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Abstract. We introduce the notion of hyper-self-duality for Bose-Mesner algebras as a strengthening of formal
self-duality. LetM denote a Bose-Mesner algebra on a finite nonempt{ s€ix p € X, and letM* and7 denote
respectively the dual Bose-Mesner algebra and the Terwilliger algebvawith respect tap. By a hyper-duality

of M, we mean an automorphisih of 7" such thaty (M) = M*, ¥ (M*) = M; ¥2(A) = 'Aforall A € M;

and|X | ¥p is a duality of M. M is said to be hyper-self-dual whenever there exists a hyper-dualityl oivVe

say thatM is strongly hyper-self-dual whenever there exists a hyper-dualitytofvhich can be expressed as
conjugation by an invertible element @f. We show that Bose-Mesner algebras which support a spin model are
strongly hyper-self-dual, and we characterize strong hyper-self-duality via the module structure of the associated
Terwilliger algebra.
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1. Introduction

The purpose of this paper is to introduce the notiohygier-self-dualityfor Bose-Mesner
algebras (association schemes) as a strengthening of the usual notion of formal self-duality.
Our motivation for doing so is the observation that the Bose-Mesner algebras which support
spin models have this property.

Let X denote a finite nonempty set of sizeand letMy denote the C-algebra of matrices
with entries in C whose rows and columns are indexeXbj Bose-Mesner algebra ok
is a commutative subalgebret of Mx which is closed under entry-wise multiplication
which is closed under transposition, and which contains the identity and all ones matrices
of Mx. A formal duality of M is a linear bijectiond : M — M such that for allA,

BeM : W(AB) = W(A) o ¥(B), V(Ao B) = n"1W(AW(B), ¥ (¥(A) = n'A. A
Bose-Mesner algebt&1 is said to bdormally self-dualwhen there exists a formal duality
of M. We review Bose-Mesner algebras and self-duality in Section 2.

A spin model is a matrix which satisfies certain conditions which ensure that it yields
an invariant of knots and links via a statistical mechanical construction of V. Jones [21].
Recently itwas shown [19, 26, 20] that any spin modfés contained in a formally self-dual
Bose-Mesner algebr (W). (We discuss spin models in Section 5). While studying these
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results the authors found that the Bose-Mesner algkfii&) is much more than formally
self-dual. This led to the introduction of hyper-self-duality for Bose-Mesner algebras.
Hyper-self-duality is defined using Terwilliger algebras. Ppix X, and forA € M,
let p(A) € My denote the diagonal matrix wittx, x)-entry p(A)(X, X) = A(p, X).
Set M* = p(M). The Terwilliger algebrd =7 (M, p) associated with\M and p is the
subalgebra oMx generated byM U M*. We discuss Terwilliger algebras in Section 3.
By a hyper-dualityof M (with respect to the base poip), we mean an automorphism
¥ of 7 such thaty (M) = M*, ¢ (M*) = M; y2(A) = 'Aforall Ae M;andnyp is a
formal duality of M. M is said to bényper-self-dualvhenever there exists a hyper-duality
of M. We say thatM is strongly hyper-self-duakhenever there exists a hyper-duality of
M which can be expressed as conjugation by an invertible elemént of
Our main result concerning spin models is Theorem 5.5, which states that the Bose-
Mesner algebra/ (W) supporting the spin mod#&V is strongly hyper-self-dual. Motivated
by spin models, we focus on strong hyper-self-duality. In Theorem 4.1 we characterize this
property in terms o -modules.
In Section 6 we present a Bose-Mesner algebra which is hyper-self-dual, but not strongly
hyper-self-dual. We conclude with some problems concerning hyper-self-duality.

2. Formally self-dual Bose-Mesner algebras

In this section we review some basic material concerning formally self-dual Bose-Mesner
algebras. The reader is referred to [4, 6, 13] for more details. The references [16, 20, 24, 28]
also contain material that may be of interest.

