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Abstract. Planar binary trees appear as the the main ingredient of a new homology theory related to dialgebras,
cf.(J.-L. Loday,C.R. Acad. Sci. Paris321(1995), 141–146.) Here I investigate the simplicial properties of the set
of these trees, which are independent of the dialgebra context though they are reflected in the dialgebra homology.

The set of planar binary trees is endowed with a natural (almost) simplicial structure which gives rise to a chain
complex. The main new idea consists in decomposing the set of trees into classes, by exploiting the orientation of
their leaves. (This trick has subsequently found an application in quantum electrodynamics, c.f. (C. Brouder, “On
the Trees of Quantum Fields,” Eur. Phys. J. C12, 535–549 (2000).) This decomposition yields a chain bicomplex
whose total chain complex is that of binary trees. The main theorem of the paper concerns a further decomposition
of this bicomplex. Each vertical complex is the direct sum of subcomplexes which are in bijection with the
planar binary trees. This decomposition is used in the computation of dialgebra homology as a derived functor,
cf. (A. Frabetti, “Dialgebra (co) Homology with Coefficients,” Springer L.N.M., to appear).
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Introduction

The planar binary trees have been widely studied for their combinatorial properties, which
relate them to permutations, partitions of closed strings and other finite sets. In fact, the
cardinality of the setYn of planar binary trees withn+ 1 leaves and one root is the Catalan
numbercn = 2n!

n!(n+1)! , which is well known to have many combinatorial interpretations [6].
In 1994, in the paper [10] written by J.-L. Loday, these trees appear as the main ingredient

in the homology of a new kind of algebras, calleddialgebras, equipped with two binary as-
sociative operations. Instead of the single copyA

⊗n, which forms the module of Hochschild
n-chains of an associative algebraA, Loday finds out that the module ofn-chains of a dial-
gebraD is made ofcn copies ofD

⊗n. The crucial observation is that labelling each copy of
D

⊗n by ann-tree leads to a very natural and simple definition of the face maps: thei -th face
of ann-tree is obtained by deleting itsi -th leaf. Hence the set of rooted planar binary trees
acquires an important role in the simplicial context of dialgebra homology. The study of
this homology leads to the investigation of the simplicial structure of the set of trees, which
is completely independent of the dialgebra context and constitutes the content of this paper.

The set of trees can be equipped with degeneracy operatorssj which satisfy all the
classical simplicial relations except thatsi si 6= si+1si . For such a set, which is called
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almost-simplicial, some of the properties of simplicial sets still hold, for instance the
Eilenberg-Zilber Theorem, cf. [8].

The main idea of the paper consists in decomposing the set of trees into classes, by
exploiting the orientation of their leaves. This trick is purely combinatorial (set-theoretical),
and it is explained in Section 1. Then I show that this decomposition is compatible with
the almost-simplicial structure and yields a chain bicomplex whose total chain complex is
that of binary trees. Consequently, in the application to dialgebras, we obtain a canonical
spectral sequence converging to the dialgebra homology.

The main theorem of the paper concerns a further decomposition of this bicomplex.
I show that each vertical complex is in fact the direct sum of subcomplexes, which I call
towers. It turns out that these towers are in bijection with the planar binary trees. The vertical
complex in degreep is the sum of the towers indexed by the planar binary trees of orderp.
Again, this decomposition is purely combinatorial. An illustrative picture of the situation
is placed at the beginning of Section 2, where I define the vertical towers, by means of a
new kind of degeneracy operator, and prove the decomposition theorem (2.12).

The main application of this decomposition is the interpretation of dialgebra homology
as a Tor functor given in [5].

The basic idea of discerning the orientation of the leaves of planar binary trees finds
another application in [2], where C. Brouder employs planar binary trees to describe the
solution of the Schwinger equations coupling the full fermion and photon propagators of
quantum electrodynamics. The left (resp. right) orientation of the leaves correspond to the
photon (resp. fermion) component of the solutions.

I would like to thank J.-L. Loday and T. Pirashvili for the useful conversations about
the planar binary trees and the simplicial tricks, and finally the Referees for their accurate
suggestions, which brought remarkable ameliorations to the exposition of the results. I am
very grateful to the “Institut de Recherche Math´emetique Avanc´ee de Strasbourg (France)”
for supporting me during the preparation of the paper.

Notation. For any setX and any fieldk, I denote byk[X] the vector space overk generated
by the elements ofX.

1. Double simplicial structure on the set of binary trees

In this section I recall the notion of almost-simplicial structure (cf. [8]) and prove that the
family of planar binary trees is an almost-simplicial set (announced in [4]). I also show that
the associated chain complex is acyclic.

Then I introduce some classes of planar binary trees, whose cardinality is computed
in Appendix A. The faces and degeneracies previously defined are compatible with the
decomposition of the set of planar binary trees into the classes. As a result, there ex-
ists a chain bicomplex whose total chain complex is that of planar binary trees. An im-
portant application, given in [5], concerns the dialgebra homology defined in [10]: the
bicomplex of trees induces a non trivial spectral sequence converging to the dialgebra
homology.
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Faces and degeneracies on the sets of planar binary trees

1.1. Planar binary trees. By a planar binary treeI mean an open planar graph with 3-
valent internal vertices. Among the external vertices, fix a preferred one and call it theroot.
Usually I draw the root at the bottom of the tree. The remaining external vertices, called
leaves, are drawn at the top of the tree:

For any natural numbern, let Yn be the set of planar binary trees withn+ 1 leaves, which
are labelled as 0, 1, . . . ,n from left to right. Given a treey with n + 1 leaves, callorder
of y the natural number|y| := n. Notice that the order of a tree is the number of internal
vertices. Therefore, forn = 0, I consider the unique tree with one leaf, the root and no
internal vertices. Here is a picture of the setsYn for n = 0, 1, 2, 3:

The cardinality of the setYn is given by theCatalan number(see [9], [1], [3] and [6])

cn = 2n!

n!(n+ 1)!
.

Hence the setsY0, Y1, Y2, . . .have cardinality 1, 1, 2, 5, 14, 42, 132 and so on.
In the sequel I abbreviate “planar binary tree” into “tree” and “planar binary tree with

n+ 1 leaves” into “n-tree”.

