=1
j 	=i

δ j =
( m
δ1,...,δ j ,...,δq+2

)
m

q+2∑
i=2

1

m − δi
(m − δi )

= q + 1

m

(
m

δ1, . . . , δ j , . . . , δq+2

)
.

✷

6. Some e-positivity results

We wish to use Lemma 5.1 to prove some positivity theorems about YG’s expansion in the
elementary symmetric function basis. If the coefficients of the elementary symmetric func-
tions in this expansion are all non-negative, then we say that YG is e-positive. Unfortunately,
even for some of the simplest graphs, YG is usually not e−positive. The only graphs which
are obviously e−positive are the complete graphs on n vertices and their complements, for
which we have YKn = e[n] and Y

Kn
= e1/2/···/n . Even paths, with the vertices labeled sequen-

tially, are not e−positive, for we can compute that YP3 = 1
2 e12/3− 1

2 e13/2 + 1
2 e1/23 + 1

2 e123.
However, in this example we can see that while YP3 is not e−positive, if we identify all
the terms having the same type and the same size block containing 3, the sum will be
non-negative for each of these sets.

This observation along with the proof of the previous lemma inspires us to define equiv-
alence classes reflecting the sets P(α). If the block of σ containing i is Bσ,i and the block
of τ containing i is Bτ,i , we define

σ ≡i τ iff λ(σ) = λ(τ) and |Bσ,i | = |Bτ,i |

and extend this definition so that

eσ ≡i eτ iff σ ≡iτ .

We let (τ ) and e(τ ) denote the equivalence classes of τ and eτ , respectively. Taking formal
sums of these equivalence classes allows us to write expressions such as

∑
σ∈�d

cσ eσ ≡ i

∑
(τ )⊆�d

c(τ )e(τ ) where c(τ ) =
∑
σ∈(τ )

cσ .

We will refer to this equivalence relation as congruence modulo i .
Using this notation, we have YP3 ≡3

1
2 e(12/3) + 1

2 e(123), since e13/2 ≡ 3e1/23. We will say
that a labeled graph G (and similarly YG) is (e)−positive if all the c(τ ) are non-negative for
some labeling of G and suitably chosen congruence. We notice that the expansion of YG for
a labeled graph may have all non-negative amalgamated coefficients for congruence modulo
i , but not for congruence modulo j . However, if a different labeling for an (e)-positive
graph is chosen, then we can always find a corresponding congruence class to again see
(e)-positivity. This should be clear from the Relabeling Proposition.
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We now turn our attention to showing that paths, cycles, and complete graphs with one
edge deleted are all (e)-positive. We begin with a few more preliminary results about this
congruence relation and how it affects our induction of eπ .

We note that in the proof of Lemma 5.1, the roles played by the elements d and d + 1
are essentially interchangeable. That is, if we let P̃(α) be the set of all partitions τ =
B1/B2/ · · · /Bl of [d + 1] such that

1. τ ≤ π + (d + 1),
2. |Bi | = αi for 1 ≤ i ≤ l, and
3. d ∈ B1,

and let π̃ be the partition π ∈ �d with d replaced by d + 1, then the same proof will show
that

∑
τ∈P̃(α)

cτ =




1/|Bπ | if P̃(α) = {π̃/d},
−1/|Bπ | if P̃(α) = {π̃ + (d)},
0 otherwise.

Note that here π̃ + (d) is the partition obtained from π̃ by inserting the element d into the
block of π̃ containing d + 1. This allows us to state a corollary in terms of the congruence
relationship just defined.

Corollary 6.1 If b = |Bπ |, then for any π ∈ �d , we have

eπ↑ ≡ d+1
1

b
e(π/d+1) − 1

b
e(π+(d+1))

and

eπ↑ ≡ d
1

b
e(π̃/d) − 1

b
e(π̃+(d)).

The next lemma simply verifies that the induction operation respects the congruence
relation and follows immediately from Eq. (10) or the previous corollary.

Lemma 6.2 If eγ ≡ deτ , then eγ↑ ≡ d+1eτ↑ .

From this we can extend induction to congruence classes in a well-defined manner:

if eπ↑ =
∑

τ∈�d+1

cτ eτ then e(π)↑ ≡ d+1

∑
(τ )⊆�d+1

c(τ )e(τ ).

