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Abstract. We present a set of algebraic relations among Schur functions which are a multi-time generalization
of the “discrete Hirota relations” known to hold among the Schur functions of rectangular partitions. We prove
the relations as an application of a technique for turningkt relations into statements about Schur functions

and other objects with similar definitions as determinants. We also give a quantum analogue of the relations which
incorporates spectral parameters. Our proofs are mostly algebraic, but the relations have a clear combinatorial
side, which we discuss.
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1. Introduction

Consider the following relationship among the Schur functgnsherea is a rectangular
partition;

S<m€)5<m£) = S<m+]_£>3<m_1€) + S(mHl)S(mi—l). (1)

Here (m?) is the partition with¢ parts each of sizen, whose Young diagram is ahx m
rectangle. A. N. Kirillov noticed this fact as a relation among the characters of finite-
dimensional representationssl,, while studying the Bethe Ansatz for a one-dimensional
system called the generalized Heisenberg magnet [3].

In later work, Kirillov and Reshetikhin observed that the relations could be viewed as a
discrete version of a classical and well-studied dynamical system known to mathematical
physics as the discrete Hirota relations [4]. The initial conditions are the characters of the
fundamental representations si,, and expressing the solutions in terms of the initial
conditions is precisely the Jacobi-Trudi formula $g#, .

In this paper, we present the natural extension of this set of relations to Schur functions
of arbitrary partitions. The relations are all of the form

S.S. = Sitw,Si—w, + Other terms (2)
Here we borrow notation from Lie theory:ifis a partition, then we write¢ + w, for the
partition obtained by adding or removing a column of heigfrom the Young diagram of

A; this corresponds to taking the highest weigland adding or subtracting the fundamental
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weightw,. We have one such relation for every choice of a partiti@md column height
such that has a column of heighttto begin with (otherwise — w, does not make sense).
The various choices df should be thought of as independent time directions in which we
can evolve the dynamical system.

The “other terms” in Eq. (2) are also each products of two Schur functions, and all
have coefficients=1. The partitions that appear never have more columns or more outside
corners thark does. Thus we get a hierarchy of systems of relations for partitions with
up tok corners; wherk = 1 we are restricted to rectangular partitions, and we recover
Eqg. ().

We prove the relations by reducing them to thedREr relations among minors of a
certain matrix, whose construction we define in Section 2. The construction applies not
only to Schur functions, which we now view as determinants of the Jacobi-Trudi ma-
trices, but to the determinants of any family of matrices with a similar type of defini-
tion. We formalize this notion, giving several other examples and a general version of the
construction.

In Section 3 we state and prove the relations. We also prove a generalization of the
relations to ones which include “shifts” or “spectral parameters.” The generalizations of
Schur functions that satisfy this version of the equations are the quantum analogues of
characters for finite-dimensional representationsum;[;), and the generalized version
may be related to the representation theory of quantum affine algebras, which is not yet well
understood.

Finally, while most of the earlier proofs are algebraic, in Section 4 we offer acombinatorial
interpretation for the relations in terms of the Littlewood-Richardson rule, in which the
coefficients of+1 in the other terms mentioned above arise from an inclusion-exclusion
argument. We give a completely bijective proof for Eqg. (1), the rectangular Young diagram
version, and we conjecture the existence of bijections with certain properties that would
lead to a fully combinatorial proof of Eq. (2) as well.

The author is grateful to S. Fomin and N. Reshetikhin for helpful discussions of the
subject, and to W. Brockman and S. Billey for comments on an earlier draft of this
work.

2. Generalized Jacobi-Trudi sets

We will describe a scheme for translating thei¢ér relations among minors of a ma-
trix into identities of objects defined by a Jacobi-Trudi style determinantal formula. This
general concept is a well-established source for algebraic relations involving Schur func-
tions; see e.g. [7, 8]. A special case of the particular construction we give here was
used implicitly in [9] to prove some relations among quantum transfer matrices. Our
applications will include Schur functions (characters of representatior&LQf skew
Schur functions, and Schur functions with spectral parameters (quantum characters of
Uq(sln)).

The heart of the construction is an operatignB) — AOB, whereA andB aren x n
matrices and\dB isan(n + 1) x (2n + 2) matrix. The operation can be depicted graphically
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as:

ALl B || A ¥ ©)

We will first define the operation for our motivating example, the set of Jacobi-Trudi ma-
trices:

M, = (hki,iﬂ-)inj:l |n € Zso, A a partition withn parts.