Throughout this paper we fix a finite nonempty 3etof sizen. Let Mx denote the
C-algebra of matrices with entries {d whose rows and columns are indexed XyFor
A € Mx andfora, b € X, let A(a, b) denote the&a, b)-entry of A. For A, B € My, let Ac B
denote the Hadamard (entry-wise) producttcnd B : (A o B)(X, y) = A(X, Y)B(X, y).

The transpose of is denoted byA.

A Bose-Mesner algebran X is a commutative subalgebyet of Mx, which is closed
under Hadamard product, which is closed under transposition, and which contains the
identity matrix| and the all 1's matrixJ.

Let M be a Bose-Mesner algebra &mof dimension ding M = d + 1. It is well-known
that M has a unique linear basj# }¢_, such that

d
Po=1, AocA =§A ©O=<ij=d, Y A=1J @)
i=0
whered;j is the Kronecker symbol. Observe thfgthas entries if0, 1} sinceAj o A = A;.
We call{ A }i":0 thebasis of Hadamard idempoteras. M. For the rest of this paper we fix

an orderingAg, A, ..., Ag of the Hadamard idempotents. It is also well-known thét
has a unique basi€; }¢_, such that

d
Eo=n"J, EE =§E ©O<i j=<d, Y E=I 2)
i=0

We call{E; }id=O thebasis of primitive idempotents M.
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By aformal duality of M we mean a linear bijectiod : M — M such that for all
A Be M

W(AB) = U(A) o W(B), W(AoB)=n1W(AWU(B), WVWA)=nA (3

M is said to bdormally self-dualwhen there exists a formal duality @#.
Note that a formal duality of M satisfies

U(A) = 'W(A) (4)
for all A € M since
V(A = U (n"TW2(A) = n 2P (A) = nIn'w(A) ='W (A).

Lemma 2.1 A linear map¥ : M —> M is a formal duality ofM if and only if there
exists an ordering k Ej, ..., Eq4 of the primitive idempotents such that

V(E) = A, W(A)=n'E (O<i=<d. ®)

Proof: First supposeb is a formal duality ofM. Observe that\IJ(Ei)}id=0 is a basis of
M sinceV is a linear bijection. Also observe that for &8le M

W(Eg)B =nW(Ego W (B)) = ¥(J oW (B)) = ¥ (¥ (B)) = B,
soW(Eg) = | = Ap. Next observe that
V(E) =V EE) =6;Y(E)oW(E) O<i,j=<d),
Xd;\p(Ei) = w(i} Ei> =W(l)=W(W(Ey)) =nEy=J.
i= iz
Thus{\Lf(Ei)}id:0 is the basis of Hadamard idempotents./ef. Now we may order the
primitive idempotents such that(E;) = A (0 <i < d). Finally,
W(A)=W(W(E)=nE @O=<i=<d).

Next suppose (5) holds for some orderigg Ei, ..., Eq4 of the primitive idempotents.
We compute forali, j (0<i,j <d)

W(A 0 A) =8 W(A)=§nE =nn'En'E; = nTTW(A)W(A),
W(EE)) =6§;V(E) =6jA =A oA =V(E)oW(E),
V2(E) = W(A) =n'E.

Thus W is a formal duality ofM since each of the defining conditions holds on a linear
basis ofM. O
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An ordering of primitive idempotents satisfying (5) is calledtandard orderingf the
primitive idempotents fox.

3. Terwilliger algebras and hyper-duality

Let M be a Bose-Mesner algebra ohof dimension dina(M) = d + 1. Fix a “base
point” p € X. For A € M, let p(A) € My denote the diagonal matrix witx, x)-entry
p(A)(X, X) = A(p, X). SetM* = {p(A) | A € M}. M* is called thedual Bose-Mesner
algebraof M (with respectto the base poip}. The mapp : M — M*isalinear bijection.
SetEf = p(A) andA" = p(NE)(0 < i < d). Itis known that{E;/}%_, and{A:}?_, are
bases ofM*. The subalgebrd of My generated by\f U M* is called theTerwilliger
algebraof M (with respect to the base poip}. Further details on Terwilliger algebras can
be found in [30].