In order to use induction to prove the (e)-positivity of a graph G, we will usually try to
delete a set of edges which will isolate either a single vertex or a complete graph from G in
the hope of obtaining a simpler (e)-positive graph. In order to see how this procedure will
affect YG , we use the following lemma.
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Lemma 6.3 Given a graph, G on d vertices let H = G � Km where the vertices in Km are
labeledvd+1, vd+2, . . . , vd+m. If YG = ∑

σ∈�d
cσ eσ , then YH = ∑

σ∈�d
cσ eσ/d+1,d+2,...,d+m.

Proof: From the labeling of H we have

YH = YGe[m]

=
∑
σ∈�d

cσ eσ e[m]

=
∑
σ∈�d

cσ eσ/d+1,d+2,...,d+m . ✷

This result suggests we use the natural notation G/vd+1 for the graph G
⊎{vd+1}. We

are now in a position to prove the (e)−positivity of paths.

Proposition 6.4 For all d ≥ 1, YPd is (e)−positive.

Proof: We proceed by induction, having labeled Pd so that the edge set is E(Pd) =
{v1v2, v2v3, . . . , vd−1vd}. If d = 1, then we have YP1 = e1 and the proposition is clearly
true.

So we assume by induction that

YPd ≡d

∑
(τ )⊆�d

c(τ )e(τ ),

where c(τ ) ≥ 0 for all (τ ) ∈ �d . From the Deletion-Contraction Recurrence applied to
e = vdvd+1, Corollary 6.1 and Lemma 6.3, we see that

YPd+1 =YPd/vd+1 − YPd↑
≡d+1

∑
(τ )⊆�d

c(τ )e(τ/d+1) −
∑

(τ )⊆�d

c(τ )e(τ )↑

≡d+1

∑
(τ )⊆�d

c(τ )

(
1 − 1

|Bτ |
)

e(τ/d+1) +
∑

(τ )⊆�d

c(τ )

|Bτ |e(τ+(d+1)).

Since we know that c(τ ) ≥ 0, and |Bτ | ≥ 1 for all τ , this completes the induction step
and the proof. ✷

In the commutative context we will say that the symmetric function XG is e-positive if all
the coefficients in the expansion of the elementary symmetric functions are non-negative.
Clearly (e)-positivity results for YG specialize to e-positivity results for XG .

Corollary 6.5 X Pd is e−positive.
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One would expect the (e)-expansions for cycles and paths to be related as is shown by
the next proposition. For labeling purposes, however, we first need a lemma which follows
easily from the Relabeling Proposition.

Lemma 6.6 If γ ∈ Sd fixes d, then Yγ (G) ≡dYG .

Proposition 6.7 For all d ≥ 1, if

YPd ≡ d

∑
(τ )

c(τ )e(τ ), then YCd+1 ≡d+1

∑
(τ )

c(τ )e(τ+(d+1)),

where we have labeled the graphs so E(Pd) = {v1v2, v2v3, . . . , vd−1vd} and E(Cd+1) =
{v1v2, v2v3, . . . , vd−1vd , vdvd+1, vd+1v1}.

Proof: We proceed by induction on d. If d = 1, then YP1 = e[1] and YC2 = e[2], so the
proposition holds for d = 1.

For the induction step, we assume that

YPd−1 ≡d−1

∑
(τ )

c(τ )e(τ )

and also that

YCd ≡d

∑
(τ )

c(τ )e(τ+(d)).

We notice that if e = vdvd+1, then Cd+1\e does not have the standard labeling for paths.
But if we let γ = (d + 1)(1, d)(2, d − 1) · · · (� d+1

2 �, � d+1
2 �) then we can use the Deletion-

Contraction Recurrence to get

YCd+1 = Yγ (Pd+1) − YCd↑ .

However, since d + 1 is a fixed point for γ, Lemma 6.6 allows us to deduce that

YCd+1 ≡d+1 YPd+1 − YCd↑ .

In the proof of Proposition 6.4 we saw that

YPd+1 = YPd/vd+1 − YPd↑ .

Combining these two equations gives

YCd+1 ≡d+1YPd/vd+1 − YPd↑ −YCd↑ . (13)
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The demonstration of Proposition 6.4 also showed us that

YPd ≡d

∑
(τ )

((
c(τ ) − c(τ )

|Bτ |
)

e(τ/d) + c(τ )

|Bτ |e(τ+(d))

)
. (14)

Applying Corollary 6.1 and Lemma 6.3 yields

YPd↑ ≡ d+1

∑
(τ )

[(
c(τ ) − c(τ )

|Bτ |
)

e(τ/d/d+1) −
(

c(τ ) − c(τ )

|Bτ |
)

e(τ/d,d+1)

+ c(τ )

|Bτ |(|Bτ | + 1)
e(τ+(d)/d+1) − c(τ )

|Bτ |(|Bτ | + 1)
e(τ+(d)+(d+1))

]

and

YPd/vd+1 ≡d+1

∑
(τ )

(
c(τ ) − c(τ )

|Bτ |
)

e(τ/d/d+1) + c(τ )

|Bτ |e(τ+(d)/d+1).