If hy is thekth homogeneous symmetric function (9= 1 andhy = 0 for k < 0), then
det(M,) is the Schur functioms, . We permiti to end with zeros, so if is a partition with
n parts then we can obta#) as the determinant of such anx m matrix for anym > n.

Construction 2.1 Let A and . be partitions withn parts. We define the matrikd =
M, 0OM,,, with n + 1 columns indexed byl, ..., n + 1} and 4 + 2 rows indexed by
{L,R,1,...,n,2,...,n}, as follows:

My =48(j, 1)
Mgj = (= D"8(j,n+1)
Mij =h)\i—i+j’ i=1...,n

Mirj = hu,—i+j—1, i = 1,...,n

We adopt the notatiorr{r, . ..r¢]m for the determinant of thk x k sub-matrix of & x n
matrix M consisting of rows with indices,, ..., r; when the choice oM is clear from
context the subscript will be dropped. Then fdr= M, OM,,, we have R12...n] = s,

and [L1...n"] = s,. (The sign ofMg n+1 Was chosen for convenience precisely to make
this happen.) RICker relations oM will give us relations among Schur functions.

The construction relies on the following property of the set of Jacobi-Trudi mafit¢gs
there is a unigue way to fill in the«” regions in Eqg. (3) so that any + 1-row nonzero
minor of M, 0OM,, is det(M,) for somev. To give a generalization of the construction, we
isolate the properties ¢M, } which make this happen.

Definition 2.2 Let M be a set of square matrices. [78t denote the set af-component
vectors that appear as rows in amy n matrix M € M, for eachn € Z,. We sayM is a
generalized Jacobi-Trudi sétthere exist equivalence relations, on R, such that:

1. Any two rows of am x n matrix M € M are~, related,
2. If M is ann x n matrix with nonzero determinant and all of its rows are pairwige
related, then there is a matfit’ € M with the same rows ad (but possibly permuted).



202 KLEBER

Consider the operatoy anddg, which respectively drop the left and right components
of a row vector.

3. Take any two rows,ro € R, such thatd, (r1),d.(r2) € Rn_1. If ry ~, r2 then
di(r1) ~n_1 d(r2). Furthermored, (r;) = d_(r2) only if ry = r,. Thus we can talk
aboutd, acting on the equivalence classes. Likewise, all this must holdgais well.

4. If A andB are two~p classes such thak (A) = dgr(B) then there is a uniquen1
classC such thatlr(C) = Aandd_(C) = B.

Our archetypical generalized Jacobi-Trudi set of matrices, of course, is the set of Jacobi-
Trudi matricesM; defined above. In this case there is only one conjugacy class for each
~n, and it consists of all rows of the forthy, hx.1, ..., hkin_1) for k+n— 1 nonnegative.

Other examples of generalized Jacobi-Trudi sets include:

Example 1 The matricesM, ,, := (hki,m,iﬂ)ﬂjzl. The determinants of these matrices
are the skew Schur functioss,,, corresponding to skew Young diagranyg:, with u C A
(i.e. ui < A for all'i). In this case, for each there are infinitely many-,, classes, one
for each choice oft: given a row vectothy,, h,,, . . ., hy,), it can appear in matriced, /.
wherep — pip1 =811 —a — 1.

The operatod, (resp.dr) takes the~,, class associated witt to the~,,_; class ofu
with w (resp.un—1) removed. (Without loss of generality we assume that= 0.)

Example 2 The set of matrice$; (u + c), wherex is a partition,u is a formal variable,
andc € Z is called the shift. We will take the following as a formal definition:

To(W == (o jU+ A — A +i+ ] —n—1)_,

wherei hasn parts, some of which may be zero. Def'aj‘é? = det(T, (u)). Thetg(u) can
optionally be specialized tp(u) = 1, tc(u) = 0 for k < 0, as we do with thdy to get
Schur functions.

We will treat thesi“) as formal symbols, but see the remarks following Theorem 3.4 for
comments and references on the mathematical physics origins of the objects. Essentially,
si‘” can be regarded as quantum analogues of characters of representaltlg(g off we
send the entryi(u + c) to hx and therefore ignore the shift (this is letting— oo in the
mathematical physics literature) we recover the Jacobi-Trudi matégesnd plain Schur
functionss, .

