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Abstract. We present formulas for operators which add a row or a column to the partition indexing the power,
monomial, forgotten, Schur, homogeneous and elementary symmetric functions. As an application of these oper-
ators we show that the operator that adds a column to the Schur functions can be used to calculate a formula for
the number of pairs of standard tableaux the same shape and height less than or equal to a fixed
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1. Notation

Using the notation of [3], we will consider the powgs; [ X1}, Schur{s;[ X]},, monomial
{m,[X]},., homogeneouh; [ X]},, elementarye, [ X]}, and forgotter{ f,[ X]}, bases for
the symmetric functions. We will often appeal to [3] for proofs any symmetric function
identities.

These bases are all indexed by partitions, non-increasing sequences of non- negative
integers. Theth entry of the partition will be denoted By. The length of a partition is
the largest such thati; is non-zero and will be denoted Ibga). The size of the partition
will be denoted byA| and is equal to the sum over all the entries.oThe symboh; (1)
will be used to represent the number of parts of size the partitioni. The conjugate
partition will be denoted by’ and is the partition such thaf = the number of such that
Aj is greater than or equal to

Thereis a standard inner product on symmetric func{@nsp,.) = z,6,, wheresyy = 1
if x =y and 0 otherwise ang, = [;..,i"®n; ()L

We will use a few non-standard operations on partitions that will require some notation.
The first is adding a column (or a sequence of columns) to a partitiora_gt. denote
the partition(A1 + a, A2 + a, ..., A + a). We will assume that this partition is undefined
whenl (1) > k.

Use the notatiorh — (1) to denote the partition formed by removing the parts that
are equal tqu from the partitioni. This of course assumes that there is a sequénee
{iniz, .. gy} € {1, 2,...1(M)} such thatw = (Ai,, Aiy, - - - » Ay, )- If this sequence does
not exist them. — (w) is again undefined.
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The last operation will be inserting parts into a partition and will be represented by).
This will be the partition formed by ordering the sequelitg Az, ..., Ay, 41, L2, - -,
i) into a partition.

Occasionally within sums we will have an expression sudmas,,, or hix, when itis
not necessarily the case thais a subpartition o or thatix has height less than or equal
k. We will consider expressions like these to be zero. This simplifies many summation
formulas which otherwise would have to have three or four conditions to their arguments,
but it is important to verify at each step that transformations to equations are in fact legal.

We will say that two bases for the symmetric functidag}, and{b,}, are dual if they
have the property thaa, , b,) = §,,,. By definition, the power symmetric functions are dual
to the basig p, /z,},. The monomial and homogeneous symmetric functions are dual. The
forgotten and the elementary symmetric functions are dual. The Schur symmetric functions
are self dual (s, S,) = 8x.)-

There exists an involutiony, on symmetric functions that relates the elementary and
homogeneous bases b}, = e, and the monomial and forgotten basesdg, = f,. It
also has the property that, = s;/.

Denote the operation of ‘skewing’ by a symmetric functibrby fL. It is defined as
being the operation dual to multiplication by the symmetric functfom the sense that
(fL+P, Q) = (P, f Q). Its action on an arbitrary symmetric functi®hmay be calculated
by the formulaf+P = >, (P, fa,)b, for any dual baseg, }, and{b,};.

Using results and notation in [3] (p. 92—93 example (1.5.25)), by seftihg= Zu(aj f)
® b, where{a,}, and{b,}, are any dual bases. It follows thatAff = . ¢ ® d; then
fL(PQ) =Y, ¢t (P)d*(Q). Using this result and considerinfgto be multiplication by
some symmetric function we have,

he f =Y (hf)hg 1)
s f =) (e )
pcf=(pcf)+ fpc 3)

By the phrase ‘vertex operators’ we are referring to linear symmetric function operators
that add a row or a column to the partitions indexing a particular family of symmetric
functions. Formulas of this type for symmetric functions are sometimes called Rodrigues
formulas. In this article we look at those symmetric function operators which lie in the
linear span of{ fig}; where f; and g are symmetric functions to find expressions for
vertex operators for each basis.

By Corollary 3 in Section 4 we know that it is always possible to produce such a vertex
operator. Yet for some applications a more refined formula is necessary, and it seems that
only for a very small class of operators will this formula reduce to something elegant.

The vertex operators for the elementary and forgotten symmetric function basis are
related to the operators for the homogeneous and monomial (resp.) symmetric functions by
conjugating by the operatar.
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The existence of such operators for the Schur ([3] p. 9697, [5] p. 69), and (row only)
Hall-Littlewood ([3] p. 237-238, [2]) symmetric functions are known. For the multiplicative
bases, itis clear that there exists operators that add a row to the symmetric functions of this
form sinceece, = €14k, hkhy = hy1a andpkp, = pat«), but adding a column is not an
obvious operation.

In general, formulas for adding a row or a column can be useful in proving a combina-
torial interpretation for a symmetric function or deriving new formulas or properties. The
author’s interest in this particular question comes from trying to find vertex operators for
the Macdonald symmetric functions. The Macdonald vertex operator must specialize to the
vertex operators for other symmetric functions and so understanding these operators is an
important first step.