By the induction hypothesis,

YCd↑ ≡d+1

∑
(τ )

c(τ )e(τ+(d))↑

≡d+1

∑
(τ )

(
c(τ )

|Bτ | + 1
e(τ+(d)/d+1) − c(τ )

|Bτ | + 1
e(τ+(d)+(d+1))

)
.

Plugging these expressions for YPd/vd+1 , YPd↑, and YCd↑ into Eq. (13), grouping the terms
according to type, and simplifying gives

YCd+1 ≡d+1

∑
(τ )

(
c(τ ) − c(τ )

|Bτ |
)

e(τ/d,d+1) + c(τ )

|Bτ |e(τ+(d)+(d+1)).

This corresponds to the expression in Eq. (14) for YPd in exactly the desired manner, and
so we are done. ✷

From the previous proposition and the fact that YC1 = 0 we get an immediate corollaries.

Proposition 6.8 For all d ≥ 1, YCd is (e)−positive.

Corollary 6.9 For all d ≥ 1, XCd is e−positive.

We are also able to use our recurrence to show the (e)-positivity of complete graphs with
one edge removed.
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Proposition 6.10 For d ≥ 2, if e = vd−1vd then

YKd\e ≡d
d − 2

d − 1
e([d]) + 1

d − 1
e([d−1]/d).

Proof: Consider the complete graph Kd and apply deletion-contraction to the edge e =
vd−1vd . Together with Corollary 6.1 this will give us

e[d] = YKd

= YKd\e − YKd−1↑
= YKd\e − e[d−1]↑
≡d YKd\e − 1

d − 1
e([d−1]/d) + 1

d − 1
e([d]).

Simplifying gives the result. ✷

This also immediately specializes.

Corollary 6.11 For d ≥ 2,

X Kd\e = d(d − 2)(d − 2)!ed + (d − 2)!e(d−1,1).

7. The (3 + 1)-free Conjecture

One of our original goals in setting up this inductive machinery was to make progress on the
(3 + 1)-free Conjecture of Stanley and Stembridge, which we now state. Let a + b be the
poset which is a disjoint union of an a-element chain and a b-element chain. The poset P
is said to be (a + b)-free if it contains no induced subposet isomorphic to a + b. Let G(P)

denote the incomparability graph of P whose vertices are the elements of P with an edge
uv whenever u and v are incomparable in P . The (3 + 1)-free Conjecture of Stanley and
Stembridge [13] states:
Conjecture 7.1 If P is (3 + 1)-free, then XG(P) is e-positive.

Gasharov [4] has demonstrated the weaker result that XG(P) is s-positive, where s refers
to the Schur functions.

A subset of the (3 + 1)-free graphs is the class of indifference graphs. They are charac-
terized [12] as having vertices and edges

V = {v1, . . . , vd} and E = {viv j : i, j belong to some [k, l] ∈ C},

where C is a collection of intervals [k, l] = {k, k + 1, . . . , l} ⊆ [d]. We note that without
loss of generality, we can assume no interval in the collection is properly contained in any
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other. These correspond to incomparability graphs of posets which are both (3 + 1)-free
and (2 + 2)-free.

Indifference graphs have a nice inductive structure that should make it possible to apply
our deletion-contraction techniques. Although we have not been able to do this for the full
family, we are able to resolve a special case. For any composition of n, α = (α1, α2, . . . , αk),

let α̃i = ∑
j ≤ i α j . A Kα-chain is the indifference graph using the collection of intervals

{[1, α̃1], [α̃1, α̃2], . . . , [ ˜αk−1, α̃k]}. This is just a string of complete graphs, whose sizes are
given by the parts of α, which are attached to one another sequentially at single vertices.
We notice that the Kα-chain for α = (α1, α2, . . . , αk) can be obtained from the Kτ -chain
for τ = (α1, α2, . . . , αk−1) by attaching the graph Kαk to its last vertex.

We will be able to handle this type of attachment for any graph G with vertices {v1,

v2, . . . , vd}. Hence, we define G + Km to be the graph with

V (G + Km) = V (G) ∪ {vd+1, . . . , vd+m−1}

and

E(G + Km) = E(G) ∪ {e = viv j : i, j ∈ [d, d + m − 1]}.