To understand the equivalence classes here, note that the rows of anyTpatrix c)
are of the form

(taU+Db), tapa(u+b+1), ..., tayn1(U+b+n—-1))

for some choice of integeesandb. The main diagonal of; (u) has entries;, (*), t;,(*)

, ..., 4, (%), while the anti-diagonal has(u), t,(u + A1 — X2), ..., t.(U+ A1 — Ap). Itis
therefore easy to see that if the row beginning wjthi + b) appears in the matrik, (u+c),
we must havex + b = A1 — n + 1. Therefore each, class contains all rows which share
a common valua + b.
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We remark that given a partitioh with n parts and anv,, classA, there is a unique
integerc such that the rows of; (u + ¢) are inA.

Now we give a version of Construction 2.1 for any generalized Jacobi-Trudi set of
matrices, which we will apply to the examples above. When= {M;, } this reduces to
Construction 2.1.

Construction 2.3 Let M be a generalized Jacobi-Trudi set of matrices, and take two
n x n matricesA, B € M. Let A, B denote the-,, classes of their respective rows.

We sayA and B are compatible ifi, (A) = dr(B). For compatibleA, B we can define
the (n + 1) x (2n + 2) matrix AOB. Let C be the~n,1 class such thadr(C) = A and
d.(C) = B, whose existence and uniqueness is guaranteed by Definition 2.2. The rows of
AOB areindexed byL,R,1,...,n, 1, ..., n'}.

e RowL is(1,0,...,0),

e RoWRIis(0,...,0, (=DM,

e Rowi fori =1,...,nisthe (unique) row; € C such thatg(r;) is theith row of A,
e Rowi’fori =1,...,nisthe (unique) row; € C such that, (ri) is thei th row of B.

We will examine PRlicker relations for the matrice8OB. To fix notation, recall the
Pllcker relations for tha@ x n minors of ann x 2n matrix whose 8 rows are indexed by
1,....n,1,...,n.Picksomeintegéek, 1 <k < n,andthenpick kxr; <--- <rg <n.
The relations state that

[12..n1'2...n1= Y ors(l.2....0[1.2....0]
l<si<--<x=n
whereors exchanges rows with § fori = 1, ..., k before evaluating the determinants.
We say the rows with labels 1. ., n other tharry, .. ., r¢ arefixed

We are interested in Btker relations orAC B in which one of the terms isH12...n]
[LY...n"] = det(A) det(B). To specify an example of this type, we choose matrites
andB from a generalized Jacobi-Trudi set, and we pick some subset of the rows of either
A or B (recall that thea operation is not symmetric) to be the fixed rows in the identity.

Example3 TakeA = (2, 1, 1) andu = (4, 3, 1), and considef, (u)d T, (u) (Example 2).
Choosing the first two rows df,, (u) as our fixed rows gives us a 7-terrruker relation.
Rearranging the order of the terms (as a precursor to Theorem 3.2), we get:

U-D) U+ W) W =1 U+D) | (u-1) _u+3)
SE2.1S321) = Su31S21y T 83225311 T S333S111

(u) (u) (u) (u+2) (u) (u+3)
+83222830 T S3332510 — 53333500

If we ignore the spectral parameters, we get an identity on plain Schur functions:
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i

In the first version, the zero parts of the partitions are necessary if the identity is to work
without settingto(u) = 1, tc(u) = 0 for k < 0. If we are willing to make that specialization,

we can drop the zero parts, but we must adjust the shifts at the sameséfjfr];?n:,0> =

s&‘l’li) In the second version we have already dropped the information about the zero

parts.

3. Main theorem

In this section we present a set of recurrence relations, essentially a discrete dynamical
system, to which the Schur functions are a solution. These relations are a generalization
of Eqg. (1), a system of relations which hold for the Schur functions of partitions with
rectangular Young diagrams. We also present the quantum analogue of the relations, in
Theorem 3.4 and following comments; this generalizes the relation

(u-1)
Stme)

(U+1) (U) (U) () (u)
=S S m—1¢) + S<mg+1>8<m,g,l> (4)

S m+10) S

(m¢)
We prove the relations by reducing them tai€Xér relations orM, 0OM,,, defined in
Section 2. The simple forms in Egs. (1) and (4) come from the 3-terrokBl relation
[12][34] = [13][24] + [14][32].