Lemma3.1 Fixanordering k&, Eg, ..., Eq of the primitive idempotentsand letyr : M*

— M be alinear map. Then the following are equivalent.

(i) v(A)=Aandy(EH="E; (0=<i<d).

(i) ¥ :=nyp is a formal duality ofM, and the ordering i, E1, ..., Eq4 of the primi-
tive idempotents is standard fdr.

Proof: (i) = (ii): Set¥ = nyp. We compute forali(0 <i < d)

W(A) =nyp(A) =ny(EH) =n'E,
V(E) = nyp(E) = ¥(A) = A.
ThusV is aformal duality ofM by Lemma 2.1, and the ordering of the primitive idempotents

is standard for.
(iiy=(i): Since¥ = nyp satisfies (5), we compute for all0 <i < d)

V(A) =y (p(E)) =V (E) = A,
V(ED = ¥ (p(A)) =n " W(A) ="E;. 5

By ahyper-duality ofM (with respect to the base poip), we mean an automorphism
Y of 7 with the following properties (i)—(iii):

() Y M) = M*, f(M*) =M.
(i) y2(A) ='Aforall Ae M.
(i) nyp is a formal duality ofM.
A hyper-dualityy is said to bennerwhen it is an inner automorphism .

(iv) There is an invertible matriX € 7 such thaty (A) = K~*AK for all Ac 7.
M is said to behyper-self-dua(with respect top) whenever there exists a hyper-duality

(with respect tqg), and it is said to betrongly hyper-self-dudlvith respect tgp) whenever
there exists an inner hyper-duality (with respecpjo
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Lemma 3.2 Lety be an automorphism of . Then the following are equivalent.
(i) v is a hyper-duality ofM with respect to p.

(i) There exists an orderingds E, . .., Eg of the primitive idempotents such that for all
iO0<i<d
v(A)=A, VA=A, ¥vE)=E, vEH=E. (6)

Supposi), (i) hold. Then¥ = nyp is a formal duality ofM and the ordering of the
primitive idempotents ifii) is standard ford.

Proof: (i) = (ii): By the definition of a hyper-dualitpt = nyrp is a formal duality of
M. Fix an orderinggy, Eg,..., Eq of the primitive idempotents which is standard fbr
Then by Lemma 3.1¢(A") = A andW(E*) = 'E(0 < i < d). Usingy2(A) ="A for
A e M, we compute forali(0 <i <d)

YA = v WA = v HA) = A,
Y(E) = v WAE) =y HE) = E.

(il) = (i): Observe thatr exchanges bases.®f andM*, soy (M) = M* andy (M*) =
M. Now fix an ordering of primitive idempotents such that (6) holds. Observe that for all
i0<i=<d

VA(E) = v (W (E)) = v (BN ="E.

Hencey?(A) ='Afor all Ain M since{E; }F'=0 is a linear basis oM. Finally, we compute
foralli (0O<i <d)

nYp(E) = yp(NE) = Y(A) = A,
nYo(A) = Y (Ef) = n'E;.

Hencenyp is a formal duality ofM by Lemma 3.1 O

4. Strong hyper-self-duality

The purpose of this section is to give a module characterization of strong hyper-self-duality.
Since Terwilliger algebras are semisimple, their simple modules determine the structure
of the Terwilliger algebra itself. The literature generally presents module descriptions of
Terwilliger algebras. Before stating the main result of this section, we recall some basic
facts about the simple modules of Terwilliger algebras. The reader is referred to [12] for a
general discussion of semisimple algebras.

