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Abstract. Planar binary trees appear as the the main ingredient of a new homology theory related to dialgebras,
cf.(J.-L. Loday,C.R. Acad. Sci. Pari821(1995), 141-146.) Here | investigate the simplicial properties of the set
of these trees, which are independent of the dialgebra context though they are reflected in the dialgebra homology.
The set of planar binary trees is endowed with a natural (almost) simplicial structure which gives rise to a chain
complex. The main new idea consists in decomposing the set of trees into classes, by exploiting the orientation of
their leaves. (This trick has subsequently found an application in quantum electrodynamics, c.f. (C. Brouder, “On
the Trees of Quantum Fields,” Eur. Phys. J. C12, 535-549 (2000).) This decomposition yields a chain bicomplex
whose total chain complex is that of binary trees. The main theorem of the paper concerns a further decomposition
of this bicomplex. Each vertical complex is the direct sum of subcomplexes which are in bijection with the
planar binary trees. This decomposition is used in the computation of dialgebra homology as a derived functor,
cf. (A. Frabetti, “Dialgebra (co) Homology with Coefficients,” Springer L.N.M., to appear).
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Introduction

The planar binary trees have been widely studied for their combinatorial properties, which
relate them to permutations, partitions of closed strings and other finite sets. In fact, the
cardinality of the seY,, of planar binary trees with + 1 leaves and one root is the Catalan
numberc, = % which is well known to have many combinatorial interpretations [6].

In 1994, in the paper [10] written by J.-L. Loday, these trees appear as the main ingredient
in the homology of a new kind of algebras, calltidlgebras equipped with two binary as-
sociative operations. Instead of the single cé@y, which forms the module of Hochschild
n-chains of an associative algebfaloday finds out that the module pnfchains of a dial-
gebraD is made ofc, copies ofD®". The crucial observation is that labelling each copy of
D@®" by ann-tree leads to a very natural and simple definition of the face mapistthiace
of ann-tree is obtained by deleting itsth leaf. Hence the set of rooted planar binary trees
acquires an important role in the simplicial context of dialgebra homology. The study of
this homology leads to the investigation of the simplicial structure of the set of trees, which
is completely independent of the dialgebra context and constitutes the content of this paper.

The set of trees can be equipped with degeneracy opergitavhich satisfy all the
classical simplicial relations except thgs # s.15. For such a set, which is called
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almost-simplicial some of the properties of simplicial sets still hold, for instance the
Eilenberg-Zilber Theorem, cf. [8].

The main idea of the paper consists in decomposing the set of trees into classes, by
exploiting the orientation of their leaves. This trick is purely combinatorial (set-theoretical),
and it is explained in Section 1. Then | show that this decomposition is compatible with
the almost-simplicial structure and yields a chain bicomplex whose total chain complex is
that of binary trees. Consequently, in the application to dialgebras, we obtain a canonical
spectral sequence converging to the dialgebra homology.

The main theorem of the paper concerns a further decomposition of this bicomplex.
I show that each vertical complex is in fact the direct sum of subcomplexes, which | call
towers It turns out that these towers are in bijection with the planar binary trees. The vertical
complex in degre@ is the sum of the towers indexed by the planar binary trees of grder
Again, this decomposition is purely combinatorial. An illustrative picture of the situation
is placed at the beginning of Section 2, where | define the vertical towers, by means of a
new kind of degeneracy operator, and prove the decomposition theorem (2.12).

The main application of this decomposition is the interpretation of dialgebra homology
as a Tor functor given in [5].

The basic idea of discerning the orientation of the leaves of planar binary trees finds
another application in [2], where C. Brouder employs planar binary trees to describe the
solution of the Schwinger equations coupling the full fermion and photon propagators of
gquantum electrodynamics. The left (resp. right) orientation of the leaves correspond to the
photon (resp. fermion) component of the solutions.

| would like to thank J.-L. Loday and T. Pirashvili for the useful conversations about
the planar binary trees and the simplicial tricks, and finally the Referees for their accurate
suggestions, which brought remarkable ameliorations to the exposition of the results. | am
very grateful to the “Institut de Recherche Mathétique Avaneé de Strasbourg (France)”
for supporting me during the preparation of the paper.

Notation. Forany se and any fielck, | denote byk[ X] the vector space ovérgenerated
by the elements oX.

1. Double simplicial structure on the set of binary trees

In this section | recall the notion of almost-simplicial structure (cf. [8]) and prove that the
family of planar binary trees is an almost-simplicial set (announced in [4]). | also show that
the associated chain complex is acyclic.

Then | introduce some classes of planar binary trees, whose cardinality is computed
in Appendix A. The faces and degeneracies previously defined are compatible with the
decomposition of the set of planar binary trees into the classes. As a result, there ex-
ists a chain bicomplex whose total chain complex is that of planar binary trees. An im-
portant application, given in [5], concerns the dialgebra homology defined in [10]: the
bicomplex of trees induces a non trivial spectral sequence converging to the dialgebra
homology.
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Faces and degeneracies on the sets of planar binary trees

1.1. Planar binary trees. By aplanar binary treel mean an open planar graph with 3-
valent internal vertices. Among the external vertices, fix a preferred one and calldbthe
Usually | draw the root at the bottom of the tree. The remaining external vertices, called
leaves are drawn at the top of the tree:

leaves

root

For any natural numbar, let Y, be the set of planar binary trees witht+ 1 leaves, which
are labelled as A, ..., n from left to right. Given a treg/ with n + 1 leaves, calbrder

of y the natural numbely| ;= n. Notice that the order of a tree is the number of internal
vertices. Therefore, fon = 0, | consider the unique tree with one leaf, the root and no
internal vertices. Here is a picture of the sgtdforn =0, 1, 2, 3:

o={1}, n={Y}, n={_Y"V}
Ya:{WyWaV’vak

The cardinality of the séf,, is given by theCatalan numbe(see [9], [1], [3] and [6])

2n!
Ch=———.
n'(n + 1)!
Hence the set¥y, Y1, Y2, ... have cardinality 1, 1, 2, 5, 14, 42, 132 and so on.
In the sequel | abbreviate “planar binary tree” into “tree” and “planar binary tree with
n + 1 leaves” into h-tree”.