To state the relations, we first need to define some operations on the partitidmch
we associate with its Young diagrayh= Y (1). Let Y be a Young diagram with outside

corners. That is, we takepoints (X1, Y1), - .., (Xn, ¥n) iN Zso X Zso With X3 > -+ > X,
andy; < --- < ¥p, and the points ity are those less than any of the, y;) in the product
ordering. We identifyy with the partition. = (x3*, x3*™, ..., x3" ). We also say that

Y hasn + 1 inside corners, numbered from Onptheith one has coordinates; 1, Vi),
whereyp = Xpy1 = 0.

Definition 3.1 LetY be a Young diagram with outside corners as above, and pick two
integers, j such that 1< i < j < n. We define two Young diagrams by the coordinates
of their corners:

n} (Y) : take the corners of, add 1 to each afi 11, ..., Xj, Vi, ..., Y
;ﬂj (Y) : take the corners of, add—1 to each o1, ..., Xj, Vi, ..., Vj

These operations respectively add and remove a border strip which reaches fridm the
outside corner to thé¢th inside corner.
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We will also want to add or remove several nested border strips. Given integers 1
ip1<---<if < Jr <--- < j1 < n,we further define
b4

[FER i i
_l -r=7T-rO"'OT[-1
r

T i
Iq--ly — Iy . |.1
Hjpeje = K @7 O B,

Thus we add or remove border strips reaching from outside coyt@inside corneijs
forl<s<r.

We apply these definitions of " ¥ and " only considering the coordinates of
corners, so the variou;s]! and M'J- commute. Note that applying}, for example, might
decrease the number of visible corner¥ by makingy; the same ag; 1), but we ignore
this effect in the latter definitions above. Since the inteniglg{] are nested, we will never
end up withx; < Xj41 0ry; > Vii1.

Finally, we borrow notation from Lie theory: given a partitianwe leti + w, denote
the partition obtained fromi. by adding or removing a column of heightto Y (%). If
A={1,....,Am)andu = A £ w,, thenuj =2 £ 1forl<i < fanduj = A fori > £.
Of course, we cannot take— w, if A, = A4y 1, thatis, if Y()) does not have a column of
height to begin with.

Theorem 3.2(Main Theorenp Take a partitiorh. whose Young diagram(X) has n outside
corners. Pick an integer,KL < k < n, and let¢ be the kth-shortest column height i,
so{ = Yy in the coordinates above. Then

min (k,n—k+1)
— _1V-1le . o
S$.S = St Si—o, T Z Z (=D Syiaeir (A)su'ﬁl'ff.',-', o5

r=1 1<i;<---<ir<k i
k<jr<--<ji=n

That is, we take a signed double sum over all chains of properly nested intefyal$ p
-+ D [ir, jr] 2 k. For each such chain we have the product of two Schur functions, obtained
by adding or removing all the corresponding border strips.

Remark 3.3 The recurrence relations can be viewed as defining the multi-time flow of a
discrete dynamical system. We thinksyfas being associated with the lattice point whose
ith coordinate is the numberof columnsiirof heighti. If we allow arbitrary partitions.,

the system is infinite-dimensional; if we restrict ourselves to representatislis, @ft has
dimensiom.

First, we note that that no partition appearing in Theorem 3.2 has more outside corners
thani does. Second, we observe that the only partition with more columna isant w,.
Therefore we can solve fgy,.,,, to getarecurrence relatiep, ,, = (sf > £5:8.)/S—w,»
expressing, 1., in terms of Schur functions of partition with strictly fewer columns and
no more corners. The only initial conditions that need to be specified asgfdreni has
no two columns of the same height.
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Example 4 TakeA to be the staircase partitiof3, 2, 1) with n = 3 corners, and pick

k = 2. This instance of Theorem 3.2 is the Schur function part of Example 3. The order in
which the terms appear there corresponds to taking the double sum over all sets of nested
intervals in the order:

{[2.2]} {[1.2]} {[2.3} {[1.3}} {[1.3]>[2.2]}

r=1 r=2

We will address the version with spectral parameters in Theorem 3.4.