1.2. Pseudo and almost-simplicial sets.Recall that apre-simplicial set Eis a collection of
setsEn, one for eachn ≥ 0, equipped with face mapsdi : En→ En−1, for anyi = 0, . . . ,n,
satisfying the relations

(d) di dj = dj−1di , i < j .

Given a fieldk, consider thek-linear spank[En] of the elements of the setEn. The faces
give rise to the boundary operatord : k[En] → k[En−1], d =∑n

i=0(−1)i di which satisfies
d o d = 0. Therefore any pre-simplicial set{En, di } always gives rise to a chain complex
(k[E∗], d).
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Also recall that asimplicial set is equipped with degeneracy mapssj : En → En+1, for
any j = 0, . . . ,n, which satisfy the relations

(ds) di sj =


sj−1di , i < j,

id, i = j, j + 1,

sj di−1, i > j + 1,

(s) si sj = sj+1si , i ≤ j .

By definition, apseudo-simplicialset is a family of sets endowed with faces and degeneracies
satisfying relations(d) and(ds) but not necessarily relations(s) (see [11] and [18]).

Define analmost-simplicialset to be a pseudo-simplicial set whose degeneracies satisfy
relations(s) exceptfor i = j , which means thatsi sj =sj+1si for i < j and in general (but
not necessarily)si si 6=si+1si .

Clearly all simplicial or almost-simplicial sets are pseudo-simplicial,

{simplicial sets} ⊂ {almost-simplicial sets} ⊂ {pseudo-simplicial sets}
⊂ {pre-simplicial sets}.

Let us consider now the set of binary trees described in (1.1). Trees can be obtained one
from another by repeating two basic operations: deleting and adding leaves. The operation of
deleting leaves allows us to define face mapsYn→Yn−1 and thus to consider the associated
chain complexk[Y∗] for any given fieldk. The operation of adding leaves allows us to define
degeneracy mapsYn→ Yn+1.

1.3. Face maps on trees.For anyn ≥ 0, and anyi = 0, . . . ,n, theith faceis the map

di : Yn→ Yn−1

which associates to ann-treey the(n− 1)-treedi (y) obtained bydeletingthei th leaf from
y. For example:

1.4. Lemma. The face maps di satisfy the above relations(d). Hence, given a field k, the
sequence

k[Y0] ←− k[Y1] ←− k[Y2] ←− · · · ←− k[Yn] ←− . . .

is a chain complex, with boundary operator d: k[Yn] → k[Yn−1] given by d = ∑n
i=0

(−1)i di .

Proof: In fact, since the leaf numberj of the treey is the leaf numberj − 1 of the
treedi (y), the mapsdi dj anddj−1di produce the same modification: they delete the leaves
numberi and j . 2
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1.5. Degeneracies on trees.For anyn ≥ 0, and anyj = 0, . . . ,n, the j th degeneracyis
the map

sj : Yn→ Yn+1

which bifurcatesthe j th leaf of ann-tree, i.e. which replaces thej th leaf | by the branch
. For example:

.

1.6. Lemma. The degeneracy maps satisfy the above relations(ds). They also satisfy(s)
for i < j , hence the set of binary trees{Yn, di , sj } is almost-simplicial.

Proof: (ds) The operationsdi sj on a treey first adds a leaf replacing the leaf numberj
by the branch , and then deletes the leaf numberi . So, wheni < j or i > j + 1, we obtain
the same tree if we invert the operations on the suitable leaves. Wheni = j or j + 1, the
operatordi evidently brings the treesj (y) (with branch labelled byj, j +1) back to the
original tree.
(s) The operationsi sj on a treey first bifurcates the leaf numberj and then bifurcates

the leaf numberi . So it is clear that ifi < j the same tree can be obtained performing the
two bifurcations in the inverted order, observing that thej th leaf of y is the leaf number
j + 1 of si (y). 2

1.7. Remark. The set of binary trees{Yn, di , sj } is not simplicial. In fact, fori = j the
operatorsi si replace thei th leaf with the branch , operatorsi+1si produces the branch

, hence they do not coincide.

1.8. Theorem. For any field k, the chain complex of binary trees is acyclic, that is

Hn(k[Y∗], d) =
{

k, for n= 0,

0, for n> 0.

Proof: It is straightforward to check that the map

satisfiesd0h = id anddi h = hdi−1 for any i > 0, that is,h is an extra-degeneracy (i.e.
h = s−1 satisfies relations(s)) for the almost-simplicial set of binary trees. It follows that
dh+hd= id, hence the induced maph : k[Yn] → k[Yn+1] is a homotopy between the maps
id and 0. 2

Classes of planar binary trees and the bicomplex of trees

1.9. Classes of trees.For any pair of natural numbersp,q, letYp,q be the set of(p+q+1)-
trees with p leaves oriented like\(excluding the 0-th leaf), andq leaves oriented like/
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(excluding the last one). Theclassof ann-tree is specified by the componentYp,q ⊂ Yn,
with n = p+ q + 1, to which the tree belongs. For example:

.

For anyp,q ≥ 0, the setYp,0 (resp.Y0,q) contains only one tree (resp. ), called a
comb.

The setsYp,q are obviously disjoint, for different pairs(p,q), and their disjoint union
covers the setYp+q+1. Hence we have

Yn =
⊔

p+q+1=n

Yp,q, n ≥ 1. (1)

For example,Y1 = Y0,0, Y2 = Y1,0tY0,1 andY3 = Y2,0tY1,1tY0,2. Notice that the number
of classes in the setYn is preciselyn = card{(p,q) | 0≤ p,q ≤ n− 1, p+ q+ 1= n}.

The orientation of the leaves of ann-tree, given by the numbersp andq of \- and/-leaves,
permits us to define a double complex of binary trees, by considering maps which do not
change one of the two numbersp, q.

