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Abstract. We introduce the notion of hyper-self-duality for Bose-Mesner algebras as a strengthening of formal
self-duality. LetM denote a Bose-Mesner algebra on a finite nonempty setX. Fix p ∈ X, and letM∗ andT denote
respectively the dual Bose-Mesner algebra and the Terwilliger algebra ofMwith respect top. By a hyper-duality
ofM, we mean an automorphismψ of T such thatψ(M) =M∗, ψ(M∗) =M; ψ2(A) = tA for all A ∈M;
and|X |ψρ is a duality ofM.M is said to be hyper-self-dual whenever there exists a hyper-duality ofM. We
say thatM is strongly hyper-self-dual whenever there exists a hyper-duality ofM which can be expressed as
conjugation by an invertible element ofT . We show that Bose-Mesner algebras which support a spin model are
strongly hyper-self-dual, and we characterize strong hyper-self-duality via the module structure of the associated
Terwilliger algebra.
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1. Introduction

The purpose of this paper is to introduce the notion ofhyper-self-dualityfor Bose-Mesner
algebras (association schemes) as a strengthening of the usual notion of formal self-duality.
Our motivation for doing so is the observation that the Bose-Mesner algebras which support
spin models have this property.

Let X denote a finite nonempty set of sizen, and letMX denote the C-algebra of matrices
with entries in C whose rows and columns are indexed byX. A Bose-Mesner algebra onX
is a commutative subalgebraM of MX which is closed under entry-wise multiplication◦,
which is closed under transposition, and which contains the identity and all ones matrices
of MX. A formal duality ofM is a linear bijection9 :M −→ M such that for allA,
B∈M : 9(AB) = 9(A) ◦ 9(B), 9(A ◦ B) = n−19(A)9(B), 9(9(A)) = n tA. A
Bose-Mesner algebraM is said to beformally self-dualwhen there exists a formal duality
ofM. We review Bose-Mesner algebras and self-duality in Section 2.

A spin model is a matrix which satisfies certain conditions which ensure that it yields
an invariant of knots and links via a statistical mechanical construction of V. Jones [21].
Recently it was shown [19, 26, 20] that any spin modelW is contained in a formally self-dual
Bose-Mesner algebraN (W). (We discuss spin models in Section 5). While studying these
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results the authors found that the Bose-Mesner algebraN (W) is much more than formally
self-dual. This led to the introduction of hyper-self-duality for Bose-Mesner algebras.

Hyper-self-duality is defined using Terwilliger algebras. Fixp ∈ X, and for A ∈ M,
let ρ(A) ∈ MX denote the diagonal matrix with(x, x)-entry ρ(A)(x, x) = A(p, x).
SetM∗ = ρ(M). The Terwilliger algebraT = T (M, p) associated withM and p is the
subalgebra ofMX generated byM ∪M∗. We discuss Terwilliger algebras in Section 3.

By a hyper-dualityofM (with respect to the base pointp), we mean an automorphism
ψ of T such thatψ(M) =M∗, ψ(M∗) =M; ψ2(A) = tA for all A ∈M; andnψρ is a
formal duality ofM.M is said to behyper-self-dualwhenever there exists a hyper-duality
ofM. We say thatM is strongly hyper-self-dualwhenever there exists a hyper-duality of
M which can be expressed as conjugation by an invertible element ofT .

Our main result concerning spin models is Theorem 5.5, which states that the Bose-
Mesner algebraN (W) supporting the spin modelW is strongly hyper-self-dual. Motivated
by spin models, we focus on strong hyper-self-duality. In Theorem 4.1 we characterize this
property in terms ofT -modules.

In Section 6 we present a Bose-Mesner algebra which is hyper-self-dual, but not strongly
hyper-self-dual. We conclude with some problems concerning hyper-self-duality.

2. Formally self-dual Bose-Mesner algebras

In this section we review some basic material concerning formally self-dual Bose-Mesner
algebras. The reader is referred to [4, 6, 13] for more details. The references [16, 20, 24, 28]
also contain material that may be of interest.

Throughout this paper we fix a finite nonempty setX of size n. Let MX denote the
C-algebra of matrices with entries inC whose rows and columns are indexed byX. For
A ∈ MX and fora, b ∈ X, let A(a, b) denote the(a, b)-entry ofA. For A, B ∈ MX, let A◦B
denote the Hadamard (entry-wise) product ofA andB : (A ◦ B)(x, y) = A(x, y)B(x, y).
The transpose ofA is denoted bytA.