Proof: The formula is the RiCker relation onM;_,,0OM;,, in which we fix rows
,...,¢.WeindextherowsbyL,R,1,...,m, 1, ..., m}asin Construction 2.1, where
m is the number of parts of. The fixed rows are therefore those corresponding to rows of
A 4+ w, which got longer when the column of heightvas added.

Firstwe locate the two pieces of Theorem 3.2 outside the double sum. Thg tgy8) ., ,
of course, isthe Rickerterm R12...m][L1'2 ... m'], as we have pointed out several times
before. Thes, s, term is obtained from the Btkerterm [1...£(£ + 1) ... m][RY ... ¢
(¢ +1)...m], in which we swapL with R and every row ofM,,, other than the fixed
ones with the corresponding row bf;_,,. This leaves rows + 1 throughm of the two
partitions unchanged in length. The exchangé @nd R increases by one the lengths of
rows 1 throught of A — w, and decreases by one the lengths of rolwkrbugh?’ of A + w,,
giving A in both cases.

All other Pliicker terms can be obtained from the, term by exchanging some sub-
set of {1, ..., ¢} from the first determinant with a subset of the same size drawn from
{R, (¢ +1),...,m}from the second determinant. What is the effect of excharaiiog b,
withl<a<{¢{<b=<m?

If Aa = Aatp1 OF Ay = Ap_1, two identical rows (rows and(a + 1)’ or rows (b — 1)’
andb, respectively) now appear in the same determinant, and we get zero contribution.
Otherwise, reading down the main diagonals of the resulting matrices reveals that the effect
is precisely to change the two minors into those;ﬂ?(k) andyr]i (1) respectively, where
Y (1) has corner coordinatgs = a andy; = b — 1, and to flip the sign, owing to the need
to reorder the rows. If instead bfwe swap the row labelleR, the exchange has the effect
of 7! andul,.

Exchanging subsets larger than a single element is easily seen to mimic the definition of
n}i,’jj'j’r andu'.ll'j,‘,'j’r; the nesting of the intervals arises because the “push(aj at outside
cornera and the “pull” at inside cornds are completely independent. Each swap flips the
sign of the resulting term, explaining the coefficiént 1)’ 1. O

There is a quantum analogue of Theorem 3.2 for the Schur functions with spectral
parameters defined in Example 2.

Theorem 3.4 For any partition A, we can add spectral parameters to the statement of
Theorem 3.2 to get

U-D) U+ W) W (U#) (U+5)
S S T She S e T Z Z S0y Suon
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where the parameters inside the sum are as follows: given nested intérvails < - - - <

ji<n,sete =77 (1) andp = u'jll'_'_'_ij’r (1). Then the corresponding term in the sum is

U-+Ag— o
so([u) Sf(; 1—B1) if j=n
_ Tt g
Séu 1) S/(BU At f j1<n

The case whek = n is the subject of [9], where it is proved, as here, by reducing to
Pllcker relations. Note that fa&r = 1 orn, the double sum is actually a single sum and no
negative terms appear.

Proof: As pointed out in Example 2, by appropriate choice of a stjiftve can lift
the matrix M; to a matrixT, (u + ¢) whose rows are in whatever equivalence class we
choose. Thus all we will do is pick some equivalence class, liftraws.1m, 1/, ..., m' of
M; o, OM; ., to that class, and read off the necessary shifts for each minor of our matrix
to appear in the BEker relations. Our choice of equivalence class is almost irrelevant; a
different choice would just correspond to adding a constaatitothe final relation.

We follow convention by choosing our equivalence class so that we are dealing with
minors of the matribM, _,, (u)dM; 4, (u), whose 2nrows other thar. andR all look like

(t)\.]_—c(u —m+ C)9 t)n]_-ﬁ-l—C(u —m+ 1 + C)a sy tkﬁ-m—c(u + C))

The row with label 1has this form wittc = 0, while the row with label 1 has= 1. When
we drop the left or right components of these rows, respectively, we get the top rows of the
matricesM, ., (u) andM,_,, (u), as desired.