1.2. Pseudo and almost-simplicial sets.Recall that gre-simplicial set Hs a collection of
setskE,, one for eacim > 0, equipped with face maps: E, — E,_;,foranyi =0, ..., n,
satisfying the relations

)  ddy=d_id, Q<]

Given a fieldk, consider thek-linear spark[ En] of the elements of the sé,. The faces
give rise to the boundary operark[En] — K[En_1], d = > ,(—1)'d; which satisfies
d o d = 0. Therefore any pre-simplicial sgE,, d;} always gives rise to a chain complex
(K[E.], d).
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Also recall that ssimplicial set is equipped with degeneracy maps E, — Eni, for

anyj =0,...,n, which satisfy the relations
sj—1di, 1< |,

(ds) diSJ': id, i=j,j+1,
dei—l» i > j +1,

) SSj= Sj11s8, 1 <]

By definition, gpseudo-simpliciadetis a family of sets endowed with faces and degeneracies
satisfying relationgd) and(ds) but not necessarily relatiorgs) (see [11] and [18]).

Define analmost-simpliciaket to be a pseudo-simplicial set whose degeneracies satisfy
relations(s) exceptfor i = j, which means tha s; =sj1s fori < j and in general (but
not necessarily s #5115 .-

Clearly all simplicial or almost-simplicial sets are pseudo-simplicial,

{simplicial set$ c {almost-simplicial sefsC {pseudo-simplicial sefs
C {pre-simplicial sets
Let us consider now the set of binary trees described in (1.1). Trees can be obtained one
from another by repeating two basic operations: deleting and adding leaves. The operation of
deleting leaves allows us to define face méps> Y,,_1 and thus to consider the associated

chain compleX][Y.] for any given fieldk. The operation of adding leaves allows us to define
degeneracy mapg, — Ypi1.

1.3. Face maps on trees.For anyn > 0, and any = 0, .. ., n, theith faceis the map
di : Yn — Yn_]_

which associates to antreey the (n — 1)-treed; (y) obtained bydeletingtheith leaf from
y. For example:

W)= = and &) =N =N

1.4. Lemma. The face maps;datisfy the above relationg). Hence given a field kthe
sequence

K[Yo] <— K[Y1] «— K[Yo] «— -+ «<— K[Yp] «— ...

is a chain complexwith boundary operator dk[Y,] — Kk[Y_1] given byd = S,
(-1'd.

Proof: In fact, since the leaf number of the treey is the leaf numbelj — 1 of the
treed; (y), the mapsi;d; andd;_,0d; produce the same modification: they delete the leaves
number andj. O
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1.5. Degeneracies on trees.For anyn > 0, and anyj = 0, ..., n, the jth degeneracys
the map

Sj:Yn = Yny1

which bifurcatesthe jth leaf of ann-tree, i.e. which replaces thigh leaf| by the branch
Y. For example:

SO(V) =, 51 (Y/) =, 52 (\</) =,

1.6. Lemma. The degeneracy maps satisfy the above relatidss They also satisfys)
fori < j, hence the set of binary tre¢¥,, d;, s;} is almost-simplicial.

Proof: (ds) The operationsl;s; on a treey first adds a leaf replacing the leaf number
by the branchY’, and then deletes the leaf numbe®o, wheri < j ori > j 4+ 1, we obtain
the same tree if we invert the operations on the suitable leaves. Whejor j + 1, the
operatord; evidently brings the tres, (y) (with branch Y labelled byj, j + 1) back to the
original tree.

(s) The operatiors s; on a treey first bifurcates the leaf numbgrand then bifurcates
the leaf number. So it is clear that if < j the same tree can be obtained performing the
two bifurcations in the inverted order, observing that jltle leaf of y is the leaf number
j +1ofs(y). O

1.7. Remark. The set of binary treefy,, d;, s;} is not simplicial. In fact, fori = j the

operators s replace theth leaf with the branchy”, operators ;15 produces the branch
V’, hence they do not coincide.

1.8. Theorem. For any field k the chain complex of binary trees is acycligat is

AR k, forn=0,
n(kYsl. d) = 0, forn>0.
Proof: Itis straightforward to check that the map
h:Y, — Yoi1, h(y) =N

satisfiesdph = id anddih = hd;_; for anyi > 0, that is,h is an extra-degeneracy (i.e.
h = s ; satisfies relationgs)) for the almost-simplicial set of binary trees. It follows that
dh+hd = id, hence the induced médm k[ Y] — K[Yny1] is @ homotopy between the maps
id and 0. O

Classes of planar binary trees and the bicomplex of trees

1.9. Classes of trees. For any pair of natural numbers q, letY, 4 be the set ofp+q+1)-
trees with p leaves oriented likgexcluding the O-th leaf), and leaves oriented liké
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(excluding the last one). Thelassof ann-tree is specified by the compone¥gy C Yy,
with n = p 4+ q + 1, to which the tree belongs. For example:

V € Y211 C Y4 and \y [ Y1’3 C Y5_

For anyp, q > 0, the setYp, o (resp.Yo,q) contains only one trecY” (resp. *¥), called a
comb

The setsY, 4 are obviously disjoint, for different paing, q), and their disjoint union
covers the seYp,q+1. Hence we have

Yo= || Ypa n=1 )
p+g+1=n

For exampleY1 = Yoo, Y2 = Y1,0U Yo.1 andYs = Y,0U Y11 L Yo 2. Notice that the number
of classes in the s&f, is preciselyn = card{(p,q) |0< p,gq<n-1, p+qg+1=n}.

The orientation of the leaves of artree, given by the numbepsandq of \ - and/-leaves,
permits us to define a double complex of binary trees, by considering maps which do not
change one of the two numbepsg.

However, in general, a map defined on a class of oriented trees cannot be specified
to preservaylobally one orientation, since it usually changes both valpesdq acting
on different trees. This happens, in particular, to the fdcey, — Y,_1, for a fixed
i € {0,...,n}: when restricted to each componeXy, C Yy, it takes value in one of
the two component¥,_1 4, Ypq-1 Of Yo_1, depending on the treg of Y, 4. Consider,
for example, the facel, restricted to the componeiy; = {0, ¥} CY,. Then
do: Y11 — YioU Yo takes value i, on "¢, and inYy o on ¥ and Y.