However, in general, a map defined on a class of oriented trees cannot be specified
to preserveglobally one orientation, since it usually changes both valuesp andq acting
on different trees. This happens, in particular, to the facedi : Yn → Yn−1, for a fixed
i ∈ {0, . . . ,n}: when restricted to each componentYp,q⊂Yn, it takes value in one of
the two componentsYp−1,q, Yp,q−1 of Yn−1, depending on the treey of Yp,q. Consider,
for example, the faced0 restricted to the componentY1,1 = Y3. Then
d0 : Y1,1→ Y1,0 t Y0,1 takes value inY0,1 on , and inY1,0 on and .

This motivates the following definition.

1.10. Oriented maps. Let f : k[Yn] → k[Ym] be a linear map. Letk[Yn] = ⊕p+q+1=n

k[Yp,q] andk[Ym] = ⊕r+s+1=mk[Yr,s] be the decompositions into oriented classes induced
by (1). Denote byi n

p,q : k[Yp,q] ↪→ k[Yn] the inclusion for p + q + 1 = n, and by
pm

r,s : k[Ym] → k[Yr,s] the projection forr + s+ 1= m. Define theoriented maps of fto
be thehorizontalandverticalmaps f h and f v obtained by the composition of the inclusion
i n

p,q, then f , then the projectionpm
r,s for r = p (hences = q − n + m) and respectively
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s= q (hencer = p− n+m):

.

Hence, the oriented maps off take the following values:

• the horizontalf h : k[Yp,q] → k[Yp−(n−m),q] has value

f h(y):=
{

f (y), if f (y) ∈ k[Yp−(n−m),q],

0, otherwise,

• the vertical f v : k[Yp,q] → k[Yp,q−(n−m)] has value

f v(y):=
{

f (y), if f (y) ∈ k[Yp,q−(n−m)],

0, otherwise.

In particular, we can consider the oriented maps defined by the facesdi and the degeneracies
sj .

1.11. Bicomplex of trees. For any natural numbersp,q, take k[Yp,q] as the module
of (p,q)-chains, and define horizontal and vertical boundary operatorsdh : k[Yp,q] →
k[Yp−1,q], dv : k[Yp,q] → k[Yp,q−1] respectively as

dh :=
n∑

i=0

(−1)i dh
i and dv :=

n∑
i=0

(−1)i dvi , n = p+ q + 1.

1.12. Lemma. The oriented boundaries defined above satisfy dhdh = 0 and dvdv = 0,
hence(k[Yp,∗], dv) and(k[Y∗,q], dh) are chain complexes for any p,q ≥ 0.

Proof: It suffices to show that the oriented facesdh
i anddvi still satisfy the simplicial

relations(d) of (1.2). Let us show, for instance, thatdvi dvj = dvj−1dvi for any i < j .
It suffices to prove thatdi dj is a vertical map (i.e.di dj : k[Yp,q] → k[Yp,q−2]) if and
only if dj−1di is vertical. A facedi deletes a/-leaf if the i th-leaf itself is oriented like
/, i.e., , or if it is a\-leaf such that .Then it is easy to see that bothdi dj anddj−1di

delete two/-leaves only on the four combinations of these two possibilities for the leavesi
and j . 2
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Figure 1. Bicomplex of rooted planar binary trees.

1.13. Remark. By assumption, in a pre-simplicial module the faces are all non-zero maps.
Therefore, even if the horizontal (resp. vertical) faces satisfy relations(d), the horizontal
families k[Y∗,q] (resp. vertical familiesk[Yp,∗]) are not considered to be pre-simplicial
modules.

1.14. Proposition. The triple (k[Y∗,∗], dv, dh) forms a chain bicomplex, described in
Fig. 1, whose total complex is the shifted complex of binary trees(k[Y∗+1], d).

Proof: On any treey, the mapdi acts either asdh
i (becausedvi (y)= 0), or asdvi (when

dh
i (y)= 0). Thus, for anyi = 0, . . . ,n, we have an obvious identitydi = dh

i + dvi . Conse-
quently, the boundary operatord : k[Yp,q] → k[Yp−1,q]⊕k[Yp,q−1] is the sumd = dh+dv.
Then we havedd = dhdh + dhdv + dvdh + dvdv = 0. From (1.12) it follows that
dhdv + dvdh = 0. This shows at the same time that(k[Y∗,∗], dh, dv) is a bicomplex,
and thatk[Y∗+1] = Tot(k[Y∗,∗]). 2

1.15. Remark. The bicomplex of trees gives rise to a spectral sequence

E2
p,q = HpHq(k[Y∗,∗]) H⇒ Hp+q(k[Y∗+1])

which is zero everywhere, since the complex of trees is acyclic and theE1-plane, in a similar
way, can be shown to be zero. However the peculiar structure of trees becomes interesting
when the vector spacesk[Yn] appear as tensor components of some chain-modules, as
for the chain complex of dialgebras (see [4, 5] and [10]). In this case, the bicomplex of
trees permits us to find a spectral sequence which converges to the homology of the given
complex.
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2. Decomposition of the bicomplex of trees into towers

In this section I show a technical result which helps drastically in the computation of
dialgebra homology as a derived functor (see [5]). The main theorem says that any vertical
complexk[Yp,∗] is a direct sum of subcomplexes whose homology can be computed for
some dialgebras.

At the same time, being related to intrinsic properties of the trees, this result clarifies
the simplicial structure of the bicomplex. Each subcomplex, called thevertical towerand
denoted byT∗(y), is constructed on a single tree, called thebase tree, whose vertical faces
are all zero, by applying all possible vertical increasing maps of degree 1, i.e. by adding
/-leaves in all possible distinct ways. It turns out, due to the particular shape of planar
binary trees, that such towers are all disjoint from each other and that they cover the whole
bicomplex. This structure yields a decomposition of the bicomplex of trees which has the
following remarkable structure:

• The base trees arising in the vertical chain complexk[Yp,∗], for fixed p ≥ 0, are in
bijection with p-trees (see Lemma (2.11)), i.e. they are counted exactly bycp = cardYp.
• The vertical towerT∗(y), associated to ap-tree y, is a multi-complex with dimension

d = 2p+ 1 (see Proposition (2.13)).
• The vertical towerT∗(y), associated to ap-treey, is a subcomplex ofk[Yp,∗] shifted by

the number of/-leaves ofy (excluding its last leaf). This means that ify belongs to the
classYp′,q′ of Yp, thenTm(y) ⊂ k[Yp,q′+m] for any m ≥ 0 (see again Lemma (2.11)). A
geometrical meaning of the numberq′ is given in the Appendix B.