A Bose-Mesner algebraon X is a commutative subalgebraM of MX, which is closed
under Hadamard product, which is closed under transposition, and which contains the
identity matrix I and the all 1’s matrixJ.

LetM be a Bose-Mesner algebra onX of dimension dimCM = d+1. It is well-known
thatM has a unique linear basis{Ai }di=0 such that

A0 = I , Ai ◦ Aj = δi j Ai (0≤ i, j ≤ d),
d∑

i=0

Ai = J, (1)

whereδi j is the Kronecker symbol. Observe thatAi has entries in{0, 1} sinceAi ◦ Ai = Ai .
We call{Ai }di=0 thebasis of Hadamard idempotentsofM. For the rest of this paper we fix
an orderingA0, A1, . . . , Ad of the Hadamard idempotents. It is also well-known thatM
has a unique basis{Ei }di=0 such that

E0 = n−1J, Ei Ej = δi j Ei (0≤ i, j ≤ d),
d∑

i=0

Ei = I . (2)

We call{Ei }di=0 thebasis of primitive idempotentsofM.
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By a formal duality ofM we mean a linear bijection9 :M −→ M such that for all
A, B ∈M

9(AB) = 9(A) ◦9(B), 9(A ◦ B) = n−19(A)9(B), 9(9(A)) = n tA. (3)

M is said to beformally self-dualwhen there exists a formal duality ofM.
Note that a formal duality9 ofM satisfies

9(tA) = t9(A) (4)

for all A ∈M since

9(t A) = 9(n−192(A)) = n−192(9(A)) = n−1nt9(A) = t9(A).

Lemma 2.1 A linear map9 :M −→ M is a formal duality ofM if and only if there
exists an ordering E0, E1, . . . , Ed of the primitive idempotents such that

9(Ei ) = Ai , 9(Ai ) = n tEi (0≤ i ≤ d). (5)

Proof: First suppose9 is a formal duality ofM. Observe that{9(Ei )}di=0 is a basis of
M since9 is a linear bijection. Also observe that for allB ∈M

9(E0)B = n9(E0 ◦9−1(B)) = 9(J ◦9−1(B)) = 9(9−1(B)) = B,

so9(E0) = I = A0. Next observe that

9(Ei ) = 9(δi j Ei E j ) = δi j9(Ei ) ◦9(Ej ) (0≤ i, j ≤ d),
d∑

i=0

9(Ei ) = 9
(

d∑
i=0

Ei

)
= 9(I ) = 9(9(E0)) = n tE0 = J.

Thus {9(Ei )}di=0 is the basis of Hadamard idempotents ofM. Now we may order the
primitive idempotents such that9(Ei ) = Ai (0≤ i ≤ d). Finally,

9(Ai ) = 9(9(Ei )) = n tEi (0≤ i ≤ d).

Next suppose (5) holds for some orderingE0, E1, . . . , Ed of the primitive idempotents.
We compute for alli , j (0≤ i, j ≤ d)

9(Ai ◦ Aj ) = δi j9(Ai ) = δi j n
tEi = n−1n tEi n

tEj = n−19(Ai )9(Aj ),

9(Ei Ej ) = δi j9(Ei ) = δi j Ai = Ai ◦ Aj = 9(Ei ) ◦9(Ej ),

92(Ei ) = 9(Ai ) = n tEi .

Thus9 is a formal duality ofM since each of the defining conditions holds on a linear
basis ofM. 2
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An ordering of primitive idempotents satisfying (5) is called astandard orderingof the
primitive idempotents for9.

3. Terwilliger algebras and hyper-duality

LetM be a Bose-Mesner algebra onX of dimension dimC(M) = d + 1. Fix a “base
point” p ∈ X. For A ∈M, let ρ(A) ∈ MX denote the diagonal matrix with(x, x)-entry
ρ(A)(x, x) = A(p, x). SetM∗ = {ρ(A) | A ∈M}.M∗ is called thedual Bose-Mesner
algebraofM (with respect to the base pointp). The mapρ :M−→M∗ is a linear bijection.
SetE∗i = ρ(Ai ) and A∗i = ρ(nEi )(0 ≤ i ≤ d). It is known that{E∗i }di=0 and{A∗i }di=0 are
bases ofM∗. The subalgebraT of MX generated byM ∪M∗ is called theTerwilliger
algebraofM (with respect to the base pointp). Further details on Terwilliger algebras can
be found in [30].