N o~
X € Yo
doZYLl 3 \V /

€Y,
This motivates the following definition.

1.10. Oriented maps. Let f : k[Yy] — K[Yn] be a linear map. Lek[Yq] = ®pigr1=n
K[Yp,q]l andK[Ym] = @ +s+1=mK[ Y s] be the decompositions into oriented classes induced
by (1). Denote byiy , : K[Ypq] < K[Yy] the inclusion forp + q + 1 = n, and by

p's - K[Ym] = K[Y: s] the projection for + s+ 1 = m. Define theoriented maps of to

be thehorizontalandverticalmapsf" and f ¥ obtained by the composition of the inclusion

ipg thenf, then the projectiorp’ for r = p (hences = g — n + m) and respectively
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s=g (hencea = p—n+m):

Yp—n+m,q

fh
/ p;n'n‘}'mﬂ
T
\ pZ’qu—n+m
v
f v ‘

p,g—n+m

Hence, the oriented maps dftake the following values:

e the horizontalf" : K[Yp q] = K[Yp—(n-m),q] has value

fh(y)'z f(y), if f(y)e k[Yp—(n—m),q],
"o, otherwise

e the verticalf® : k[Yp q] = K[Ypq—n-m] has value

£ (y)= f(y), if f(y)e k[Yp,q—(nfm)],
yr= 0, otherwise

In particular, we can consider the oriented maps defined by thedaaad the degeneracies
Sj.

1.11. Bicomplex of trees. For any natural numberp, g, takek[Yp 4] as the module
of (p, q)-chains, and define horizontal and vertical boundary operai'brsk[Yp,q] —
K[Yp-1ql, d¥ 1 K[Ypq] = K[Ypq—1] respectively as

n n
d":=>"(-D'd" and d":=) (-D'd". n=p+g+1l
i=0 i=0

1.12. Lemma. The oriented boundaries defined above sati$iy"d= 0 and d’d” = 0,
henceK[Yp..], d¥) and (K[ Y, 4], d") are chain complexes for any, g > 0.

Proof: It suffices to show that the oriented facés andd” still satisfy the simplicial
relations(d) of (1.2). Let us show, for instance, thdtd’ = d’_,d’ for anyi < j.

It suffices to prove thatid; is a vertical map (i.edid; : K[Ypq] — K[Ypq-2]) if and
only if d;_1d; is vertical. A faced; deletes #leaf if the ith-leaf itself is oriented like

/. i.e.,/, orif it is a\-leaf such thaX.Then it is easy to see that bothd; andd;_1d;
delete twg-leaves only on the four combinations of these two possibilities for the leaves
andj. O
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0

k[Yoz2] <— k[V12] ~— k[Y22] ~— -

l | |

k[Yon] <— k[Yi1] =— k[Y21] ~— -

l l |

E[Yoo] ~—— k[Yio] <~— k[Y20] =— -

k[Yo]

Figure L Bicomplex of rooted planar binary trees.

1.13. Remark. By assumption, in a pre-simplicial module the faces are all non-zero maps.

Therefore, even if the horizontal (resp. vertical) faces satisfy relatidngshe horizontal
families k[Y, q] (resp. vertical familiek[Y, .]) are not considered to be pre-simplicial
modules.

1.14. Proposition. The triple (K[Y,..], d", d") forms a chain bicomplexdescribed in
Fig. 1, whose total complex is the shifted complex of binary tf&p¥, ], d).

Proof: On any treey, the mapd; acts either aslih (becausel’ (y) =0), or asd’ (when
dM(y) =0). Thus, for any =0, ..., n, we have an obvious identity = d" + d”. Conse-
quently, the boundary operatr k[Yp q] — K[Yp_1,q] ®K[Yp q-1]is the sumd = d" +d".
Then we havedd = d"d" + d"d® + d’d" + d’d” = 0. From (1.12) it follows that
d"d¥ + d*d" = 0. This shows at the same time th&{Y, .], d", d*) is a bicomplex,
and thak[Y,;1] = Tot(k[Y; .]). O

1.15. Remark. The bicomplex of trees gives rise to a spectral sequence
Efq = HpHa(K[Y.) = Hpiq(K[Ysial)

which is zero everywhere, since the complex of trees is acyclic arfelftiane, in a similar

way, can be shown to be zero. However the peculiar structure of trees becomes interesting
when the vector spacdgY,] appear as tensor components of some chain-modules, as
for the chain complex of dialgebras (see [4, 5] and [10]). In this case, the bicomplex of
trees permits us to find a spectral sequence which converges to the homology of the given

complex.



SIMPLICIAL PROPERTIES OF PLANAR BINARY TREES 49

2. Decomposition of the bicomplex of trees into towers

In this section | show a technical result which helps drastically in the computation of
dialgebra homology as a derived functor (see [5]). The main theorem says that any vertical
complexk[Y, ] is a direct sum of subcomplexes whose homology can be computed for
some dialgebras.

At the same time, being related to intrinsic properties of the trees, this result clarifies
the simplicial structure of the bicomplex. Each subcomplex, called¢htical towerand
denoted byT.,(y), is constructed on a single tree, called f@se treewhose vertical faces
are all zero, by applying all possible vertical increasing maps of degree 1, i.e. by adding
/-leaves in all possible distinct ways. It turns out, due to the particular shape of planar
binary trees, that such towers are all disjoint from each other and that they cover the whole
bicomplex. This structure yields a decomposition of the bicomplex of trees which has the
following remarkable structure:

e The base trees arising in the vertical chain comgx, .], for fixed p > 0, are in
bijection with p-trees (see Lemma (2.11)), i.e. they are counted exacity by cardY,.

e The vertical towerlT,(y), associated to @-treey, is a multi-complex with dimension
d = 2p + 1 (see Proposition (2.13)).

e The vertical towefT,(y), associated to p-treey, is a subcomplex d[Y,, .] shifted by
the number of-leaves ofy (excluding its last leaf). This means thatjibelongs to the
classYy q of Yy, thenTm(y) C K[Yp q+m] for anym > 0 (see again Lemma (2.11)). A
geometrical meaning of the numhggris given in the Appendix B.