Figure 2 is a summarizing picture of the vertical towers at small dimension. The details
of the definitions and proofs are given in the remaining part of this section.

New kinds of degeneracies: Grafting operators

In order to construct a vertical complex on a given tree, I need to introduce a second kind
of increasing mapsYn→ Yn+1, besides the usual degeneraciessj .

Figure 2. Decomposition of the bicomplex of trees into vertical towers.
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The operation of adding a leaf to a tree consists, more precisely, of grafting a new leaf
into a given edge of the tree. The degeneracy operators defined in (1.5), in fact, graft a
new leaf into the edge which starts from any existing leaf. Thus, to define the remaining
increasing operators, I need a rule to label the internal edges of a tree.

2.1 Labels of internal vertices and internal edges. Any binary tree withn + 1 leaves
and one root has preciselyn internal vertices. Let us choose the following rule to label them.
An internal vertex is labelled byi if it closes a descending path which starts between the
leaves numberi − 1 andi .

An internal edge of the tree is the branch delimited by two adjacent vertices, including
the root. I label byi the edge whose ‘upper’ extreme is a vertex labelled byi . (If we extend
this rule to the external edges, each leaf has the same label as the edge which starts from
it.) For instance:

In conclusion, anyn-tree hasn+ 1 external edges (the leaves), labelled from 0 ton, andn
internal edges (including the one which ends with the root), labelled from 1 ton.

2.2. Grafting operators. For anyn ≥ 1, and for anyi = 1, . . . ,n, the ith left andright
grafting operatorare the maps

l i , ri : Yn→ Yn+1,

which graft a new leaf into thei th internal edge of a tree, respectively from the left and
from the right. In the example above:

.

Notice that the operation of grafting a new leaf into anexternaledge produces the same
result whether it is performed from the left or from the right: it consists inbifurcating the
leaf. Thus the grafting operators on external edges coincide with the degeneracies.

I wish to determine whether increasing maps are horizontal or vertical. In the next lemma
it is shown that the orientation of grafting operators does not depend on the indexi nor on
the tree on which the map is acting. Instead, the orientation of the degeneracysi changes
with the indexi = 0, . . . ,n depending on the particular tree on which it is acting.

2.3. Lemma. Let p,q be natural numbers, and n= p+ q + 1.
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1. The left grafters li are horizontal maps, i.e. li : Yp,q → Yp+1,q for any i = 1, . . . ,n.
Similarly, the right grafters ri are vertical maps, i.e. ri : Yp,q → Yp,q+1 for any
i = 1, . . . ,n.

2. For any(p,q)-tree y, and for any index i∈ {0, . . . ,n}, the degeneracy si is horizontal
on y, i.e. svi (y) = 0, if and only if the ith leaf of y is oriented like/. Similarly, si is
vertical on y, i.e. sh

i (y) = 0, if and only if the ith leaf of y is oriented like\.

Proof:

1. The statement is obvious, since by definition any left grafterl i acts by adding a\-leaf
and any right grafterri acts by adding a/-leaf.

2. The mapsi acts on the leaf/as , thussi adds a\-leaf (it is horizontal). Similarly,si

acts on the leaf as , thussi adds a/-leaf (it is vertical). 2

Since I wish to deal with vertical complexesk[Yp,∗], throughout the remaining part of
this section I fix ap ≥ 0, and observe(p,q)-trees for different values ofq ≥ 0.

The next lemma says whether an increasing map is distinct from any other or produces
the same tree as some other map.

2.4. Labels of oriented leaves. Let y be a(p,q)-tree, andn = p+ q + 1. Define a map
ay : {1, . . . , p} → {1, . . . ,n} by assigning to the integeri the labelay(i ) = ay

i of the i th
\-leaf of y, counting leaves from left to right and excluding the 0th leaf.

Any\-leaf (except the first one) is grafted into a/-leaf (including the last one). Thus there
is a mapby : {1, . . . , p} → {1, . . . ,n} which assigns to the integeri the labelby(i ) = by

i
of the/-leaf into which thei th\-leaf is grafted, i.e.

.

Call A(y):={ay
1, . . . ,a

y
p} ⊂ {1, . . . ,n} the image ofa. Since thep\-leaves ofyare distinct

by assumption, the mapay is a bijection between the set{1, . . . , p}and the setA(y). Thus we
can also define a mapb : A(y)→ {1, . . . ,n} by b(ay

i ) = by
i . Call B(y):={by

1, . . . ,b
y
p} ⊂

{1, . . . ,n} the image ofb. Some properties of the mapsa andb are given in Appendix B.
Finally, let cy : {1, . . . ,q + 1} → {1, . . . ,n} be the map which counts all/-leaves

(including the last one), and letC(y) be its image. ClearlyC(y) = {1, . . . ,n}\A(y) and
B(y) ⊂ C(y).

2.5. Lemma. Let y be a(p,q)-tree, and n= p+ q + 1.

1. The degeneracy maps are all distinct from each other, i.e. for any i, j ∈ {0, . . . ,n}, if
i 6= j then si (y) 6= sj (y). (In particular this holds for any index in the set A(y).)

2. Any right grafting map into an internal edge labelled as a/-leaf (i.e. whose label is the
same as a/-leaf) produces the same tree as some degeneracy map or a right grafting
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map into an edge labelled as a\-leaf. In other words, for any index c∈ C(y), there
exists an a∈ A(y) such that rc(y) = sa(y) or rc(y) = ra(y).

3. All right grafting maps into internal edges labelled as a\-leaf are distinct from each
other and from any degeneracy map. That is, for any a ∈ A(y), ra(y) 6= sa′(y) and
ra(y) 6= ra′(y) for any a′ 6= a ∈ A(y).