Lemma 3.1 Fix an ordering E0, E1, . . . , Ed of the primitive idempotents, and letψ :M∗
−→M be a linear map. Then the following are equivalent.
(i) ψ(A∗i ) = Ai andψ(E∗i )= tEi (0≤ i ≤ d).
(ii) 9 := nψρ is a formal duality ofM, and the ordering E0, E1, . . . , Ed of the primi-

tive idempotents is standard for9.

Proof: (i)⇒ (ii): Set9 = nψρ. We compute for alli (0≤ i ≤ d)

9(Ai ) = nψρ(Ai ) = nψ(E∗i ) = n tEi ,

9(Ei ) = nψρ(Ei ) = ψ(A∗i ) = Ai .

Thus9 is a formal duality ofMby Lemma 2.1, and the ordering of the primitive idempotents
is standard for9.

(ii)⇒(i): Since9 = nψρ satisfies (5), we compute for alli (0≤ i ≤ d)

ψ(A∗i ) = nψ(ρ(Ei )) = 9(Ei ) = Ai ,

ψ(E∗i ) = ψ(ρ(Ai )) = n−19(Ai )= tEi . 2

By a hyper-duality ofM (with respect to the base pointp), we mean an automorphism
ψ of T with the following properties (i)–(iii):

(i) ψ(M) =M∗, ψ(M∗) =M.
(ii) ψ2(A)= t A for all A ∈M.
(iii) nψρ is a formal duality ofM.

A hyper-dualityψ is said to beinnerwhen it is an inner automorphism ofT :

(iv) There is an invertible matrixK ∈ T such thatψ(A) = K−1AK for all A∈ T .

M is said to behyper-self-dual(with respect top) whenever there exists a hyper-duality
(with respect top), and it is said to bestrongly hyper-self-dual(with respect top) whenever
there exists an inner hyper-duality (with respect top).
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Lemma 3.2 Letψ be an automorphism ofT . Then the following are equivalent.
(i) ψ is a hyper-duality ofM with respect to p.

(ii) There exists an ordering E0, E1, . . . , Ed of the primitive idempotents such that for all
i (0≤ i ≤ d)

ψ(tAi ) = A∗i , ψ(A∗i ) = Ai , ψ(Ei ) = E∗i , ψ(E∗i )= tEi . (6)

Suppose(i), (ii) hold. Then9 = nψρ is a formal duality ofM and the ordering of the
primitive idempotents in(ii) is standard for9.

Proof: (i)⇒ (ii): By the definition of a hyper-duality,9 = nψρ is a formal duality of
M. Fix an orderingE0, E1, . . . , Ed of the primitive idempotents which is standard for9.
Then by Lemma 3.1,9(A∗i ) = Ai and9(E∗i ) = tEi (0 ≤ i ≤ d). Usingψ2(A)= tA for
A ∈M, we compute for alli (0≤ i ≤ d)

ψ(tAi ) = ψ−1(ψ2(tAi )) = ψ−1(Ai ) = A∗i ,
ψ(Ei ) = ψ−1(ψ2(Ei )) = ψ−1(tEi ) = E∗i .

(ii)⇒ (i): Observe thatψ exchanges bases ofMandM∗, soψ(M)=M∗ andψ(M∗) =
M. Now fix an ordering of primitive idempotents such that (6) holds. Observe that for all
i (0≤ i ≤ d)

ψ2(Ei ) = ψ(ψ(Ei )) = ψ(E∗i )= tEi .

Henceψ2(A)= tA for all A inM since{Ei }di=0 is a linear basis ofM. Finally, we compute
for all i (0≤ i ≤ d)

nψρ(Ei ) = ψρ(nEi ) = ψ(A∗i ) = Ai ,

nψρ(Ai ) = nψ(E∗i ) = n tEi .

Hencenψρ is a formal duality ofM by Lemma 3.1 2

4. Strong hyper-self-duality

The purpose of this section is to give a module characterization of strong hyper-self-duality.
Since Terwilliger algebras are semisimple, their simple modules determine the structure
of the Terwilliger algebra itself. The literature generally presents module descriptions of
Terwilliger algebras. Before stating the main result of this section, we recall some basic
facts about the simple modules of Terwilliger algebras. The reader is referred to [12] for a
general discussion of semisimple algebras.