Figure 2 is a summarizing picture of the vertical towers at small dimension. The details
of the definitions and proofs are given in the remaining part of this section.

New kinds of degeneracies: Grafting operators

In order to construct a vertical complex on a given tree, | need to introduce a second kind
of increasing mapy, — Y41, besides the usual degenerasgs

! } } } b ! } }
g=3 Ta(1) . . . . o . . .
} ! ! ! ! ! ! ! !
a=2 | Tz(l) 2(Y) . 80 « BTIW)IE . B . OT(Y)
! ! ! } by ! !
g=1 Tlf') I (I/) '11(1\?’) ® 1o(Y) T (J\Y)@ L)@ T e T ()
qg=0 To(l) T5(Y) (V) T (W)
base tree Y A% N X » Y X A A4
p=0 p=1 p=2 p=3
(co=1) (ar=1) (ca =12) (ca=15)

Figure 2 Decomposition of the bicomplex of trees into vertical towers.
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The operation of adding a leaf to a tree consists, more precisely, of grafting a new leaf
into a given edge of the tree. The degeneracy operators defined in (1.5), in fact, graft a
new leaf into the edge which starts from any existing leaf. Thus, to define the remaining
increasing operators, | need a rule to label the internal edges of a tree.

2.1 Labels of internal vertices and internal edges. Any binary tree withn + 1 leaves
and one root has precisealyinternal vertices. Let us choose the following rule to label them.
An internal vertex is labelled biyif it closes a descending path which starts between the
leaves number — 1 andi.

An internal edge of the tree is the branch delimited by two adjacent vertices, including
the root. | label by the edge whose ‘upper’ extreme is a vertex labelled. ifif we extend
this rule to the external edges, each leaf has the same label as the edge which starts from
it.) For instance:

and
Labels of internal vertices. Labels of internal edges.

In conclusion, any-tree has + 1 external edges (the leaves), labelled from @,tandn
internal edges (including the one which ends with the root), labelled frorm1 to

2.2. Grafting operators. Foranyn > 1, and for anyi = 1, ..., n, theith left andright
grafting operatorare the maps

li, i Yo = Yoga,

which graft a new leaf into theth internal edge of a tree, respectively from the left and
from the right. In the example above:

Notice that the operation of grafting a new leaf intoeatternaledge produces the same
result whether it is performed from the left or from the right: it consistsifarcatingthe
leaf. Thus the grafting operators on external edges coincide with the degeneracies.

| wish to determine whether increasing maps are horizontal or vertical. In the nextlemma
it is shown that the orientation of grafting operators does not depend on theiindexn
the tree on which the map is acting. Instead, the orientation of the degerse@d@nges
with the indexi = 0, ..., n depending on the particular tree on which it is acting.

2.3.Lemma. Let p,q be natural numbersand n= p+q + 1.
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1. The left graftersil are horizontal mapsi.e. | : Ypq — Ypy1q foranyi=1,...,n.
Similarly, the right grafters r are vertical mapsi.e. ; : Ypq — Ypq41 for any
i=1,...,n.

2. Forany(p, q)-tree y, and for any index ie {0, ..., n}, the degeneracy $s horizontal
ony,ie. $(y) = 0, if and only if the th leaf of y is oriented likg. Similarly, s is
verticalon y; i.e. §'(y) = 0, if and only if the th leaf of y is oriented likg.

Proof:

1. The statement is obvious, since by definition any left grdftacts by adding &leaf
and any right grafter; acts by adding aleaf.

2. The maps acts on the leafis >/ , thuss adds §-leaf (it is horizontal). Similarlys
acts on the leai\ as X , thuss adds g-leaf (it is vertical). O

Since | wish to deal with vertical complex&gY, ], throughout the remaining part of
this section | fix ap > 0, and observép, q)-trees for different values af > 0.

The next lemma says whether an increasing map is distinct from any other or produces
the same tree as some other map.

2.4. Labels of oriented leaves. Let y be a(p, q)-tree, anch = p + q + 1. Define a map
a¥:{L...,p} = {1 ...,n} by assigning to the integérthe labela¥(i) = &’ of theith
\-leaf of y, counting leaves from left to right and excluding the Oth leaf.

Any\-leaf (except the first one) is grafted into-keaf (including the last one). Thus there
isamapb? : {1,..., p} = {1,...,n}which assigns to the integethe labelbY(i) = biy
of the/-leaf into which tha th\-leaf is grafted, i.e.

a; b

Call A(y)::{a{, R a‘,ﬁ} c {1, ..., n}theimage o&. Since thg\-leaves ofy are distinct
by assumption, the mag is a bijection betweenthe s, . . ., p} and the sef\(y). Thuswe
can also define a map: A(y) — {1,...,n} byb@’) = b’. Call B(y):={b}, ..., b}} C
{1, ..., n} the image ob. Some properties of the mapsandb are given in Appendix B.

Finally, letcY : {1,...,9+ 1} — {1,...,n} be the map which counts alleaves
(including the last one), and I€X(y) be its image. ClearfC(y) = {1, ..., n}\ A(y) and
B(y) C C(y).

2.5.Lemma. Lety be a(p,q)-tree,andn=p+qg+ 1.

1. The degeneracy maps are all distinct from each gtherforanyi j € {0, ..., n}, if
i # jthens(y) # sj(y). (In particular this holds for any index in the set(y.)

2. Any right grafting map into an internal edge labelled gslaaf (i.e. whose label is the
same as #leaf) produces the same tree as some degeneracy map or a right grafting
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map into an edge labelled asdeaf. In other wordsfor any index ce C(y), there
exists an ae A(y) such that g(y) = sa(y) orre(y) = ra(y).

3. All right grafting maps into internal edges labelled as-leaf are distinct from each
other and from any degeneracy map. Thatft any a € A(y), ra(y) # s« (y) and

ra(y) #ra(y) forany d # a e A(y).