Thus, for any (p,q)-treey, there are preciselyp+ 1 distinct vertical non-zero degen-
eracies acting ony, namelys0, sa1, . . . , sap , andp distinct vertical grafting maps, namely
ra1, . . . , rap .

Proof:

1. The assertion is obvious.
2. Suppose that an internal edge is labelled as a/-leaf, byc. Then there are two Possible

shapes of the branch around thecth leaf:

.

In the first case, we havec = b(a) ∈ B(y) for somea ∈ A(y). Choose the biggest
one. Then, if there is noa′ betweena andb = b(a), we haverc(y) = sa(y). Otherwise,
if there is somea′ ∈ A(y) such thata < a′ < b = c, by Proposition (B.1) there must
be someb′ = b(a′) ∈ B(y) such thata < a′ < b′ < b = c. Chooseb′ to be the biggest
such thatb′ < b, and choosea′′ to be the smallest such thatb(a′′) = b′. Then we have
rc(y) = ra′′(y).

In the second case, we havec ∈ C(y)\B(y), and thecth-leaf is grafted into a\-leaf
labelled, say, bya, soa< c< b = b(a). Then, if there are noa′ betweena andc, we have
rc(y) = sa(y). Otherwise, chosea′ as in the previous case, we then haverc(y) = ra′(y).

3. The position of an internal edge which is labelled as a\-leaf is very peculiar. Suppose
that it is labelled bya. Then there must be an indexa′<a (possiblya′ = 0) such that the
internal edgea starts at the intersection between the\-leafa′ and the/-leafb = b(a). By
Proposition (B.1) it must beb ≤ b′ = b(a′). Thus there are only two possible shapes of
the branch around theath leaf, forb = b′ and forb < b′, andra acts as follows:
for b = b′:
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and forb < b′:

.

It is then clear thatra(y) can never be obtained by bifurcating a leaf: the branch
obstructs it. Sora(y) 6= sa′′(y) for anya′′ 6= a.

Now consider the right grafter into another\-leaf, saya′ 6= a. The internal edge
labelled bya′ is again placed in a peculiar position, such as the one labelled bya. Again
by Proposition (B.1), there are exactely 8 mutual positions of two internal edges labelled
by a anda′. Supposea′ < a. If b ≤ b′:

If b > b′:

One can check that on these 8 trees we always havera 6= ra′ , so finally ra is always
different fromra′ . 2

Since any maprc coincides with some degeneracy, forc ∈ C(y), I give the commutation
relations betweenra and the facesdi only for a ∈ A(y).
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2.6. Lemma. The right grafting operators satisfy the relations

(dr) di ra =


ra−1di , for 0≤ i < a,

radi , for a ≤ i ≤ b(a),

id, for i = b(a)+ 1,

radi−1, for i > b(a)+ 1,

Proof: For anya ∈ A(y), the operatorra can act on the two basic trees(1) and(2) of
lemma (2.5). Relations(dr) can be checked on(1) with the help of the following observa-
tions.

• If i < a, the leaf numbera of (1) is labelled bya − 1 in di (1), hence also the internal
edge labelled bya in (1) becomesa− 1 in di (1).
• If a ≤ i ≤ b, the edge labelled bya in (1) remains labelled bya in di (1).
• If i = b+ 1, the facedb+1 deletes precisely the leaf which has just been added byra.
• If i > b+ 1, the edge labelled bya in (1) remains labelled bya in di (1), but the leaf

numberi deleted inra(1) by the facedi was labelled byi − 1 in (1).

The same observations hold for the tree(2). 2

Decomposition of the vertical complexes into towers

2.7. Vertical towers. Let y be a(p,q)-tree. Define thevertical towerover y to be the
graded setT∗[y], whereT0[y] := {y}, and

Tm[y] := {s0(y
′), sai (y

′), rai (y
′) | i = 1, . . . , p, y′ ∈ Tm−1[y]} ⊂ Yp,q+m,

m> 0.

For example, the treey = ∈ Y1,2 hasa1 = 2, s0 = , s2 = and
.

Thus

T0[y] = { }
, T1[y] = { , ,

}
, (2)

and so on. To simplify the notation, I use the same symbolTm[y] to denote the subset of
trees and thek-module spanned by these trees.

2.8. Base trees. In general, a vertical tower is not a vertical complex. For instance, consider
the tree ∈ T1[y] in the example above. Since all the facesd0, d1, . . . ,d5 act vertically
on it, its vertical boundarydv = d0−d1+d2−d3+d4−d5 yields the combination of trees

which does not belong toT0[y] = k[ ].
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For anyp ≥ 0, I define a(p, ∗)-base treeto be any(p,q)-treey such thatdvi (y) = 0
for all i = 0, . . . ,n. A “geometric” description of a base tree is the following: A treey has
dvi (y) = 0, for all i , if and only if every/-leaf belongs to a branch . This idea is used in
the proof of Lemma (2.11).

2.9. Lemma. For any(p,q)-tree y, if dvi (y) = 0 for any i = 0, . . . , p+ q + 1 then the
vertical tower T∗[y] is closed for the vertical faces dvi . Hence the vertical tower constructed
on a base tree is a vertical complex.

Proof: Assume thatdvi (y) = 0 for all i = 0, . . . , p+ q + 1. I show that ify′ belongs to
Tm[y] for somem> 0, then for any indexk ∈ {0, . . . p+q+m+1} such thatdvk (y

′) 6= 0,
the treedvk (y

′) belongs toTm−1[y]. We proceed by induction onm.