LetM be a Bose-Mesner algebra onX of dimension dimC(M) = d + 1. Fix a base
point p ∈ X, and letT be the Terwilliger algebra ofM with respect top. T is semisimple,
and soT decomposes asT = ⊕λ∈3ϕλT , whereϕλ(λ ∈ 3) are the primitive central
idempotents ofT . Let V =CX denote then-dimensional vector space consisting of column
vectors whose entries are indexed byX. By a T -modulewe mean a linear subspaceU
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of V which is closed under the action ofT : Au∈U for all A∈ T and for allu ∈ U . V
decomposes asV = ⊕λ∈3ϕλV , and eachϕλV is a direct sum of mutually isomorphic
simple T -modules. Moreover, the subalgebraϕλT is isomorphic to the endomorphism
algebra EndC(U ), whereU is any simpleT -module contained inϕλV ; the isomorphism
mapsL ∈ ϕλT to the endomorphismu 7→ Lu (u ∈ U ).

Theorem 4.1 LetMbe a(d+1)-dimensional Bose-Mesner algebra on X. Fix p∈ X,and
let T be the Terwilliger algebra ofM with respect to p. Then the following are equivalent.
(i) M is strongly hyper-self-dual with respect to p.

(ii) There exists an ordering E0, E1, . . . , Ed of the primitive idempotents ofM such that
for each simpleT -module U and for any ordered basisÄ1 of U, there is a second
ordered basisÄ2 of U such that

[tAi ]1 = [ A∗i ]2, [ A∗i ]1 = [ Ai ]2,

[Ei ]1 = [E∗i ]2, [E∗i ]1 = [tEi ]2
(0≤ i ≤ d), (7)

where [B] j denotes the matrix representing B∈ T with respect to the basisÄ j

( j = 1, 2).

To prove this theorem we first need some lemmas concerning linear endomorphismsσ

of T -modulesU whose action onU satisfies

σ tAi = A∗i σ, σ A∗i = Aiσ,

σEi = E∗i σ, σE∗i = tEiσ
(0≤ i ≤ d). (8)

Lemma 4.2 Letψ be an inner automorphism ofT , and let U be aT -module. Then there
exists a linear bijectionσ : U −→ U such thatσ(Au) = ψ(A)σ (u) for all A ∈ T and for
all u ∈ U.

Proof: Sinceψ is inner,ψ(A) = K−1AK (A ∈ T ) for someK ∈ T . Defineσ : U −→ U
by σ(u) = K−1u (u ∈ U ). Then for A ∈ T , σ(Au) = K−1Au = (K−1AK)(K−1u) =
ψ(A)σ (u). 2

Lemma 4.3 Let U and U′ be isomorphicT -modules with isomorphism f: U −→ U ′.
(i) Let σ : U −→ U be a linear bijection which satisfies(8) on U. Thenσ ′ = f σ f −1 :

U ′ −→U ′ also satisfies(8) on U′.
(ii) Fix L ∈ T , and defineσ : U −→U by σ(u) = Lu. Then fσ f −1(u′) = Lu′ for all

u′ ∈ U ′.

Proof: (i) Pick anyu ∈ U ′. Since f −1 and f areT -module isomorphisms, and sinceσ
satisfies (8), we compute for alli (0≤ i ≤ d)

σ ′(tAi u) = f σ f −1(tAi u) = f σ( f −1(tAi u)) = f σ(tAi f −1(u))

= f (A∗i σ( f −1(u))) = A∗i f σ f −1(u) = A∗i σ
′(u).

The other relations of (8) can be verified similarly.
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(ii) Pick any u′ ∈U ′ and setu= f −1(u′). Then f σ f −1(u′)= f σ(u)= f (Lu)= L
f (u)= Lu′. 2

Lemma 4.4 The following are equivalent.
(i) M is strongly hyper-self-dual with respect to p.

(ii) There exists an ordering E0, E1, . . . , Ed of the primitive idempotents ofM such
that, for every simpleT -module U, there is a linear bijectionσ : U −→U satisfying
(8) on U.

Proof: (i)⇒ (ii): Clear from Lemmas 3.2 and 4.2.
(ii)⇒ (i): Recall thatT andV decompose asT = ⊕λ∈3ϕλT andV = ⊕λ∈3ϕλV , where
{ϕλ | λ ∈ 3} denotes the set of primitive central idempotents ofT . Fix anyλ ∈ 3. Note
thatϕλV is a direct sum of mutually isomorphic simpleT -modules:ϕλV = ⊕m

j=1U j . For
each j (1 ≤ j ≤ m), fix a T -module isomorphismf j : U1 −→ U j with f1 the identity
transformation ofU1. By assumption, there is a linear bijectionσ : U1 −→ U1 such that (8)
holds for allu ∈ U1. SinceϕλT is isomorphic to EndC(U1), there is a matrixLλ ∈ ϕλT such
thatσ(u) = Lλu for all u ∈ U1. By Lemma 4.3(ii), the mapσ j = f jσ f −1

j (1 ≤ j ≤ m)
satisfiesσ j (u) = Lλu for all u ∈ Uj . In addition, by Lemma 4.3(i),σ j (

tAi u) = A∗i σ j (u)
holds for allu ∈ U j (0≤ i ≤ d, 1≤ j ≤ m). Hence we obtain

Lλ
tAi u = A∗i Lλu (u ∈ U j , 0≤ i ≤ d, 1≤ j ≤ m). (9)