Let M be a Bose-Mesner algebra ¢hof dimension dina(M) = d + 1. Fix a base
pointp € X, and let7 be the Terwilliger algebra of1 with respect tgp. 7 is semisimple,
and so7 decomposes a8 = ®,ca¢n7, Whereg, (A € A) are the primitive central
idempotents of . LetV = C* denote ther-dimensional vector space consisting of column
vectors whose entries are indexed Xy By a 7-modulewe mean a linear subspatke
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of V which is closed under the action @f: Aue U for all A7 and for allu € U. V
decomposes a8 = @, a9V, and eachp,V is a direct sum of mutually isomorphic
simple 7-modules. Moreover, the subalgebpgZ is isomorphic to the endomorphism
algebra End(U), whereU is any simple7 -module contained i, V; the isomorphism
mapsL € ¢, 7 to the endomorphism — Lu (u € U).

Theorem4.1 LetM be a(d+1)-dimensional Bose-Mesner algebraon X. Fix X, and
let 7 be the Terwilliger algebra aM with respect to p. Then the following are equivalent.
(i) M is strongly hyper-self-dual with respect to p.
(iiy There exists an orderingds Ey, ..., Eq of the primitive idempotents ¢¥1 such that
for each simpleZ-module U and for any ordered bas®, of U, there is a second
ordered basis2, of U such that

['AlL = [Af]2. [A]lL=[Al2,

EL=E)  (EL=r, °%' = ™

where [B]; denotes the matrix representinge” with respect to the basi;
(=1 2.

To prove this theorem we first need some lemmas concerning linear endomorphisms
of 7-moduledJ whose action otJ satisfies

A = AF = A
A=A oA tA'G’ O<i<d. ®)
oE = Efo, oE' ="'Eio
Lemma 4.2 Lety be aninner automorphism @f, and let U be & -module. Then there
exists a linear bijectiow : U — U such thats (Au) = ¢ (A)o (u) for all A € 7 and for
allu e U.

Proof: Sincey isinner,y (A) = K~1AK (A € 7) forsomeK e 7. Defines :U — U

by o(u) = K~'u (u € U). Then forA € 7, o(Au) = K1Au = (K"TAK)(K~tu) =

V(Ao (u). O

Lemma 4.3 LetU and U be isomorphicZ -modules with isomorphism:{J — U’.

(i) Leto:U — U be a linear bijection which satisfig8) on U. Theno’ = fof1:
U’ — U’ also satisfieg8) on U'.

(i) Fix L € 7, and defines :U — U byo(u) = Lu. Then &f~1() = LU for all
u el

Proof: (i) Pick anyu € U’. Sincef ! and f are7-module isomorphisms, and sinae
satisfies (8), we compute for &0 <i < d)

o'(CAu) = fof AU = fo(F 1 AW) = fo A fL(u))
= f(Afa(f 1) = ArfofL(u) = A'o’(u).

The other relations of (8) can be verified similarly.
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(i) Pick any u'eU’ and setu= f~(). Then fof ()= fo(u)=f(Luy=L
f(uy=LU. O

Lemma 4.4 The following are equivalent.

(i) M is strongly hyper-self-dual with respect to p.

(i) There exists an ordering & Ej, ..., Eq of the primitive idempotents o# such
that, for every simpleZ -module U there is a linear bijectiornr : U — U satisfying
(8 onU.

Proof: (i) = (ii): Clear from Lemmas 3.2 and 4.2.

(il) = (1): Recall thatZ7 andV decompose &8 = Pycp 9.7 andV = @9V, where
{es | 2 € A} denotes the set of primitive central idempotent§ofFix anyA € A. Note
thatg, V is a direct sum of mutually isomorphic simgfemodulesip,V = &7_,;U;. For
eachj (1 < j < m), fix a7-module isomorphisnf; :U; — U; with f; the identity
transformation obJ;. By assumption, there is a linear bijectioenU; — U; such that (8)
holds for allu € U;. Sinceyp, 7 isisomorphicto End(U,), thereisamatrix.; € ¢, 7 such
thato (u) = L,u for all u € U;. By Lemma 4.3(ii), the map; = f,—affl A=<j=m
satisfiessj(u) = Lyu for all u € Uj. In addition, by Lemma 4.3(i)yyj (Aiu) = Afoj(u)
holds forallu e U; (0 <i <d, 1 < j <m). Hence we obtain

L'Au=A'L,u (ueUj,0<i<d, 1<j<m). 9)

Note that (9) holds for alli € ¢,V since it holds for allj (1 < j < m).