• First assume thaty′ ∈ T1[y]. Then by definition of vertical tower we know thaty′ = s0(y)
or there exists an indexi ∈ {1, . . . , p} such thaty′ is equal either tosai (y) or to rai (y).
Now consider ak ∈ {0, . . . , p+ q + 2} such thatdvk (y

′) 6= 0, then either

dvk (y
′) = dvk sai (y) =


sai−1dvk (y) = 0, if k < ai

y, if k = ai ,ai + 1

sai d
v
k−1(y) = 0, if j ≥ k+ 1

for ai possibly equal also to 0, or

dvk (y
′) = dvk rai (y) =


rai−1dvk (y) = 0, if k < ai

rai d
v
k (y) = 0, if ai ≤ k ≤ bi

y, if k = bi + 1

rai d
v
k−1(y) = 0, if k > bi + 1

In conclusion we have thatdvk (y
′) = 0 ordvk (y

′) = y belongs toT0[y].
• Assume now that for any treey′′ ∈ Tm−1[y], we havedvk (y

′′) ∈ Tm−2[y] for any k =
0, . . . p + q + m − 1 such thatdvk (y

′′) 6= 0. I show that the same holds for any tree
y′ ∈ Tm[y]. In fact y′ must be equal either tos0(ȳ), sai (ȳ) or to rai (ȳ), for an index
i ∈ {1, . . . , p}, with ȳ ∈ Tm−1[y]. Thus, in the first case (forai also equal to 0)

dvk (y
′) = dvk sai (ȳ) =


sai−1dvk (ȳ), if k < ai

ȳ, if k = ai ,ai + 1

sai d
v
k−1(ȳ), if k > ai + 1

belongs toTm−1[y], because for inductive hypothesisdvk (ȳ) ∈ Tm−2[y], and in the second
case

dvk (y
′) = dvk rai (ȳ) =


rai−1dvk (ȳ), if k < ai

rai d
v
k (ȳ), if ai ≤ k ≤ bi

ȳ, if k = bi + 1

rai d
v
k−1(ȳ), if k > bi + 1

belongs toTm−1[y] for the same reason. 2



56 FRABETTI

2.10. Corollary. The vertical towers on two distinct base trees y and z are disjoint, that is,

T∗[y]
⋂

T∗[z] = 0.

Proof: Let y′ ∈ Tn[y] ∩ Tm[z]. I show thaty′ = 0 by induction onn.
For n = 0, the base treey cannot itself belong toTm[z], for any m ≥ 0, because being

in the image of at least one vertical maps0, sa, ra coming fromTm−1[z] it should have a
non-zero corresponding vertical face, in contradiction with the assumption that it is a base
tree. HenceT0[y] ∩ T∗[z] = 0.

Suppose we know thatTq[y] ∩ T∗[z] = 0 for all q < n, and lety′ belong toTn[y]. If y′

would belong toT∗[z], by lemma (2.9) all its vertical faces would belong toT∗[z], while y′

must be in the image of one vertical maps0, sa, ra coming fromTn−1[y], and at least the
corresponding vertical face takes values inTn−1[y]. Hencey′ can not belong toT∗[z]. 2

2.11. Lemma-Notation. There is a bijective correspondence between the set Yp and the
set of(p, ∗)-base trees. Therefore I denote by T∗(y) the tower T∗[ ỹ] on the(p, ∗)-base tree
ỹ corresponding to the p-tree y. Moreover, the number of/-leaves of a p-tree y is equal to
the number of/-leaves of its associated base treeỹ.

Proof: Let

ϕ : Yp→
{

y ∈
⊔

0≤s≤p−1

Yp,s | dvi (y) = 0 ∀i = 0, 1, . . . , p+ s+ 1

}

be the map which sends a treey into the treeϕ(y) obtained by bifurcating all the/-leaves.
More precisely, suppose that thep-tree y lies in the componentYr,s of Yp, i.e. suppose
that y hasr internal\-leaves ands internal/-leaves, withr + s + 1 = p. Let c = cy :
{1, 2, . . . , s + 1} → C(y) be the map which labels the/-leaves, as in (2.4). Thenϕ is
defined by

ϕ(y) := sc1sc2 · · · scs+1(y).

(i) Let us show that the mapϕ is well defined.

• If y is a p-tree, then the treeϕ(y) has exactlyp internal leaves oriented like\. In fact,
suppose that thep-treey lies in the componentYr,s of Yp. Then the treeϕ(y) has the
originalr internal\-leaves, and the news+1 \-leaves appearing after the bifurcation
of thes+ 1 total/-leaves: the total number isr + s+ 1= p.
• If y is a p-tree, then the treeϕ(y) can have at mostp− 1 internal/-leaves. In fact,

the/-leaves ofϕ(y) are exactly thes original/-leaves of thep-treey belonging to the
componentYr,s, and clearly 0≤ s ≤ p− 1. Henceϕ(y) belongs to the union of the
setsYp,s for 0≤ s ≤ p− 1.
• Let us show that ifϕ(y) belongs to the setYp,s, thendvi (ϕ(y)) = 0 for any i =

0, 1, . . . , p + s+ 1. If the indexi labels a/-leaf of ϕ(y), it comes by construction
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from a bifurcated/-leaf ofy, thusdvi produces a tree with the same number of/-leaves,
and a\-leaf less. When the indexi labels a\-leaf ofϕ(y), the facedi clearly deletes
a\-leaf unless thei + 1st leaf is a/-leaf which is grafted into thei th leaf, and this is
impossible in the treeϕ(y), because by construction any/-leaf is preceded by a\-leaf
which is grafted into the/-leaf, and not the opposite.

(ii) To prove that the mapϕ is a bijection, I show that the map

ψ :
⊔
s≥0

Yp,s→ Yp

which deletes all the/-leaves, including the last one, is inverse toϕ when restricted to
the subset of trees withdvi (y) = 0 for all i = 0, . . . , p+s+1. The compositionψ ◦ϕ
is clearly the identity map onYp. On the other side, lety be a(p, s)-tree, for some
s ≥ 0. By construction, the treeϕψ(y) is obtained by deleting all the/-leaves fromy,
and then replacing all the new/-leaves with bifurcations. Thusy andϕψ(y) can only
differ for some/-leaf, say labelled byk, such that the leaf labelled byk−1 isnota\-leaf
grafting into it. Any such leaf produces a vertical non-zero facedvk . Since the domain
ofψ is restricted to the trees with only zero vertical faces, the treesy andϕψ(y)must
coincide. 2

2.12. Theorem. For any p≥ 0, the vertical complex(k[Yp,∗], dv) is the direct sum of the
vertical towers based on p-trees, each shifted by the number of/-leaves of its base tree, that
is,

k[Yp,∗] =
⊕
y∈Yp

T∗+qy(y),

where qy is the number of/-leaves of y.