Thus for any (p, q)-treey, there are preciselp + 1 distinct vertical non-zero degen-

eracies acting oy, namelyso, S, - - . , Sa,,» and p distinct vertical grafting mapsiamely
ral ..... rap
Proof:

1. The assertion is obvious.
2. Suppose that an internal edge is labelled/aeaf, byc. Then there are two Possible
shapes of the branch around tihb leaf:

In the first case, we hawe= b(a) € B(y) for somea € A(y). Choose the biggest
one. Then, if there is na’ betweera andb = b(a), we have .(y) = s.(y). Otherwise,
if there is som&’ € A(y) such thath < @’ < b = c, by Proposition (B.1) there must
be somdy’ = b(a’) € B(y) suchthath < @ < b’ < b = c. Choosdy' to be the biggest
such thaty < b, and choos@” to be the smallest such thata”) = b’. Then we have
rc(Y) = ra”(Y)-

In the second case, we have= C(y)\B(y), and thecth-leaf is grafted into &leaf
labelled, say, bg, soa < ¢ < b = b(a). Then, ifthere are na betweera andc, we have
ro(y) = sa(y). Otherwise, chos&’ as in the previous case, we then haMg) = ra (y).

3. The position of an internal edge which is labelled @deaf is very peculiar. Suppose
that it is labelled bya. Then there must be an indak< a (possiblya’ = 0) such that the
internal edge starts at the intersection between\tHeafa’ and the/-leafb = b(a). By
Proposition (B.1) it must bb < b’ = b(&’). Thus there are only two possible shapes of
the branch around th&" leaf, forb = b’ and forb < b, andr, acts as follows:
forb="0"

a' a h=b’ a" a b b

(1) = ; - ra(l) = ?
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and forb < b':

°

a’ a b b' a’  a b
(2) = 4 = r(2) =

It is then clear that,(y) can never be obtained by bifurcating a leaf: the brai>’h
obstructs it. S@,(y) # sy (y) for anya” # a.

Now consider the right grafter into anothdeaf, saya’ # a. The internal edge
labelled bya' is again placed in a peculiar position, such as the one labelladAgain
by Proposition (B.1), there are exactely 8 mutual positions of two internal edges labelled
by aanda’. Suppos&’ < a.lfb <D

a’ a h=b' a’ a b=b'
(11) = 7\/ (12) = ?
a’  a b b’ a a b b’
(21) = $ (22) = %
If b>b"
a b a b a” b a b
[11] = T (12] = Y
a b a b a' b a b

[21] = T [22] = T

One can check that on these 8 trees we always havé ry, so finallyr, is always
different fromr,. O

Since any map; coincides with some degeneracy, toe C(y), | give the commutation
relations between, and the facesd; only fora € A(y).
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2.6. Lemma. The right grafting operators satisfy the relations

ra_1di, for0O<i <a,
radi, fora<i <b(a),
dr) dira=
@) ars id, fori =b(a) + 1,

radi_1, fori >b@) +1,

Proof: For anya € A(y), the operator, can act on the two basic tre€¥) and (2) of
lemma (2.5). Relation&r) can be checked ofi) with the help of the following observa-
tions.

e If i < a, the leaf numbea of (1) is labelled bya — 1 in d; (1), hence also the internal
edge labelled by in (1) becomesa — 1ind;(1).

e If a <i < b, the edge labelled by in (1) remains labelled bg in d; (1).

e If i =b+ 1, the facaly,; deletes precisely the leaf which has just been added.by

e If i > b+ 1, the edge labelled by in (1) remains labelled by in d; (1), but the leaf
number deleted irr,(1) by the faced, was labelled by — 1 in (1).

The same observations hold for the t(@g O

Decomposition of the vertical complexes into towers

2.7. Vertical towers. Lety be a(p, q)-tree. Define thevertical towerovery to be the
graded seT,[y], whereTo[y] := {y}, and

Tulyl :={(Y), s(¥), ra(¥)li=21....p, Y € Tnalyl} C Ypgim,
m > 0.

For example, the treg = W € Yio hasay = 2,5 (W)= ¥, 5 (V)= V¥ and
(W) =Y.
Thus

Tyl ={V}, T ={¥ V. Y} )

and so on. To simplify the notation, | use the same synhy] to denote the subset of
trees and th&-module spanned by these trees.

2.8.Base trees. In general, a vertical tower is not a vertical complex. For instance, consider

the tree e Ty1[y] in the example above. Since all the facksd;, .. ., ds act vertically
on it, its vertical boundarg’ = dg — d; + d, — d3 + d; — ds yields the combination of trees

() =V -V+ V- - ==

which does not belong td[y] = k[ Y.
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For anyp > 0, | define a(p, x)-base treeo be any(p, q)-treey such thaid’(y) = 0
foralli =0,...,n. A“geometric” description of a base tree is the following: A tiekas
d’(y) =0, for alli, if and only if every-leaf belongs to a branc”. This idea is used in
the proof of Lemma (2.11).

2.9. Lemma. For any(p, q)-tree y,ifd’(y) =0foranyi=0,..., p+q+ 1lthenthe
vertical tower T.[y] is closed for the vertical faceg' dHence the vertical tower constructed
on a base tree is a vertical complex.

Proof: Assume that’(y) =0foralli =0,..., p + q + 1. | show that ify’ belongs to
Tmly] for somem > 0, then for any indek € {0, ... p+q+ m+ 1} such thaty (y’) # O,
the treed? (y') belongs toly,_1[y]. We proceed by induction om.

e Firstassumethat € Ti[y]. Then by definition of vertical tower we know thgt= s(y)
or there exists an indexe {1, ..., p} such thaty’ is equal either te, (y) or torg (y).
Now consider & € {0, ..., p+ g+ 2} such thaty (y') # 0, then either

Su—10(y) =0, ifk<ag

i (y) =disa () =1V, ifk=a,a+1
S () =0, if j>k+1
for g possibly equal also to 0, or

ra—10g(y) =0, ifk<g
radi(y)=0, ifa<k<b
Y, ifk=hb +1
rady_;(y)=0, ifk>b+1

di(y) = dra (y) =

In conclusion we have tha (y’) = 0 ord;(y’) = y belongs toT[y].

e Assume now that for any treg’ € Ty_1[y], we haved)(y”) € Tm_2[y] for any k =
0,...p+ g+ m— 1 such thaid(y”) # 0. | show that the same holds for any tree
y' € Tm[yl. In fact y’ must be equal either t&(y), s, (¥) or torg (¥), for an index
i €{l,...,p},withy e Tn_1[y]. Thus, in the first case (fa also equal to 0)

Sa—10¢ (¥), ifk <a
de(y) = dise (¥) = { V. fk=a,a +1
S (), ifk>a+1
belongs tal,m_1[y], because for inductive hypothesi&(y) € Tm_2[y], and in the second
case
ra—10g(y), ifk <a
radg(y), ifa<k<b
y, ifk=h +1
rady_(¥), ifk>b+1

di(Y) = dra (§) =

belongs tol,_1[y] for the same reason. O
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2.10. Corollary. The vertical towers on two distinct base trees y and z are disjihat is,

T T.Id =0

Proof: Lety € Ty[y] N Tm[Z]. | show thaty’ = 0 by induction om.