Given a minor corresponding 83", to identify the shift, recall that the top right entry
in the matrix ist,(u + c). Thus we can easily see that tHe1] ... ¢/(¢ + 1)...m][L1...
(¢ + 1) ...m"] term of the Plicker relation corresponds Sﬁ"l)sf‘*l), again by looking
at the rows 1 and’lexamined above. o

Using the same reasoning, we see that for any ”I'i:::l'r, (1), the associated minor is
either [R1'...] (if row R was not swapped away) or'[1 ] (if row R was traded). In the
first case, we again end up wigh'~; in the second case, we g&t’. Row R is swapped
if and only if j; = n, of course: this is the same as saying the partitidvas one more part
thana if and only if we added a border strip that reached the bottom row.

Determining the shift of8 = M'jil'_'_'_'j’r (1) is more difficult because its top row, other than
L and possiblyR, might be any of 12, ..., ¢, £ + 1. (Indeed, in Example 2, each of these
occurs.) To sidestep this difficulty, we note that the top row of the minor giving rige to
beginstg, (*). Assume that rovR was not traded. Since we already know the top row must
look like (t;,+1-¢c(*), ..., t,(u+c)), we conclude thgy = A1 +1—c,soc =1, — B +1.
Likewise, if row R was traded, the top row is one term shorter and endsty(iti+ ¢ — 1),
and the shift decreases by onepto— B;. O

We conclude this section with a few comments on the relevance of the quantum version
of the theorem.
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Remark 3.5 When we restrich to being a partition with one corneére. a rectangle, we
are dealing with the 2-dimensional discrete dynamical system

QLU —~ QLU+ 1) — QW QL W)

1 (W)

(W) = (5)
for¢ = 1,...,nandm € Z.. Theorem 3.4 states that this system has a solution in
which Q¢ (u) is set tosfr‘:])”, an object which reduces ®yy, if we ignore the spectral
parameter.

The objects,{“) themselves have a representation-theoretic interpretation. The body of
work on spectra of transfer matrices of certain integrable systems using the Bethe Ansatz
(from the mathematical physics point of view; geg[1, 6, 9]) has givenrise to a notion gf
deformed characters for finite-dimensional representations of Yangians and quantum affine
algebras [2]. In this picture, tk@”) we worked with here correspond to thecharacters
of evaluation models, and dropping the spectral parameter corresponds to throwing away
some of the structure cqu(s/[;) and retaining only the action of the embedded subalgebra
Ugq(slp).

Remark 3.6 Attempts to generalize this picture to Lie algebras of types other fhan
beganin [4, 6]. Inthese cases, it appears that the charactégggfdo satisfy a generalized
version of Eq. (5). Dropping the spectral parameters, though, no longer gives statements
about the fundamental representations gfg), but about certain non-irreducible represen-
tations which are solutions to the discrete Hirota equations. While [4] conjectured character
formulas for the analogs of rectangles in tyd@sC, D, written as sums over “rigged
configurations,” further exploration is hard because there is currently no general character
formula for representations of;(g).

Remark 3.7 Recent work of the author ([5]) has shown a stronger result about the gen-
eralized discrete Hirota relations, in an attempt to sidestep the lackgfg character
formula. For each Lie algebigy there is auniquesolution to the recurrence relations in
which Q¢ is the character of a representatioriig(g) all of whose weights lie undemnaw,

in the weight lattice. That is, we require th@t, is a sum of irreducible characters whose
highest weights lie undenw,, each occurring with nonnegative integer coefficients. This
positivity constraint on all of the infinitely many charact&), is quite rigid.

Theorem 3.4 is the first step in extending this picture from the rectangular case to a
full n-dimensional system of relations among a much larger sdalq@s/[;) characters.
Generalizing these new recurrence relations to other Lie algebras may give us information
on irreducible characters bf,(g) for which we do not yet even have conjectural values.

4. Combinatorial considerations

Inthis section, we look at the preceding formulas for Schur functions purely combinatorially.
We offer a simple combinatorial proof of the rectangle version of the formula, and indicate
why we believe that the subtraction that appears in Theorem 3.2 arises from inclusion-
exclusion of sets labeled by single intervals.



PLUCKER RELATIONS ON SCHUR FUNCTIONS 209

We will multiply Schur functions using the following reformulation of the Littlewood-
Richardson rule, taken from [10], where the technology of crystal bases is used to give an
analogue for Lie algebras of tygg C, D as well.