Using deletion-contraction techniques, we are able to exhibit the relationship between the
(e)-expansion of G + Km and the (e)-expansion of G. However, we will also need some
more notation. For π ∈ �d , we let π + i denote the partition given by π with the additional
i elements d +1, d +2, . . . , d + i added to Bπ . This is in contrast to π + (i), which denotes
the partition given by π with the element i inserted into Bπ . We denote the falling factorial
by

〈m〉i
def= m(m − 1)· · ·(m − i + 1)

and the rising factorial by

(m)i
def= m(m + 1)· · ·(m + i − 1).

We begin studying the behavior of YG+Km↑ d+ j
d with two lemmas the first of which follows

easily from Eq. (10).

Lemma 7.2 For any graph G on d vertices and 1 ≤ i, j, k ≤ d + 1 we have YG ↑ j
i ≡i

YG ↑k
i .

Lemma 7.3 If G is a graph on d vertices with

YG ≡d

∑
(π)⊆�d

c(π)e(π),
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then

YG+Km↑d+m
d

≡d+m

∑
(π)

m−1∑
i=0

c(π)〈m − 1〉i
[
e(π+i/d+i+1,...,d+m) − e(π+i+(d+m)/d+i+1,...,d+m−1)

]
(b)i+1

,

where b = |Bπ |.

Proof: We prove the lemma by induction on m. The case m = 1 is merely a restatement
of Corollary 6.1. So we may assume this lemma is true for YG+Km↑ d+m

d , and proceed to
prove it for YG+Km+1↑d+m+1

d .

From Lemma 7.2, it follows that for 1 ≤ j ≤ m, we have

YG+Km↑ d+ j
d ↑ d+m+1

d ≡ d+m+1YG+Km↑ d+m
d ↑ d+m+1

d .

Now, from G + Km+1 we may delete the edge set {vdvd+ j : 1 ≤ j ≤ m} and combine all
the terms YG↑ d+ j

d ↑ d+m+1
d for 1 ≤ j ≤ m to obtain

YG+Km+1↑ d+m+1
d ≡ d+m+1 YG�Km↑ d+m+1

d − mYG+Km↑ d+m
d ↑ d+m+1

d

≡ d+m+1 YG�Km↑ d+m+1
d − mYG+Km↑ d+m

d ↑ d+m+1
d+m .

From this point on, we need only concern ourselves with the clerical details, making sure
that everything matches up properly. We can see from Lemma 5.1, Lemma 6.3 and the
original hypothesis on YG , that

YG�Km↑ d+m+1
d ≡d+m+1

∑
(π)

c(π)

b

(
e(π1) − e(π2)

)
. (15)

where

π1 = π/d + 1, . . . , d + m/d + m + 1,

π2 = π + (d + m + 1)/d + 1, . . . , d + m.

Similarly, the induction hypothesis shows

mYG+Km↑ d+m
d ↑ d+m+1

d+m

≡d+m+1

∑
(π)

m−1∑
i=0

c(π)m〈m − 1〉i

(b)i+1

(
e(π3) − e(π4)

m − i
− e(π5) − e(π6)

b + i + 1

)
(16)

where

π3 = π + i/d + i + 1, . . . , d + m/d + m + 1,

π4 = π + i/d + i + 1, . . . , d + m + 1,

π5 = π + i + (d + m)/d + i + 1, . . . , d + m − 1/d + m + 1,

π6 = π + i + (d + m) + (d + m + 1)/d + i + 1, . . . , d + m − 1.
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Simplifying the terms and combining both Eqs. (15) and (16) gives

YG+Km+1↑ d+m+1
d

≡d+m+1

∑
(π)

c(π)

(
e(π1) − e(π2)

b
−

m−1∑
i=0

(
e(π3) − e(π4)

) 〈m〉i

(b)i+1

+
m−1∑
i=0

(
e(π5) − e(π6)

) 〈m〉i+1

(b)i+2

)
.

Note that modulo d + m + 1 we have

(π5) = (π + i + 1/d + i + 2, . . . , d + m/d + m + 1) and
(π6) = (π + i + 1 + (d + m + 1)/d + i + 2, . . . , d + m).