Proof:

(i) By lemma (2.9) we know that the towers constructed on(p, ∗)-base trees (and hence, by
lemma (2.11) on their associatedp-trees) are sub-complexes of the vertical complexes
(k[Yp,∗], dv).

(ii) Corollary (2.10) tells us that the vertical towers on distinct base trees are disjoint
subsets of the vertical complexes. Hence the sum is direct.

(iii) I show now that the sum covers the whole vertical complexk[Yp,∗], i.e. that for
any y∈Yp,q, there exists a treey′ ∈Yp′ such thaty∈ Tm(y′) for somem ≥ 0. Put
y′ := ψ(y)∈Yp and let ỹ′ ∈Yp,qy′ be its (p, ∗)-base tree. Theny differs from ỹ′
for some/-leaves which are not labelled by anybi , with i = 1, . . . , p. In fact,
by definition, any tree in degreem is obtained by adding a/-leaf to a tree in de-
greem − 1, by means of the mapssa or ra. Thus y belongs toTm[ ỹ′] = Tm(y′),
with m= q − qy′ . 2
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2.13. Proposition. The tower T∗(y), associated to a p-tree y, is the total complex of a
multi complex with dimension d= 2p+ 1. Hence the number of its direct summands, at
any degree m≥ 0, is given by the binomial coefficient(

d +m− 1

m

)
= (2p+m)!

m! (2p)!
.

Proof: Apply definition (2.7) and remark, after (2.5), that 2p+ 1 is precisely the number
of distinct maps which can act on a tree withp\-leaves by adding a/-leaf. 2

Drawings of vertical towers.

2.14. Vertical tower for p = 0. The vertical complexk[Y0,∗] coincides with the tower
T∗(|) with base , and it is pre-simplicial since all the faces are non-zero (Figure 3).

Figure 3. Vertical towerT∗ (|) with base .

2.15. Vertical tower for p = 1. The vertical complexk[Y1,∗] coincides with the tower
T∗( ) with base . This complex is the total of a multi-complex with dimensiond = 3
(Figure 4).

Figure 4. Vertical towerT∗( ) with base .
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Figure 5. Vertical towerT∗ ( ) with base .

2.16. Vertical towers for p = 2. The setY2 contains two trees, and , associated
respectively to the base trees and . Hencek[Y2,∗] = T∗ ⊕ T∗+1 , where the
two towers are multi-complexes with dimensiond = 5 (Figures 5 and 6).

2.17. Vertical complex forp≥ 3. The setY3 contains five trees, ,
which correspond, respectively, to the five following base trees:

Hencek[Y3,∗] is the direct sum of five vertical towers, based on these five trees, which are
multi-complexes with dimensiond = 7.

In a similar way one can proceed forp > 3. Each vertical complexk[Yp,∗] is the direct
sum ofcp vertical towers (wherecp is the number ofp-trees), and each vertical tower is a
multi-complex with dimensiond = 2p+ 1.
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Figure 6. Vertical towerT∗ with base .

A. Appendix. Cardinality of the classes of planar binary trees

In this appendix I compute the cardinality of the classes of planar binary trees.
For any couple of natural numbersp,q, let Yp,q be the set of(p+ q + 1)-trees withp

leaves oriented like\(excluded the 0-th leaf), andq leaves oriented like/(excluded the last
one), as in (1.9).

A.1. Proposition. Let cp,q be the cardinality of the set Yp,q. Then

cp,q = cq,p = (p+ q)!

p! q!

(p+ q + 1)!

(p+ 1)! (q + 1)!
.

For small p, 9, the numberscp,q are explicitely given in Figure 7.
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Figure 7. The cardinality of the classes of rooted planar binary trees.

A.2. Lemma. The cardinality cp,q of the set Yp,q is c0,0 = 1 when p= q = 0, cp,0 = 1
for any p > 0, c0,q = 1 for any q > 0 and finally, for any p,q ≥ 1, it satisfies the
relation

cp,q = cp−1,q + cp,q−1+
∑

p1+p2=p−1
q1+q2=q−1

cp1,q1 · cp2,q2.

Proof: When p = q = 0, there exists only one(0, 0)-tree, namely . Thusc0,0 = 1.
Similarly, whenp > 0 andq = 0, there exists only one(p, 0)-tree, namely the comb tree

. The same forp = 0 andq > 0. Thuscp,0 = 1 for any p > 0 andc0,q = 1 for any
q > 0.

When p,q ≥ 1, any(p,q)-treey can have one of the following three shapes:

• y = where, fori = 1, 2, yi is a (pi ,qi )-tree such thatp1 + p2 = p − 1 and
q1+ q2 = q − 1;
• y = wherey1 is a(p1,q1)-tree with p1 = p andq1 = q − 1;
• y = wherey2 is a(p2,q2)-tree with p2 = p− 1 andq2 = q.

Thus, for anyp,q ≥ 1, cp,q is the sum of the cardinality of these three disjoint sets.2

Proof of (A.1): We have to count the numbercp,q of (p,q)-trees, forp,q ≥ 0. Consider
the valuescp,q as coefficients of Taylor’s expansion of a function of two variablesx andy,
around the point(0, 0), and put

f (x, y) := 2xy
∑
p,q≥0

cp,q xpyq.

It is straightforward to show that the relations of lemma (A.2) lead us to the quadratic
equation f 2(x, y) + 2(x + y − 1) f (x, y) + 4xy = 0 in the indeterminatef (x, y). The
solution of this equation is the functionf (x, y) = −(x+ y− 1)± [(x+ y− 1)2− 4xy]

1
2 .
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By direct computations, choosing the sign “−” before the root, we obtain the values

f (0, 0) = 0,
1

n!

∂n f (0, 0)

∂xn = 0,
1

m!

∂m f (0, 0)

∂ym = 0.

In fact

∂n f (x, y)

∂xn = 2n! y [1+ gn,0(x, y)] 1(x, y)−
1
2−(n−1),

wheregn,0(x, y) is a polynomial withgn,0(0, 0) = 0,1(x, y) := [(x+ y− 1)2− 4xy]
1
2 is

such that1(0, 0) = 1, and similarly for∂
m f (x,y)
∂ym . Therefore the functionf (x, y) has itself

Taylor’s expansion

f (x, y) =
∑

n,m≥1

1

n! m!