Forn = 0, the base treg cannot itself belong tdm[z], for anym > 0, because being
in the image of at least one vertical map s,, ra coming fromT,_1[Z] it should have a
non-zero corresponding vertical face, in contradiction with the assumption that it is a base
tree. Hencdp[y] N T,[z] = 0.

Suppose we know thay[y] N T.[z] = 0 for allq < n, and lety’ belong toT,[y]. If ¥’
would belong tdT,[Z], by lemma (2.9) all its vertical faces would belongfd z], while y’
must be in the image of one vertical map s;, ra coming fromT,_41[y], and at least the
corresponding vertical face takes valuedjn;[y]. Hencey’ can not belong t@,[z]. O

2.11. Lemma-Notation. There is a bijective correspondence between the setnd the
set of(p, x)-base trees. Therefore | denote hyy) the tower T[] on the(p, x)-base tree
y corresponding to the p-tree y. Moreoytre number gf-leaves of a p-tree y is equal to
the number of -leaves of its associated base trge

Proof: Let

o:Yp—>1ye || Yosld(y=0vi=01.. p+s+1
O<s<p-1

be the map which sends a trgénto the treep(y) obtained by bifurcating all theleaves.
More precisely, suppose that tietree y lies in the componenY, s of Yy, i.e. suppose
thaty hasr internal-leaves and interna)/-leaves, withr + s+ 1 = p. Letc = ¢¥ :
{1,2,...,s+ 1} — C(y) be the map which labels tjtdeaves, as in (2.4). Theqp is
defined by

§0(y) = Sclscz et SCS+1(y)

(i) Letus show that the mapis well defined.

o If yis ap-tree, then the treg(y) has exactlyp internal leaves oriented likeln fact,
suppose that thp-treey lies in the componer¥; s of Y,,. Then the treg(y) has the
originalr internal-leaves, and the neg# 1 \-leaves appearing after the bifurcation
of thes + 1 total/-leaves: the total numberis+ s+ 1 = p.

o If yis ap-tree, then the treg(y) can have at mogb — 1 internaj-leaves. In fact,
the/-leaves ofp(y) are exactly the original/-leaves of thep-treey belonging to the
component, s, and clearly O< s < p — 1. Hencep(y) belongs to the union of the
setsYpsforO0<s<p—1.

e Let us show that ifp(y) belongs to the seYys, thend'(¢(y)) = O for anyi =
0,1,...,p+s+ 1. If the indexi labels &-leaf of ¢(y), it comes by construction
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from a bifurcated-leaf ofy, thusd! produces a tree with the same numbgtlefaves,
and a-leaf less. When the indexlabels a-leaf of ¢(y), the faced;, clearly deletes
a\-leaf unless thé + 1st leaf is g-leaf which is grafted into thih leaf, and this is
impossible in the treg(y), because by construction ghleaf is preceded by\aleaf
which is grafted into thgleaf, and not the opposite.

(i) To prove that the map is a bijection, | show that the map

v Yes—> Yo

s>0

which deletes all théleaves, including the last one, is inversetahen restricted to
the subset of trees withf (y) = Oforalli =0, ..., p+s+1. The compositiony o
is clearly the identity map ol,. On the other side, let be a(p, s)-tree, for some
s > 0. By construction, the tregy (y) is obtained by deleting all theleaves fromy,
and then replacing all the negweaves with bifurcations. Thusandgy (y) can only
differ for someg'-leaf, say labelled bl, such that the leaf labelled lky- 1 isnota)\ -leaf
grafting into it. Any such leaf produces a vertical non-zero f@tesince the domain
of ¢ is restricted to the trees with only zero vertical faces, the tyeawlpy (y) must
coincide. 0O

2.12. Theorem. Forany p> 0, the vertical complexk[Y, .], d*) is the direct sum of the
vertical towers based on p-treesach shifted by the number/afaves of its base trethat
is,

K[Yp.] = €D Teta, ().

yeYp
where g is the number of -leaves of y

Proof:

(i) Bylemma (2.9)we know that the towers constructedpn«)-base trees (and hence, by
lemma (2.11) on their associatpetrees) are sub-complexes of the vertical complexes
(K[Yp..], d).

(i) Corollary (2.10) tells us that the vertical towers on distinct base trees are disjoint
subsets of the vertical complexes. Hence the sum is direct.

(iii) 1 show now that the sum covers the whole vertical compkgX,, .], i.e. that for
anyye Ypq, there exists a treg’ € Yy such thaty € Ty(y') for somem > 0. Put
y = ¥(y)eY, and Iety’er,qy, be its (p, x)-base tree. They differs from y’
for someg-leaves which are not labelled by afy, withi = 1,..., p. In fact,
by definition, any tree in degrem is obtained by adding/aleaf to a tree in de-
greem — 1, by means of the maps or ro. Thusy belongs toTm[y] = Tm(Y),
withm=q —qy. O
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2.13. Proposition. The tower T(y), associated to a p-tree,ys the total complex of a
multi complex with dimension & 2p + 1. Hence the number of its direct summapats
any degree n> 0, is given by the binomial coefficient

d+m-1\ (2p+m)!
( m )_m!(Zp)!'

Proof:  Apply definition (2.7) and remark, after (2.5), that 2 1 is precisely the number
of distinct maps which can act on a tree wjik-leaves by adding/aleaf. O

Drawings of vertical towers.