So by shifting indices and simplifying, we obtain

YG+Km+1↑ d+m+1
d

≡d+m+1

∑
(π)

m∑
i=0

c(π)〈m〉i
[
e(π+i/d+i+1,...,d+m+1) − e(π+i+(d+m+1)/d+i+1,...,d+m)

]
(b)i+1

,

which completes the induction step and the proof. ✷

This lemma is useful because it will help us to find an explicit formula for YG+Km+1

in terms of YG . Once this formula is in hand, it will be easy to verify that if G is (e)-
positive, then so is G + Km+1. To complete the induction step in establishing this formula,
we will need the following observation which follows from Eq. (10).

Lemma 7.4 For any graph G on d vertices, and σ ∈ Sd ,

YG↑ d+1
i ≡ d+1Yσ(G)↑ d+1

σ(i) .

We now give the formula for YG+Km+1 in terms of YG .

Lemma 7.5 If m ≥ 1, and

YG ≡d

∑
(π)⊆�d

c(π)e(π),
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then

YG+Km+1 ≡d+m

∑
(π)⊆�d

m−1∑
i=0

c(π)〈m − 1〉i

(b)i+1

[
(b − m + i)e(π̂) + (i + 1)e(π̄)

]

where b = |Bπ | and

π̂ = π + i/d + i + 1, . . . , d + m,

π = π + i + (d + m)/d + i + 1, . . . , d + m − 1.

Proof: We induct on m. If m = 1, then YG+K2 = YG�K1 − YG↑ d+1
d . This shows that

YG+K2 ≡d+1

∑
(π)

(
c(π)(b − 1)

b
e(π/d+1) + c(π)

b
e(π+(d+1))

)
,

which verifies the base case.
To begin the induction step, we repeatedly utilize the Deletion-Contraction Recurrence

to delete the edges vd+ivd+m+1 for 0 ≤ i ≤ m, and obtain

YG+Km+2 ≡d+m+1YG+Km+1�vd+m+1 − mYG+Km+1↑ d+m+1
d+m − YG+Km+1↑ d+m+1

d . (17)

Note that we are able to combine all the terms from YG+Km+1↑ d+m+1
d+i for 1 ≤ i ≤ m using

Lemma 7.4, since in these cases the necessary permutation exists.
We now expand each of the terms in Eq. (17). For the first, using Lemma 6.3,

YG+Km+1�vd+m+1 ≡d+m+1

∑
(π)

m−1∑
i=0

c(π)〈m − 1〉i

(b)i+1

[
(b − m + i)e(π1) + (i + 1)e(π2)

]
,

where

π1 = π + i/d + i + 1, . . . , d + m/d + m + 1,

π2 = π + i + (d + m)/d + i + 1, . . . , d + m − 1/d + m + 1.

For the second term, using Corollary 6.1, we have

mYG+Km+1↑ d+m+1
d+m

≡d+m+1

∑
(π)

m−1∑
i=0

c(π)〈m〉i+1

(b)i+1

[
b − m + i

m − i

(
e(π1) − e(π3)

) + i + 1

b + i + 1

(
e(π2) − e(π4)

)]
,

where

π3 = π + i/d + i + 1, . . . , d + m + 1,

π4 = π + i + (d + m) + (d + m + 1)/d + i + 1, . . . , d + m − 1.
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And finally, using Lemma 7.3,

YG+Km+1↑ d+m+1
d ≡d+m+1

∑
(π)

m∑
i=0

c(π)〈m〉i

(b)i+1

(
e(π3) − e(π5)

)

where

π5 = π + i + (d + m + 1)/d + i + 1, . . . , d + m.

Grouping the terms appropriately and shifting indices where needed gives

YG+Km+2 ≡d+m+1

∑
(π)

m∑
i=0

c(π)〈m〉i
[
(b − (m + 1) + i)e(π3) + (i + 1)e(π5)

]
(b)i+1

.

This completes the induction step and the proof. ✷

Examining this lemma, we can see that in YG+Km+1 we have the same sign on all the
coefficients as we had in YG , with the possible exception of the terms where b < m − i .
But it is easy to see that in this case we have

e(π+i/d+i+1,...,d+m) ≡ d+me(π+m−i−b−1+(d+m)/d+m−i−b,...,d+m−1).

This means that in the expression for YG+Km+1 as a sum over congruence classes modulo
d + m, we can combine the coefficients on these terms. And so upon simplification, the
coefficient on e(π+i/d+i+1,...,d+m) will be:

(
(b − m + i)〈m − 1〉i

(b)i+1
+ (m − i − b)〈m − 1〉m−i−b−1

(b)m−i−b

)
c(π),

where c(π) is the coefficient on e(π) in YG .
Adding these fractions by finding a common denominator, we see that this is actually

zero, which gives us the next result.