∂n+m f (0, 0)

∂xn∂ym xnym

and the coefficientscp,q satisfy

2cn−1,m−1 = 1

n! m!

∂n+m f (0, 0)

∂xn∂ym .

Again by direct computation we obtain

∂n+m f (x, y)

∂xn∂ym = 2
(n+m− 2)! (n+m− 1)!

(n− 1)! (m− 1)!
[1+ gn,m(x, y)] 1(x, y)−

1
2−(n+m−1),

wheregn,m(0, 0) = 0 and1(0, 0) = 1. Hence we get the final formula

cp,q = 1

2

1

(p+ 1)! (q + 1)!

∂(p+1)+(q+1) f (0, 0)

∂xp+1∂yq+1 = (p+ q)! (p+ q + 1)!

p! q! (p+ 1)! (q + 1)!
. 2

A.3. Remark. The Catalan numbercn can be given in terms of binomial coefficients,
cn = 1

n+1

(2n
n

)
. Hence the discrete convolution formula for binomial coefficients, namely

(
i + j

k

)
=

k∑
h=0

(
i

h

)(
j

k− h

)
,

evaluated ati = n− 1, j = n+ 1 andk = n, yields exactly the identity

cn =
∑

0≤p≤n−1

1

n+ 1

(
n− 1

p

)(
n

p

)
=

∑
p+q=n−1

(p+ q)!

p! q!

(p+ q + 1)!

(p+ 1)! (q + 1)!

=
∑

p+q=n−1

cp,q.
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B. Appendix. An invariant of the towers

In this appendix I show that the classes of trees are in bijection with certain classes of
set maps. From this construction it is then clear that the number of/-leaves of a treey
characterizes the shape of all trees belonging to the vertical towerT∗(y) associated toy.

B.1. Proposition. For any p,q ≥ 0, there is a bijective correspondence between(p,q)-
trees and pairs of set maps a, b : {1, . . . , p} → {1, . . . ,n}, with n= p+ q+ 1, satisfying
the following conditions:

1. if i < j then a(i )<a( j ), hence the map a is monotone strictly increasing;
2. a(i )<b(i ) for any i, in particular the maps a and b have disjoint image;
3. if i < j and a( j ) < b(i ), then b(i )≥ b( j ) (equivalently, if i < j and b(i ) < b( j ) then

b(i )<a( j )).

Proof:

(i) Let us show that for any(p,q)-tree y, the set mapsa, b : {1, . . . , p} → {1, . . . ,n}
defined in (2.4), withn = p + q + 1, which label the oriented leaves ofy, satisfy
conditions 1, 2, 3. The first two conditions are evident: 1 means that thep\-leaves
are distinct, and 2 means that any\-leaf is distinct from the/-leaf into which is grafted.
Condition 3 is due to the facts that any\-leaf cannot coincide with any/-leaf, sobi 6= aj ,
and that fori < j andbi < bj , the relationbi > aj would correspond to the following
impossible picture:

(ii) Let a, b : {1, . . . , p} → {1, . . . ,n} be two maps satisfying conditions 1, 2, 3 above,
with n = p+ q + 1. Then we can construct a treey with the following algorithm.

• Draw p+ q+ 2 points, and label them from 0 top+ q+ 1. Draw an edge\from the
0-th leaf, an edge/from the last leaf and the root.
• From any leaf labelled bya(i), draw an edge\and graft it into an edge/ drawn from

the leaf labelled byb(i). Extend all the edges until they reach an edge of opposite
orientation.
• From any remaining leaf, draw an/-edge, and reach an\-edge.

None of these operations has any freedom of choice, so the tree thus obtained is uniquely
determined, and it is clearly described by the given mapsa, b. 2
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Here is an example of the algorithm above. Letn = p+ q+ 1 be 7, andp = 2. Choose
two maps according to conditions 1, 2, 3 of (B.1), for instance,

a(1) = 2, a(2) = 3, b(1) = 5, b(2) = 5.

Now follow the three steps in the drawing.

B.2. Blocks. The mapb is not necessarily monotone. However we can say that it is “block”
monotone, since it satisfies

4. For any triple of indices i< j < k such that b(i ) < b( j ), we have b(i ) < b(k).

This condition says that whenever the mapb satisfiesb(i ) < b( j ), for i < j , the inequality
sign “<” separates twoblocksin the image ofb, given, respectively, by indices preceding
and following the inequality sign. This follows easily from the above conditions 1, 2, 3. By
3, the inequalityb(i ) < b( j ) implies thatb(i ) < a( j ). Condition 1 says thata( j ) < a(k)
and condition 2 says thata(k) < b(k). Thus, combining the three inequalities, we obtain
b(i ) < a( j ) < a(k) < b(k).

Remark that thenumber of blocksof the(p,q)-tree associated to the mapsa andb can
vary between 1 andp, for p > 0, and is assumed to be 1 forp = 0.

B.3. Proposition. All the trees belonging to a vertical tower T∗(y) have the same number
qy + 1 of blocks, where qy is the number of/-leaves of the tree y.

Hence the numberqy has a geometrical meaning which is invariant in the vertical tower
T∗(y), being related to the number of blocks of leaves of any tree in the tower.

Proof: If a p-treey hasqy\-leaves, by (2.11) we know that its associated base treeỹ is a
(p,qy)-tree. The towerT∗(y) is based on this tree, and by construction the treeỹ is the one
with minimal number of/-leaves in the tower. Grafting new/-leaves into any\-leaf does not
affect the ordering of the indicesbi , and hence of the number of blocks. Thus we only need
to show that̃y itself hasqy + 1 blocks.

Since ỹ is in the image of the mapϕ defined in (2.11), by construction each/-leaf
has a\-leaf grafted onto whenϕ is applied. Hence each/-leaf is labelled by a certain
bi (i = 1, . . . , p) and the mapb is strictly increasing, that is, each/-leaf is its own
block. 2
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