Now setL = ), _, L,. ClearlyL is invertible sinceL; acts invertibly onyp, V for all
A€ A.

We claim that

L'A=AL (0<i<d). (10)

To see this, pick any e V and writev = ), _, v, Withv, € ¢,V (A€ A). Fixi (0 <i <
d). From (9), we have.! Ajv;, = AfL,v;, (A € A). Using this relation andl, v, = 0 for
A # u, we compute as follows.

LAY = (; LA)tAi (I;UM> => > LA,

reA peA

=> > SGuLiAve =Y Li'Auv,

AEA peA rEA

=Y ALuvu=A> Lu

PYSIAN AEA

= A(Z LA>(ZUH> = AfLv.

rEA HEA

Hence (10) holds, and ¢ 1'A/K = A’ with K = L~1. The remaining relations of (6)
can be shown similarly. O
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Observe that the matricds, produced in the proof of Lemma 4.4 are unique up to a
non-zero scalar multiple. We may represent the rescaling of eaes multiplication of
the matrixK by } ", ., a1¢;, Wherew; is anonzero scaldi € A). Since{g; },cx is a basis
of the center of7, this is exactly the same as multiplicationkfby any invertible central
elementC of 7. Clearly the hyper-dualitied — K1AK and A — (CK)~*A(CK) are
identical.

Proof of Theorem 4.1: (i) = (ii): For an arbitrary given basi®1 = {uj, Uy, ..., Us} Of
U, setQ, = {o(uy), o (Uyp),...,o(Us)}, whereo is as in Lemma 4.4. Thef, is a basis
of U and (ii) holds.

(i) = (i): Write Q1 = {ug, Uz, ..., us} and 2y = {u}, U, ..., uy}. Leto:U — U
denote the linear map such thatu;) = uj (1 <i < s). Theno satisfies (8). ThusV is
strongly hyper-self-dual by Lemma 4.4. O

5. Spin models

Spin models are square matrices satisfying certain conditions which ensure that they yield
an invariant of links via a statistical mechanical construction of V. Jones [21]. Here we
consider the nonsymmetric generalization of Jones’ spin models which were presented in
[22]. One may construct formally self-dual Bose-Mesner algebras from spin models [20, 26
19]. The purpose of this section is to extend this result by showing that such Bose-Mesner
algebras are strongly hyper-self-dual. Some specific examples of spin models have been
presented in [1, 3, 5, 17, 21, 23, 25]. Let us begin by recalling precisely some facts about
spin models.

A spin modebn X is a matrixW € Mx with non-zero entries which satisfies the following
conditions (for alla, b, ¢c € X):

W(a, x) .
X; Woo = NSab, (11)
W(a, x)W(b,x) W(a, b)
Z W(c, x) - \/ﬁW(a, oW, by’ (12)

xeX

Settingb = cin (12) shows that every diagonal entryWfis the same; we refer the constant
diagonal entry ofV as themodulusof W.

Let W be a spin model oiX. For every pairb, ¢) € X, we consider the column vector
Yyc in V = C* whosex-entry is given by

Let V(W) be the set of matriced in My such thatyy. is an eigenvector for ab, c € X:

N(W) ={A e Mx | AYye € CYypcforall b, c € X}.
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For A e N(W), let W (A) e My bedefinedby
AYpe = W(A)(b, )Yy (b, ce X). (13)

For A € Mx with nonzeroentriesjet A~ denotethematrixin Mx whose(x, y) entryis
A(y, X)~1. ObserethatWW~ = nl by (11),andsoW andW— areinvertible.