Construction 4.1 We wish to find the multise® of partitions such thag,s, = Y _sS..
To do this, let SSYTu) be the set of all semi-standard Young tableaux of shap€or
any tableaul € SSYT(u), we obtain its reverse column wordw(T) = iii...im by
reading off the numbers ifi, reading each column from top to bottom, beginning with the
rightmost column and ending with the leftmost.

Now we let the numbek act on the Young diagra = Y (1) by adding one box to the
kth row, providediy < Ay_1. If Ax = Ak_1 then the action is illegal. Denote the resulting
Young diagram by¥ < k. Then

S={(((Y <)) < i)+ <im) |itiz...im=rcw(T)}

whereT ranges over all tableaux in SSYiI) such that each action is legal.

Now we will give a purely bijective proof of Eq. (1), the recurrence relation for rectangular
Young diagrams. A proof was given in [3] which did not mention the 3-tennli relation,
but which made use of information from Lie theory about the dimensions of assosl{,,ted
representations.

Theorem 4.2 Sy Simey = Sime+1)Sme-1) + Smi-14Sim—14)

Proof: Consider atableali € SSYT({m¢)) such that the action o£w(T) on the Young
diagram of shapem?), as in Construction 4.1, is legal. We consider two cases, based on
whether or not the leftmost column @f consists exactly of the numbers2. .. ., ¢.

If so, consider the tableall’ obtained by removing the leftmost column™f Observe
that T’ e SSYT((m — 1%)), and the action ofcw(T’) onY ((m + 1%)) is legal and yields
the same Young diagram as the actiorroi(T) on Y ((m®)). Furthermore, all elements
T’ of SSYT((m — 1)) whose actions are legal arise in this way; we need only note that
rcw(T’) never tries to build on columm + 1 of Y ({m + 1¢)).

Otherwise, the leftmost column df contains an entry strictlylarger thanand there-
fore so does every column, as rows Dfare weakly increasing. Now note that in any
column of T, the smallest number greater thérthat appears must bé+ 1. This is
clear for the rightmost column, sincew(T) acts legally onY ((m¢)), and can be seen
inductively working to the left, again because rows weakly increase. Therefore we can
consider the tableali’ obtained by removing thé 4+ 1 from each column and pushing
up all the numbers below it; clearlj’ € SSYT((m‘~1)). As in the first case, this op-
eration gives a bijection betweén acting legally onY ((m*)) and T’ acting legally on
Y ((m‘th)). 0

We are currently unable to provide a generalization of this argument to arbitrary partitions
A, but we strongly believe that one does exist. Based on computational examples, we
conjecture the following form for a bijective proof of Theorem 3.2.
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Conjecture 4.3 Let X be a partition withn outside corners, choose a corkeand corre-
sponding weightv,, and retain the notions of Theorem 3.2. ILebe the set of SSY[h)
acting legally onY (%).

1. The tableaux in SSY(R — w;) which act legally onY (A + w,) can be put in bijection
with a subsetA of L.

2. There are subseBJj C L\A foreachl<i <k < j <n,such thatB} is in bijection
with SSYT(, (1)) acting legally onY (| (1)).

3.L=AUB.

4. The intersectiorB}i N---N B'j:is nonempty if and only if we can reorder the terms to
getl<iy <---<ir <K< j <--- < j1<n,andinthat case itis in bijection with
SSYT(u': % (1)) acting legally onY (zr;' " (1)).

All of the bijections between SSYX) acting onY (1) and SSYT«) acting onY (8) should

respect the Young diagrams produced by the two actions.

The conjecture implies Theorem 3.2, using inclusion-exclusion to take the @B}n
We presently do not know the bijections or even how to identify the,f:*sefsiJ inL.

Example 5 Taking the Schur function part of Example 3 once again, the only subtraction
that takes place is of the tersy 3 3.3,S0,0), corresponding to the nested intervals3lL >
[2, 2]. There is one tableau (the empty tableau) whose shape is the partition of zero. To verify
this instance of the conjecture, we need to check that the Young diag¢&ns, 3, 3)),
appears in the terms corresponding to intervals [1, 3] and [2, 2] once each.

This does happen: the element of SSY3T 1, 1)) whose column word is 44234 acts
onY ({3, 2, 2)), and the element of SSYT1, 0)) whose column word is 4 acts o((3, 3,
3, 2)), both producingy ({3, 3, 3, 3)).
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