Note that (9) holds for allu ∈ ϕλV since it holds for allj (1≤ j ≤ m).
Now setL = ∑λ∈3 Lλ. Clearly L is invertible sinceLλ acts invertibly onϕλV for all

λ ∈ 3.
We claim that

L tAi = A∗i L (0≤ i ≤ d). (10)

To see this, pick anyv ∈V and writev= ∑λ∈3 vλ with vλ ∈ ϕλV (λ∈3). Fix i (0≤ i ≤
d). From (9), we haveL t

λAi vλ = A∗i Lλvλ (λ ∈ 3). Using this relation andLλvµ = 0 for
λ 6= µ, we compute as follows.

L tAi v =
(∑
λ∈3

Lλ

)
tAi

(∑
µ∈3

vµ

)
=
∑
λ∈3

∑
µ∈3

Lλ
tAi vµ

=
∑
λ∈3

∑
µ∈3

δλµLλ
tAi vµ =

∑
λ∈3

Lλ
tAi vλ

=
∑
λ∈3

A∗i Lλvλ = A∗i
∑
λ∈3

Lλvλ

= A∗i

(∑
λ∈3

Lλ

)(∑
µ∈3

vµ

)
= A∗i Lv.

Hence (10) holds, and soK−1tAi K = A∗i with K = L−1. The remaining relations of (6)
can be shown similarly. 2
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Observe that the matricesLλ produced in the proof of Lemma 4.4 are unique up to a
non-zero scalar multiple. We may represent the rescaling of eachLλ as multiplication of
the matrixK by

∑
λ∈3 αλϕλ, whereαλ is a nonzero scalar(λ ∈ 3). Since{ϕλ}λ∈3 is a basis

of the center ofT , this is exactly the same as multiplication ofK by any invertible central
elementC of T . Clearly the hyper-dualitiesA 7→ K−1AK and A 7→ (CK)−1A(CK) are
identical.

Proof of Theorem 4.1: (i)⇒ (ii): For an arbitrary given basisÄ1 = {u1, u2, . . . ,us} of
U , setÄ2 = {σ(u1), σ (u2), . . . , σ (us)}, whereσ is as in Lemma 4.4. ThenÄ2 is a basis
of U and (ii) holds.

(ii)⇒ (i): Write Ä1 = {u1, u2, . . . ,us} andÄ2 = {u′1, u′2, . . . ,u′s}. Let σ : U −→ U
denote the linear map such thatσ(ui ) = u′i (1 ≤ i ≤ s). Thenσ satisfies (8). ThusM is
strongly hyper-self-dual by Lemma 4.4. 2

5. Spin models

Spin models are square matrices satisfying certain conditions which ensure that they yield
an invariant of links via a statistical mechanical construction of V. Jones [21]. Here we
consider the nonsymmetric generalization of Jones’ spin models which were presented in
[22]. One may construct formally self-dual Bose-Mesner algebras from spin models [20, 26
19]. The purpose of this section is to extend this result by showing that such Bose-Mesner
algebras are strongly hyper-self-dual. Some specific examples of spin models have been
presented in [1, 3, 5, 17, 21, 23, 25]. Let us begin by recalling precisely some facts about
spin models.

A spin modelonX is a matrixW∈MX with non-zero entries which satisfies the following
conditions (for alla, b, c ∈ X):

∑
x∈X

W(a, x)

W(b, x)
= nδab, (11)

∑
x∈X

W(a, x)W(b, x)

W(c, x)
= √n

W(a, b)

W(a, c)W(c, b)
. (12)

Settingb = c in (12) shows that every diagonal entry ofW is the same; we refer the constant
diagonal entry ofW as themodulusof W.

Let W be a spin model onX. For every pair(b, c) ∈ X, we consider the column vector
Ybc in V = CX whosex-entry is given by

Ybc(x) = W(x, b)

W(x, c)
(x ∈ X).