Theorem5.1([20, 26]) LetW bea spinmodelon X with modulusx.
(i) (W) is a Bose-Mesnealgebra on X containing\W.
(i) (A € N(W) for all A e N(W), andthemapA — W (A) is a formal duality of
N(W).
(i) W(A) =a Wo ("W~ ("W o A)) forall A e N (W).

Let M be a Bose-Mesnearlgebrasuchthat W e M € N(W). Sucha Bose-Mesner
algebraM is saidto supportW.

Lemma 5.1 W~ eM and ¥ (M) = M. In particular, M is formally self-dualwith
formal duality W | .

Proof: Let {A}2, denotethe basisof Hadamardidempotentsof M. Since W e M,
thereexist scalarsty, ty, ..., tg suchthatW = Zid:O ti Aj. It follows from definitionthat
W~ = Zid:o ti‘“A;, so W~ € M. Now Theoremb.1 (iii) impliesthat W (A) e M for all
A e M sinceM is closedundertranspositionHadamargroductandmatrix product.This
shavsthatw (M) € M, so¥ (M) = M sinceV is alinearbijection. O

Now fix abasepoint p € X, andlet 7 denotethe Terwilliger algebraof M with respect
to p. DefineK € My by

W(x, p)W(p,
K(x,y>=%y()py) (x.y € X). (14)

Lemma 5.3 K = p("W)'W~p(W). In particular K is invertible and K € M* MAM*
cT.

Proof: Forary x,y e X,

K(X,y) = W(x, pW(X, y)W(p, y) ="W(p, x)'W~ (X, y)W(p, )
= p("W)(X, X)'W~ (X, Y) p(W) (Y, ) = (o (W)'W~ p(W))(X, Y).

Obsere that p(W) and p (‘W) areinvertible sinceW hasnon-zeroentries.HenceK is
invertible. |

Lemmab5.4 Forall Ae M, AK=Kp(¥(A)).
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Proof: Foranyx, y € X,

z, PW(p,y)
AK)(X,y) = Ax, 2K (z, A
(AK)(X, y) Xxj x, 2Kz y) = ;Ex (x, 2 Wz PIW(P. y) W(Z v

=W(p. y) Y AKX, 2)Ypy(2) = W(P, Y)(AYpy)(X)

zeX

_ _ W(x, p)

= W(p. ) (¥ (AP, Y)Yp) () = WP (AP, )y -

_ W(x, pW(p,y)

= VAP, Y~y o = KOG YW (ANP. Y)

= KX, )PP (AN (Y. ) = (Kp(W(A))(X, Y). D

Theorem 5.5 Let W be a spin model on X and &t be a Bose-Mesner algebra such
that W ¢ M < N(W). Fix a base point pc X, and let7 denote the Terwilliger
algebra of M with respect to p. Let K be as {d4). Then Ke 7, and the map) : A —
K~1AK (A e T)is ahyper-duality of\. In particular, M is strongly hyper-self-dual with
respect to p.

Proof: By Lemma 5.3K is contained ir7. Let & be the formal duality of\ given by
Theorem 5.1 (ii) and Lemma 5.2. Fix a standard ordeBggE,, ..., E4 of the primitive
idempotents of\1 for w. By (4) and (5),% (‘A)) = nE (0 <i < d). Using this relation
and Lemma 5.4, we compute for all0 <i < d)

'‘AK =Kp(W(A)) =Ko(nE) = KA.

Hencey (‘Aj)) = A* (0 < i < d). The remaining equations of (6) can be shown similarly.
Thusy is a hyper-duality by Lemma 3.2. O

6. Example

In this section, we present a Bose-Mesner algebra which is hyper-self-dual but not strongly
hyper-self-dual, namely the Bose-Mesner algebra of the Shrikhande graph [27].