Theorem 7.6 If YG is (e)-positive, then YG+Km is also (e)-positive.

Notice that Proposition 6.4 follows easily from Theorem 7.6 and induction, since for
paths Pm+1 = Pm + K2. As a more general result we have the following corollary.

Corollary 7.7 If G is a Kα-chain, then YG is (e)-positive. Hence, XG is also e-positive.

We can also describe another class of (e)-positive graphs. We define a diamond to be
the indifference graph on the collection of intervals {[1, 3], [2, 4]}. So a diamond consists
of two K3’s sharing a common edge. Then the following holds.
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Theorem 7.8 Let D be a diamond. If G is (e)-positive, then so is G + D.

Proof: The proof of this result is analogous to the proof for the case of G + Km , and so
is omitted. ✷

8. Comments and open questions

We will end with some questions raised by this work. We hope they will stimulate future
research.

(a) Obviously it would be desirable to find a way to use deletion-contraction to prove that
indifference graphs are e-positive (or even demonstrate the full (3 + 1)-Free Conjecture).
The reason that it becomes difficult to deal with the case where the last two complete graphs
overlap in more than one vertex is because one has to keep track of all ways the intersection
could be distributed over the block sizes of an eπ . Not only is the bookkeeping complicated,
but it becomes harder to find groups of coefficients that will sum to zero.

Another possible approach is to note that if G is an indifference graph, then for the
edge e = vkvd (where [k, d] is the last interval) both G\e and G/e are indifference graphs.
Furthermore G\e is obtained from G/e by attaching a Kd−k so that it intersects in all but one
vertex with the final Kd−k of G/e. Unfortunately, the relationship between the coefficients
in the (e)-expansion of YG\e and YG/e↑ does not seem to be very simple.

(b) Notice that if T is a tree on d vertices, we have XT (n) = n(n − 1)d−1. Since XG is
a generalization of the chromatic polynomial, it might be reasonable to suppose that it also
is constant on trees with d vertices. This is far from the case! In fact, it has been verified
up to d = 9 [2] that, for non-isomorphic trees T1, T2 we have XT1 	= XT2 . This leads to the
following question posed by Stanley.

Question 8.1 ([12]) Does XT distinguish among non-isomorphic trees?

We should note that the answe r to this question is definitely “yes” for YT . In fact more
is true.

Proposition 8.2 The function YG distinguishes among all graphs G with no loops or
multiple edges.

Proof: We know from Proposition 3.2 that YG = ∑
P mπ(P) for the stable partitions P .

Construct the graph H with vertex set V (G) = {v1, v2, . . . , vd} and edge set E(H) =
{viv j | there exists a π(P) such that i, j are in the same block of π(P)}.Sinceπ(P) comes
from a stable partition P of G, vi and v j are in the same block of some π(P) if and only if
there is no edge viv j in G. Hence the graph H constructed is the (edge) complement of G
and so we can recover G from H . ✷

Of course we can have YG 	= YH but XG = X H . So a first step towards answering Stanley’s
question might be to see if YT still distinguishes trees under congruence. It seems reasonable
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to expect to investigate this using our deletion-contraction techniques since trees are recon-
structible from their leaf-deleted subgraphs [9]. We proceed in the following manner.

If T1 	∼= T2 then by the reconstructibility of trees there must exist labelings of these trees
so that vd is a leaf of T1, ṽd is a leaf of T2 and T1 − vd 	∼= T2 − ṽd . By induction we will
have YT1−vd 	≡ d−1YT2−ṽd . Furthermore, our recurrence gives

YT1 = YT1−vd/vd − YT1−vd↑
YT2 = YT2−ṽd/ṽd − YT2−ṽd↑ .

One now needs to investigate what sort of cancelation occurs to see if these two differences
could be equal or not. Concentrating on a term of a particular type could well be the
key.

(c) It would be very interesting to develop a wider theory of symmetric functions in
noncommuting variables. The only relevant paper of which we are aware is Doubilet’s [3]
where he talks more generally about functions indexed by set partitions, but not the non-
commutative case per se. His work is dedicated to finding the change of basis formulae
between 5 bases (the three we have mentioned, the complete homogeneous basis, and the
so-called forgotten basis which he introduced). However, there does not as yet seem to
be any connection to representation theory. In particular, there is no known analog of the
Schur functions in this setting.

Note added in Proof: Rosas and Sagan have recently come up with a definition of the
Schur function in noncommuting variables and are investigating its properties.
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