LetN (W) be the set of matricesA in MX such thatYbc is an eigenvector for allb, c ∈ X:

N (W) = {A ∈ MX | AYbc ∈ CYbc for all b, c ∈ X}.
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For A ∈ N (W), let9(A) ∈ MX bedefinedby

AYbc = 9(A)(b, c)Ybc (b, c ∈ X). (13)

For A ∈ MX with nonzeroentries,let A− denotethematrix in MX whose(x, y) entryis
A(y, x)−1. Observe thatWW− = nI by (11),andsoW andW− areinvertible.

Theorem5.1 ([20, 26]) Let W bea spinmodelon X with modulusα.
(i) N (W) is a Bose-Mesneralgebra on X containingW.

(ii) 9(A) ∈ N (W) for all A ∈ N (W), and themap A 7→ 9(A) is a formal duality of
N (W).

(iii) 9(A) = α−1W ◦ (tW−(tW ◦ A)) for all A ∈ N (W).

LetM be a Bose-Mesneralgebrasuchthat W∈M ⊆ N (W). Sucha Bose-Mesner
algebraM is saidto supportW.

Lemma 5.1 W− ∈M and9(M) = M. In particular, M is formally self-dualwith
formalduality9 |M.

Proof: Let {Ai }di=0 denotethe basisof Hadamardidempotentsof M. SinceW∈M,
thereexist scalarst0, t1, . . . , td suchthat W = ∑d

i=0 ti Ai . It follows from definition that
W− = ∑d

i=0 t−1
i

tAi , so W− ∈M. Now Theorem5.1 (iii) implies that9(A)∈M for all
A∈M sinceM is closedundertransposition,Hadamardproduct,andmatrixproduct.This
shows that9(M) ⊆M, so9(M) =M since9 is a linearbijection. 2

Now fix abasepoint p ∈ X, andlet T denotetheTerwilliger algebraofM with respect
to p. DefineK ∈ MX by

K (x, y) = W(x, p)W(p, y)

W(x, y)
(x, y ∈ X). (14)

Lemma 5.3 K = ρ(tW)tW−ρ(W). In particular K is invertible and K ∈M∗MM∗
⊆ T .

Proof: For any x, y ∈ X,

K (x, y) = W(x, p)W(x, y)−1W(p, y)= tW(p, x)tW−(x, y)W(p, y)

= ρ(tW)(x, x)tW−(x, y)ρ(W)(y, y)= (ρ(tW)tW−ρ(W))(x, y).

Observe that ρ(W) andρ(tW) are invertible sinceW hasnon-zeroentries.HenceK is
invertible. 2

Lemma 5.4 For all A ∈M, AK= Kρ(9(A)).
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Proof: For anyx, y ∈ X,

(AK)(x, y) =
∑
z∈X

A(x, z)K (z, y) =
∑
z∈X

A(x, z)
W(z, p)W(p, y)

W(z, y)

= W(p, y)
∑
z∈X

A(x, z)Ypy(z) = W(p, y)(AYpy)(x)

= W(p, y)(9(A)(p, y)Ypy)(x) = W(p, y)9(A)(p, y)
W(x, p)

W(x, y)

= 9(A)(p, y)
W(x, p)W(p, y)

W(x, y)
= K (x, y)9(A)(p, y)

= K (x, y)ρ(9(A))(y, y) = (Kρ(9(A)))(x, y). 2

Theorem 5.5 Let W be a spin model on X and letM be a Bose-Mesner algebra such
that W ∈ M ⊆ N (W). Fix a base point p∈ X, and let T denote the Terwilliger
algebra ofM with respect to p. Let K be as in(14). Then K∈ T , and the mapψ : A 7→
K−1AK (A∈ T ) is a hyper-duality ofM. In particular,M is strongly hyper-self-dual with
respect to p.

Proof: By Lemma 5.3,K is contained inT . Let9 be the formal duality ofM given by
Theorem 5.1 (ii) and Lemma 5.2. Fix a standard orderingE0, E1, . . . , Ed of the primitive
idempotents ofM for 9. By (4) and (5),9(tAi ) = nEi (0 ≤ i ≤ d). Using this relation
and Lemma 5.4, we compute for alli (0≤ i ≤ d)

tAi K = Kρ(9(tAi )) = Kρ(nEi ) = K A∗i .

Henceψ(tAi ) = A∗i (0 ≤ i ≤ d). The remaining equations of (6) can be shown similarly.
Thusψ is a hyper-duality by Lemma 3.2. 2

6. Example

In this section, we present a Bose-Mesner algebra which is hyper-self-dual but not strongly
hyper-self-dual, namely the Bose-Mesner algebra of the Shrikhande graph [27].