2.14. Vertical tower for p = 0. The vertical compleX[Yq .] coincides with the tower
T.(|) with base’, and it is pre-simplicial since all the faces are non-zero (Figure 3).

HV—LV—)—)W%V—)Y

Figure 3 Vertical towerT, (]) with base .

2.15. Vertical tower for p = 1. The vertical compleX[Y; ,] coincides with the tower
T.(Y) with base Y. This complex is the total of a multi-complex with dimensiba= 3
(Figure 4).

|
y
do-"d1+d2
/
P S S X7
/ do - di do |- dy
do |- s N —di +ds = NG N 11
d —dg ' dy '—dy +dy —d5+df
—d; +dy —ds
—ds ] i

111 '

Figure 4 Vertical towerT,( ) with base .
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hII

d
I \\yv ~df +d> ~ ds Y% il
\4

Mo — di + ds dy — dy A ds — ds
\y —d| +ds ¥
Pre d do <3 + dy
< \ <
d da
& X
da A dg — ds

<X

N\

vV v

Figure 5 Vertical towerT, () with base\}”.

2.16. Vertical towers forp = 2. The setY, contains two trees™ and <, associated
respectively to the base tre®>” and . Hencek[ Y2 ] = T, (W)@ T.11 (), where the
two towers are multi-complexes with dimensidnr= 5 (Figures 5 and 6).

2.17. Vertical complexforp > 3. The selz containsfivetrees\y, ', X, ¥ and ¢,
which correspond, respectively, to the five following base trees:

N NN

Hencek[Ys ] is the direct sum of five vertical towers, based on these five trees, which are
multi-complexes with dimensiod = 7.

In a similar way one can proceed fpr> 3. Each vertical complek[Y .] is the direct
sum ofc, vertical towers (where,, is the number op-trees), and each vertical tower is a
multi-complex with dimensionl = 2p + 1.
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il

4

I \2// mh e~ ds ot ds % I
N ,

Yo — dy + d2 ~ds + df — ds + dg
V\V —dy +{o —da I
e d1 —d3 43 — ds
<
A5 cds
-—d5 de —d3+d4
V, v

Figure 6. Vertical towerT, () with base “¥.

A. Appendix. Cardinality of the classes of planar binary trees

In this appendix | compute the cardinality of the classes of planar binary trees.

For any couple of natural numbepsq, let Y, 4 be the set of p + q + 1)-trees withp
leaves oriented likgexcluded the 0-th leaf), anglleaves oriented lik§excluded the last
one), asin (1.9).

A.1. Proposition. Let ¢, 4 be the cardinality of the setp¥. Then

L _(p+qQ! (p+q+D)!
A= = o (b1 D @ D!

For small p, 9, the numbery, 4 are explicitely given in Figure 7.



SIMPLICIAL PROPERTIES OF PLANAR BINARY TREES 61

10 50 175 ...
6 20 50 105 ...
3 6 10 15 21
1 11 1 1 1 1
1 2 3 4 5 6 »p

S =N W WY
e e

pg| O

Figure 7. The cardinality of the classes of rooted planar binary trees.

A.2. Lemma. The cardinality ¢ q of the set ¥ 4 is oo = Lwhen p=q =0,cpo=1
forany p> 0,coq = 1forany g > 0 and finally for any pq > 1, it satisfies the
relation

Cpg = Cp-19 + Cpg-1+ Z Cpy.a1 * Cpa.ge-

p1+p2=p-1
ap+a2=q-1

Proof: Whenp = q = 0, there exists only on€), 0)-tree, namelyY’. Thuscyp = 1.
Similarly, whenp > 0 andqg = 0, there exists only ongp, 0)-tree, namely the comb tree
Y. The same foip = 0 andg > 0. Thuscpo = 1 for anyp > 0 andcoq = 1 for any
q>0.

Whenp, q > 1, any(p, q)-treey can have one of the following three shapes:

o vy = "%, where, fori = 1,2,y is a(p;, g)-tree such thap; + p» = p— 1 and
h+G=9-1

e y = Yv,wherey; is a(ps, th)-tree withp; = pandq; =q — 1;

e Y= \: wherey, is a(py, g)-tree withp, = p — 1 andag, = q.

Thus, for anyp, g > 1, ¢, 4 is the sum of the cardinality of these three disjoint sets 0

Proof of (A.1):  We have to count the numbeg 4 of (p, q)-trees, forp, g > 0. Consider
the values), 4 as coefficients of Taylor's expansion of a function of two variablesidy,
around the poing0, 0), and put

(X y) i=2xy ) cpq xPyL
p.a=0

It is straightforward to show that the relations of lemma (A.2) lead us to the quadratic
equationf?(x, y) + 2(x + y — 1) f(x, y) + 4xy = 0 in the indeterminatd (x, y). The
solution of this equation is the functioh(x, y) = —(x +y — 1) & [(X + y — 1)? — 4xy] 2.
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By direct computations, choosing the sign™before the root, we obtain the values

_ 19"f0.0 _ 10m1(0.0)
fO0=0 =0 G =°
In fact
" f (X, e
% = 2nI y [1 + gn’()(x7 y)] A(X’ y) ; (n 1)’

wheregn o(X, y) is a polynomial withg, o(0, 0) = 0, A(X, y) := [(X+ Yy — 1)® — 4xy]% is

such thatA (0, 0) = 1, and similarly for’ %Y Therefore the functiorf (x, y) has itself

. ay"
Taylor's expansion

n4+m
foy— Y 1 3 f(O,O)Xnym

] | n m
wmey Nt m ax"ay

and the coefficients, 4 satisfy

1 9™mf(0,0)
ntmt 9x"oy™

2Ch-1m-1=

Again by direct computation we obtain

MM (X, y) _2(n+m—2)! (n+m-121)!

—1_(n+m-1)
8Xnaym (n _ 1)| (m _ 1)| [l + gn,m(xv y)] A(Xv y) 2 I

wheregn m(0, 0) = 0 andA (0, 0) = 1. Hence we get the final formula

. _1 1 3<P+1>+<q+1)f(0,0): (p+q! (p+g+ D!
PAT2(p+ DI @@+1!  axPrigyat? plal (p+ DM@+t

A.3. Remark. The Catalan numbes, can be given in terms of binomial coefficients,

Ch = Fll(i”) Hence the discrete convolution formula for binomial coefficients, namely

(=560

evaluated at = n—1, ] = n+ 1 andk = n, yields exactly the identity

1 (n—l)(n)_ P+p! (p+g+ 1!