Let X = {(ij) |i, ] =1, 2, 3, 4}, and defineA; to be the matrix iftMx with ((ij), (i'j"))-
entry:

ifi i jjandi —j i —j (mod4,

A, (7)) = 0 otherwise

SetAg=1,A=J— Ay — A1, E0=(1/16)J, E; = (1/16)(6A¢ + 2A; — 2A)), Ex =1 —
Eo — E1. Then

A2 =6A0+ AL +2As, AlAr = ApAL=4A +4A;, AZ=9A+5A; +4A;,
Es?2 =6Eo+ E1 +2E;, EjoEy=Ejo0 E; =4E; +4E,,
Es? = 9Eo + 5E; + 4E,
AoA; =8 A, EE =8§E ©O<i,j<2).
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Let M denote the linear span ¢, A1, Az}. It follows from its definition and the
above computations that! is a formally self-dual Bose-Mesner algebra with Hadamard
idempotentg Ag, Az, Az} and primitive idempotentsEy, E1, Ez}.

Let 7 denote the Terwilliger algebra d¥1 with respect to the base point (11). For all
X € X, the(x, x)-entry of A} = p(16E1) = p(6A¢ + 2A; — 2Ay) is

6 if x = (12),
Aj(X,X) =432 if X € {(23), (29), (32), (39, (41), (44},
—2 otherwise

We now present a decomposition \6f= CX into simple7-modulesV = GB?:OUZ via
an ordered basis of each. For each of these sifipfaodules we present the matrices
representingd; and A} with respect to the given ordered basis and a matyixexcept for
¢ =5, 6) which we explain below. A similar decomposition appears in [29]. The action
and simplicity of each module can be deduced from the definitfarend A. Letej € V
denote the characteristic vector@h (i, j = 1, 2, 3, 4).

€11,
Uo : €23+ €24+ €32 + €34 + €42 + €43,
€12+ €13+ €14+ €21 + €2 + €31 + €33 + €41 + €44.

06 0 6 0 0 1 6 9
[Al=|1 2 3], [A1=|0 2 0. Ke=|1 2 -3
02 4 00 -2 1 -2 1

€3 — €32 — €34 1 €43,
—ep+ 2613 — es + €1 — 2e31 + €.

~1 -3 . (2 0 1 -3
Al={_y 1) W=l ) =l0 )

—€3+ 2604 — €32 — €34+ 2640 — €43,
—€12 + 2613 — €14 — €21 + 260 + 2631 — 4633 — €41 + 2€44.

-1 -3 . 2 0 1 -3
Wd=\_y 1) W=l o) %=\ )

—€3 — €32 + €34 + €43,
€12 — €14+ &1 + 26 — €41 — 2€ys.

a1 3 a2 0} (1 1
=1y ) WI={o o) ®=\ys 1)

€23 — 2624 — €32 + €34 + 2642 — €43,
1 1
*T\ys -1/

Up:
Uz:
Us:

Us' 361, + 3ers + 3021 — 3emn.

1 3 2 0
[A1]=<1 _1)’ [A;]=<O _2>,

~
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Us : —€3— €+ €32 — €31+ €42 + €43.
[Add=(=2), [All=(2.

Us : €12 — €14+ €1 — €2 — €11 + €14
[Ad] = (2, [A]]l = (2.

U7 —€e13+ €2 — €31+ €ya

[Adl = (=2, [Al]l=(-2), Kz=(@.
Ug: —€12— €13 — €14+ €1 + €31+ €41.

[Adl = (=2, [Al=(-2), Kg=(D.

Ug : —2e12+ €13 — 2€14 — 2651 + €22 + €31 + 4633 — 2€41 + €ua.
[Ad] = (=2), [All=(-2), Kg=(D).

Now let K € Mx denote the matrix whose action @h coincides withK, for all £ #
5, 6 and which exchange the given basedJgfandUs. ThenK Ay = AJK and K A} =
A1K. Observe thai\1 is generated byA; and M* is generated byA;. It follows that the
automorphismy : A — K~1AK (AeT) of T satisfies (6), and henc#t is hyper-self-
dual by Lemma 3.2. However, the action&f and A} onUs (or Ug) shows thaiM is not
strongly hyper-self-dual by Theorem 4.1.