Let X = {(ij) | i, j = 1, 2, 3, 4}, and defineA1 to be the matrix inMX with ((ij), (i′j′))-
entry:

A1((ij), (i
′j′)) =

{
1 if i 6= i ′, j 6= j ′ andi − j 6≡ i ′ − j ′ (mod 4),

0 otherwise.

SetA0= I , A2= J − A0− A1, E0= (1/16)J, E1= (1/16)(6A0+ 2A1− 2A2), E2= I −
E0− E1. Then

A2
1 = 6A0+ A1+ 2A2, A1A2= A2A1= 4A1+ 4A2, A2

2= 9A0+ 5A1+ 4A2,

E◦21 = 6E0+ E1+ 2E2, E1 ◦ E2= E2 ◦ E1= 4E1+ 4E2,

E◦22 = 9E0+ 5E1+ 4E2,

Ai ◦ Aj = δi j Ai , Ei Ej = δi j Ei (0≤ i, j ≤ 2).
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Let M denote the linear span of{A0, A1, A2}. It follows from its definition and the
above computations thatM is a formally self-dual Bose-Mesner algebra with Hadamard
idempotents{A0, A1, A2} and primitive idempotents{E0, E1, E2}.

Let T denote the Terwilliger algebra ofM with respect to the base point (11). For all
x ∈ X, the(x, x)-entry of A∗1 = ρ(16E1) = ρ(6A0+ 2A1− 2A2) is

A∗1(x, x) =


6 if x = (11),

2 if x ∈ {(23), (24), (32), (34), (41), (44)},
−2 otherwise.

We now present a decomposition ofV =CX into simpleT -modulesV = ⊕9
`=0U` via

an ordered basis of each. For each of these simpleT -modules we present the matrices
representingA1 andA∗1 with respect to the given ordered basis and a matrixK` (except for
` = 5, 6) which we explain below. A similar decomposition appears in [29]. The action
and simplicity of each module can be deduced from the definitionsA1 andA∗1. Let ei j ∈ V
denote the characteristic vector of(ij) (i, j = 1, 2, 3, 4).

U0 :
e11,

e23+ e24+ e32+ e34+ e42+ e43,

e12+ e13+ e14+ e21+ e22+ e31+ e33+ e41+ e44.

[ A1] =

0 6 0

1 2 3

0 2 4

 , [ A∗1] =

6 0 0

0 2 0

0 0 −2

 , K0 =

1 6 9

1 2 −3

1 −2 1

 .
U1 :

e23− e32− e34+ e43,

−e12+ 2e13− e14+ e21− 2e31+ e41.

[ A1] =
(
−1 −3

−1 1

)
, [ A∗1] =

(
2 0

0 −2

)
, K1 =

(
1 −3

−1 −1

)
.

U2 :
−e23+ 2e24− e32− e34+ 2e42− e43,

−e12+ 2e13− e14− e21+ 2e22+ 2e31− 4e33− e41+ 2e44.

[ A1] =
(
−1 −3

−1 1

)
, [ A∗1] =

(
2 0

0 −2

)
, K2 =

(
1 −3

−1 −1

)
.

U3 :
−e23− e32+ e34+ e43,

e12− e14+ e21+ 2e22− e41− 2e44.

[ A1] =
(

1 3

1 −1

)
, [ A∗1] =

(
2 0

0 −2

)
, K3 =

(
1 1

1/3 −1

)
.

U4 :
e23− 2e24− e32+ e34+ 2e42− e43,

−3e12+ 3e14+ 3e21− 3e41.

[ A1] =
(

1 3

1 −1

)
, [ A∗1] =

(
2 0

0 −2

)
, K4 =

(
1 1

1/3 −1

)
.
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U5 : −e23− e24+ e32− e34+ e42+ e43.

[ A1] = (−2), [ A∗1] = (2).
U6 : e12− e14+ e21− e22− e41+ e44.

[ A1] = (2), [ A∗1] = (−2).

U7 : −e13+ e22− e31+ e44.

[ A1] = (−2), [ A∗1] = (−2), K7 = (1).
U8 : −e12− e13− e14+ e21+ e31+ e41.

[ A1] = (−2), [ A∗1] = (−2), K8 = (1).
U9 : −2e12+ e13− 2e14− 2e21+ e22+ e31+ 4e33− 2e41+ e44.

[ A1] = (−2), [ A∗1] = (−2), K9 = (1).