Ch, =
" n+1\ p p plgql (p+1! @+ 1!

O<p=<n-1 p+q=n—-1

= ) G
p+q=n-1
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B. Appendix. An invariant of the towers

In this appendix | show that the classes of trees are in bijection with certain classes of
set maps. From this construction it is then clear that the numbeleafies of a tregy
characterizes the shape of all trees belonging to the vertical fbwer associated tg.

B.1. Proposition. For any p q > 0, there is a bijective correspondence betwépnq)-
trees and pairs of set mapsh: {1,..., p} — {1,...,n},withn= p+ g+ 1, satisfying
the following conditions:

1. ifi <jthena(i)<a(j), hence the map a is monotone strictly increasing

2. a(i) <b(i) for any i, in particular the maps a and b have disjoint image

3. ifi <janda(j) <b(), then ki) >b(j) (equivalentlyifi < j and b(i) <b(j) then
b(i) <a(j)).

Proof:

(i) Let us show that for anyp, q)-treey, the set maps,b : {1,...,p} — {1,...,n}
defined in (2.4), with = p 4+ q + 1, which label the oriented leaves gf satisfy
conditions 1, 2, 3. The first two conditions are evident: 1 means thaptHeaves
are distinct, and 2 means that adeaf is distinct from thg-leaf into which is grafted.
Condition 3 is due to the facts that apleaf cannot coincide with anyleaf, s, # a;,
and that fori < j andb; < bj, the relatiorly > a; would correspond to the following
impossible picture:

a a4 b b
W

(i) Leta,b: {1,...,p} — {1,...,n} be two maps satisfying conditions 1, 2, 3 above,
with n = p 4+ q + 1. Then we can construct a trgevith the following algorithm.

e Draw p+ g+ 2 points, and label them from 0 fw+ q + 1. Draw an edggfrom the
0-th leaf, an edgédrom the last leaf and the root.

e From any leaf labelled bg(i), draw an edgeand graft it into an edgedrawn from
the leaf labelled by(i). Extend all the edges until they reach an edge of opposite
orientation.

e From any remaining leaf, draw gredge, and reach aredge.

None of these operations has any freedom of choice, so the tree thus obtained is uniquely

determined, and it is clearly described by the given najs |
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Here is an example of the algorithm above. het p+q+ 1 be 7, andp = 2. Choose
two maps according to conditions 1, 2, 3 of (B.1), for instance,

all) =2, a2 =3, b(1) =5, b(2) =5.
Now follow the three steps in the drawing.

012345617 01234567

B.2.Blocks. The mapbis not necessarily monotone. However we can say that it is “block”
monotone, since it satisfies

4. For any triple of indices i< ] < k such thatlti) < b(j), we have ki) < b(k).

This condition says that whenever the niegatisfied(i) < b(j), fori < j, the inequality
sign “<” separates twdlocksin the image ob, given, respectively, by indices preceding
and following the inequality sign. This follows easily from the above conditions 1, 2, 3. By
3, the inequalityb(i) < b(j) implies thatb(i) < a(j). Condition 1 says tha(j) < a(k)
and condition 2 says thai(k) < b(k). Thus, combining the three inequalities, we obtain
b(i) < a(j) < ak) < bk).

Remark that theumber of blocksf the (p, g)-tree associated to the magpsndb can
vary between 1 ang, for p > 0, and is assumed to be 1 fpr= 0.

B.3. Proposition. All the trees belonging to a vertical toweg (ly) have the same number
gy + 1 of blocks where g is the number gfleaves of the tree y.

Hence the numbeg, has a geometrical meaning which is invariant in the vertical tower
T.(y), being related to the number of blocks of leaves of any tree in the tower.

Proof: Ifa p-treey hasqgy\-leaves, by (2.11) we know that its associated basejtis@
(p, gy)-tree. The toweT, (y) is based on this tree, and by construction the jressthe one
with minimal number of-leaves in the tower. Grafting neweaves into any-leaf does not
affect the ordering of the indicds, and hence of the number of blocks. Thus we only need
to show thaty itself hasqy + 1 blocks.

Since ¥ is in the image of the map defined in (2.11), by construction egeleaf
has a-leaf grafted onto wherp is applied. Hence eag¢Heaf is labelled by a certain
b (i = 1,...,p) and the mapb is strictly increasing, that is, eagtheaf is its own
block. O



SIMPLICIAL PROPERTIES OF PLANAR BINARY TREES 65

References

=

. R. Alter, “Some remarks and results on Catalan numbers¢.2nd Lousiana conf. on Combinatori@sraph
Theory and Computind.09-132, (1971).
. C. Brouder, “On the trees of quantum fieldsyir. Phys. JC12 (2000), 539-549.
. W.G. Brown, “Historical note on a recurrent combinatorial probleknjer. Math. Month72(1965), 973-977.
. A. Frabetti, “Dialgebra homology of associative algebr@sR.A.S325(1997), 135-140.
. A. Frabetti, “Dialgebra (co)homology with coefficients,” Springer L.N.M., to appear.
. H.W. Gould, “Research bibliography of two special number sequeridasij. Monongaliad 2 (1971), i-viii,
1-39.
7. R.L. Graham, D.E. Knuth, and O. Patashrillancrete Mathematics. A Foundation for Computer Scigence
Addison-Wesley, New York, 1989.
8. K.N. Inasaridze, “Homotopy of pseudosimplicial groups, nonabelian derived functors, and algebraic K-
theory,”Math. Shornik, T98 (140),3(11), (1975), 339-362.
9. D.E. Knuth,The Art of Computer Programming I. Fundamental Algorithiddison-Wesley, New York,
1968.
10. J.-L. Loday, “Algcbres ayant deux epations associatives (dipres),”C.R. Acad. Sci. Pari§21 (1995),
141-146.
11. M. Tierney and W. Vogel, “Simplicial derived functors,” @ategory Theory, Homology Theory and Appli-
cations Springer L.N.M.68(1969), 167-179.

Ok WN