Remark Forallintegera > 1 andb > 0, the Doob graplD(a, b) is defined as the direct
product ofa copies of the Shrikhande graph dancopies of the complete graph on 4 vertices.

The Doob graphs are distance-regular, so there is a Bose-Mesner algebra associated to each
D(a, b) (see [6]). An induction based upon this direct product construction has allowed the
authors to show that the Doob graphs are hyper-self-dual. The induction begins with the
above observation that the Shrikhande graph is hyper-self-dual and the easy observation
that the complete graph on 4 vertices is strongly hyper-self-dual. The authors have further
shown that the Doob graphs are not strongly hyper-self-dual. As above, this was done by
producing & -module which does not have a “self-dual” action.

7. Problems
See [6] for terminology used in this section.

Problem 7.1 Study the known examples of formally self-dual Bose-Mesner algebras (as-
sociation schemes) to determine which are not hyper-self-dual, which are hyper-self-dual
but not strongly hyper-self-dual, and which are strongly hyper-self-dual. While doing so,
describe the Terwilliger algebras of these examples so that the type of duality is clear.

We have shown that all self-dual translation Bose-Mesner algebras are hyper-self-dual
[9]. Many distance-regular graphs give rise to translation Bose-Mesner algebras, including
Hamming graphs, bilinear forms graphs, alternating forms graphs, Hermitian forms graphs,
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affine Eg(q) graphs, the extended ternary Golay code graph, and Paley graphs. Except for
the Hamming graphs (which support spin models), it is open to decide which are strongly
hyper-self-dual and to give a complete description of their Terwilliger algebras.

The 2-homogeneous bipartite distance-regular graphs have been shown to be strongly
hyper-self-dual, and their Terwilliger algebras have been completely described [8, 15]. We
have shown that the Doob graphs are hyper-self-dual, but not strongly hyper-self-dual. The
Terwilliger algebras of the Doob graphs are described in [29]; however, it is now natural
to ask for an extension of this description which makes it clear which simple modules are
dual to one another. The quadratic forms graphs by Egawa are another interesting family of
formally self-dual distance-regular graphs. It is open to decide if they are hyper-self-dual.

We have examined some Latin square graphs and found families which are strongly
hyper-self-dual and other families which are hyper-self-dual but not strongly hyper-self-
dual. We note that no Latin square graph supports a spin model, so strong hyper-self-duality
is not just a property arising from spin models. Itis open to decide if all Latin square graphs
are hyper-self-dual. A partial description of the Terwilliger algebra of any given example
can be deduced from [31].

A few formally self-dual Bose-Mesner algebras (association schemes) not related to
distance-regular graph are known. Some are translation Bose-Mesner algebras. Other ex-
amples include the Bose-Mesner algebras arise from nonsymmetric P- and Q-polynomial
association schemes and amorphous association schemes (association schemes of (nega-
tive) Latin square type). These examples have not been studied from the perspective of
hyper-self-duality. We have shown that the Bose-Mesner algebra constructed from a sym-
metrizable type Il matrix using the construction of [20] is hyper-self-dual [9].

Problem 7.2 Study the distance-regular graphs which support a spin model.

In [10] it was shown that the distance-regular graphs which support a spin model are
described by just two parameters, and in [7] it was shown that the simple modules of their
Terwilliger algebras are well behaved. Using these results, together with those of [30] and
the present paper, it may be possible to completely describe their Terwilliger algebras. In
[11] it was shown that the non-Hamming 2-homogeneous bipartite distance-regular graphs
of the distance-regular graphs have Terwilliger algebras which are homomorphic images of
the quantum universal enveloping algebrakg®). The Hamming graphs are related to the
classical universal enveloping algebrast®) [15]. Perhaps the Terwilliger algebras of any
further examples (if they exist) are related to some 2 parameter deformation of the universal
enveloping algebra ofl(2). It may be also be possible to show that the only distance-
regular graphs with diameter at least 4 which support a spin model are either triangle-free
or Hamming graphs.
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