Now let K ∈MX denote the matrix whose action onU` coincides withK` for all ` 6=
5, 6 and which exchange the given bases ofU5 andU6. ThenK A1= A∗1K and K A∗1 =
A1K . Observe thatM is generated byA1 andM∗ is generated byA∗1. It follows that the
automorphismψ : A 7→ K−1AK (A∈ T ) of T satisfies (6), and henceM is hyper-self-
dual by Lemma 3.2. However, the action ofA1 andA∗1 onU5 (or U6) shows thatM is not
strongly hyper-self-dual by Theorem 4.1.

Remark For all integersa ≥ 1 andb ≥ 0, the Doob graphD(a, b) is defined as the direct
product ofa copies of the Shrikhande graph andbcopies of the complete graph on 4 vertices.
The Doob graphs are distance-regular, so there is a Bose-Mesner algebra associated to each
D(a, b) (see [6]). An induction based upon this direct product construction has allowed the
authors to show that the Doob graphs are hyper-self-dual. The induction begins with the
above observation that the Shrikhande graph is hyper-self-dual and the easy observation
that the complete graph on 4 vertices is strongly hyper-self-dual. The authors have further
shown that the Doob graphs are not strongly hyper-self-dual. As above, this was done by
producing aT -module which does not have a “self-dual” action.

7. Problems

See [6] for terminology used in this section.

Problem 7.1 Study the known examples of formally self-dual Bose-Mesner algebras (as-
sociation schemes) to determine which are not hyper-self-dual, which are hyper-self-dual
but not strongly hyper-self-dual, and which are strongly hyper-self-dual. While doing so,
describe the Terwilliger algebras of these examples so that the type of duality is clear.

We have shown that all self-dual translation Bose-Mesner algebras are hyper-self-dual
[9]. Many distance-regular graphs give rise to translation Bose-Mesner algebras, including
Hamming graphs, bilinear forms graphs, alternating forms graphs, Hermitian forms graphs,
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affine E6(q) graphs, the extended ternary Golay code graph, and Paley graphs. Except for
the Hamming graphs (which support spin models), it is open to decide which are strongly
hyper-self-dual and to give a complete description of their Terwilliger algebras.

The 2-homogeneous bipartite distance-regular graphs have been shown to be strongly
hyper-self-dual, and their Terwilliger algebras have been completely described [8, 15]. We
have shown that the Doob graphs are hyper-self-dual, but not strongly hyper-self-dual. The
Terwilliger algebras of the Doob graphs are described in [29]; however, it is now natural
to ask for an extension of this description which makes it clear which simple modules are
dual to one another. The quadratic forms graphs by Egawa are another interesting family of
formally self-dual distance-regular graphs. It is open to decide if they are hyper-self-dual.

We have examined some Latin square graphs and found families which are strongly
hyper-self-dual and other families which are hyper-self-dual but not strongly hyper-self-
dual. We note that no Latin square graph supports a spin model, so strong hyper-self-duality
is not just a property arising from spin models. It is open to decide if all Latin square graphs
are hyper-self-dual. A partial description of the Terwilliger algebra of any given example
can be deduced from [31].

A few formally self-dual Bose-Mesner algebras (association schemes) not related to
distance-regular graph are known. Some are translation Bose-Mesner algebras. Other ex-
amples include the Bose-Mesner algebras arise from nonsymmetric P- and Q-polynomial
association schemes and amorphous association schemes (association schemes of (nega-
tive) Latin square type). These examples have not been studied from the perspective of
hyper-self-duality. We have shown that the Bose-Mesner algebra constructed from a sym-
metrizable type II matrix using the construction of [20] is hyper-self-dual [9].

Problem 7.2 Study the distance-regular graphs which support a spin model.

In [10] it was shown that the distance-regular graphs which support a spin model are
described by just two parameters, and in [7] it was shown that the simple modules of their
Terwilliger algebras are well behaved. Using these results, together with those of [30] and
the present paper, it may be possible to completely describe their Terwilliger algebras. In
[11] it was shown that the non-Hamming 2-homogeneous bipartite distance-regular graphs
of the distance-regular graphs have Terwilliger algebras which are homomorphic images of
the quantum universal enveloping algebra ofsl(2). The Hamming graphs are related to the
classical universal enveloping algebra ofsl(2) [15]. Perhaps the Terwilliger algebras of any
further examples (if they exist) are related to some 2 parameter deformation of the universal
enveloping algebra ofsl(2). It may be also be possible to show that the only distance-
regular graphs with diameter at least 4 which support a spin model are either triangle-free
or Hamming graphs.
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