2. The power vertex operator

This is the warm up case for the other 5 bases. The commutation relation betyveew
p; (given by Eq. (3)) has a nice expressigg:p; = pj pe + kd;j. This can be used to show
the slightly more general relatign- px = p«p;- + knk(1) pi_, (where it is assumed that
pA{(k) = 0 if A does not contain a part of sikg

The vertex operator is given by the following theorem

Theorem 1 Fora > 0and k> 0 define the following linear operator

1(A)
CPx = Z pf('(” l_l(p)“ +a — P Pa) pi_/z?»
i=1

A=<k

where the sum is over all partitiorss with less than or equal to k parigf k = 0 then
CPy = 1). CPx has the property that CRp, = pax, for all © such that (1) < k.

Proof: The proof is by induction on the number of parts,ofClearly this operator has
the property tha€P,1 = p¥ sincep;- kills 1 for [A| > 0. From the commutation relation
of p;- and p, we derive that

CPxpj = (Pj+a — Pj Pa)CPax-1 + pjCPa 4)
The proof by induction follows from this relation. O

The formulaCP,« was chosen so that it has two properties: it adds a column to the power
symmetric functions, and it has a relatively simple expression when written in this notation.
The action of this operator op, whenl (1) > k is not specified by these conditions, but it
is determined.

If one wishes to give an expression for an operator that has the same actprfam
[(A) < k and the action omp, for I (1) > k is something else (say for instance 0), this is
possible by adding in terms of the form, p;- wherel (1) > k to CPy.
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3. Homogeneous and elementary vertex operators

We require the following commutation relation between the homogeneous and monomial
symmetric functions.

Lemmal Fork >0,

hiem, = mighic;
=0

M he= 3 heimy_g,
i>0

where we will assume the conventionm, = O wheneven — (i) is undefined.
Proof: Note that(hfmx, h,) = (m,, hih,) =6, ,_¢). Therefore
hi(my) = my_g) (5)

andhi*(m;) = 0 if A does not have a part of sizeThe first identity follows from Eq. (1).
The second identity is a restatement of the first since

(miheP, Q) = (P, hgm; Q) = > " (P.m;_¢)hi; Q) (6)
i>0
= (him,P. Q) (7)
i>0
O

DefineCHyx to be the operatd€Hy = Y, . ;) (=1 ex,my, and the operatdZEyx
to beCElk = Z}L:E(A)Sk(_l)ulhlk\)n f)‘l

The vertex operator property that we prove for the homogeneous and elementary sym-
metric functions is

Theorem 2 IfI (1) <k, then CHxkh;, = hy; and CExe, = exx;.

Proof: The proof is a matter of showing that fr> 1 operatolCH« andh,, (considered
as an operator that consists of multiplicatiortly has the commutation relatié@@Hich, =
hny1CHy-1 andCHq:(hy) = hpys.

CHyhy= Y (=D™exumyihy (8)
rl(n)<k

The sum here is over with the number of parts less than or equakt@pply Lemma 1
and rearrange the terms in the sum.

CHyh, = Z (—D)Mep, Zhn—i M) ©

rl(r)<k i=0
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= Y Y DM D e hanimy ) (10)
rl(n)<k i>0
= Z Z(—l)m_i(—1)ihnfiQ+191k71\(,\7(i))mx{(i) (11)
A<k i=0
In the last equation, there is an assumption &at;;_), = 0 if A — (i) is undefined.

As long ask > 1, making the substitutioh — A + (i) yields the equation:

=(Z(—1>ihnia+1>< > (—1>'*'e1k-umf> (12)
i=1

Al(A)<k—1

This is equal to= h,,1CHy-1 using the well known reIa\tiorZ?:o(—l)rerhrH = 0 for
n>0.Ifk=1then

CHy(h) =) (—=D'hnig 41 =hnys (13)
i=1

Notice also thaCHy« acting on 1, yield$1'§ since only one term is not O.

The corresponding result for tigeE« operator follows by noting tha@Exx = wCHxw.
O

The action ofCH« onh, whenl (1) > kis not known. The sum in the formula f@H «
is only over partitions. such that (1) < k and by adding terms of the same form but with
[(A) > kitis possible to modify the formula so that the action onlthevhenl (A) > k is
0, but the formula will not be as simple.

It would be interesting to know the action of these vertex operators on other bases besides
the one that it adds a row and column to. For instance, actiogshaf, andpx are known on
the Schur basis, but what is the action of an operator that adds a column to the homogeneous,
elementary, or power basis when it acts on the Schur basis?

Note the following two formulas that rela@H« andCEx.

CHux = Y  (-D"CEx(e)m; (14)
rl(n<k

CEx = »  (~D"CHu(h)f}* (15)
L)<k

This is the first instance when a pair of operators share a relation like this, and it will
occur with pairs of the other operators that appear in this article. These relations fall under
the category of ‘eerie coincidences’ (since they are very unexpected and can probably be
explained on some higher dimensional plane).
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4. Monomial and forgotten vertex operators

The vertex operators for the monomial and forgotten symmetric functions require a few
identities.

Lemma2 Letr, = (—Dk-tw__WWL__ then fork> 0, e = >k by

n1()tnz()!...
Proof: [3] example 1.2.20, p. 33 O
Lemma3 For p apartition with|p| > 0, ijo(—l)j r.—j = Owhere itis assumed that

if uw — (j) does not exist then,r ;) = 0.

Proof: Z‘j‘zo(—l)ja(,jhj = 0. Now expande_; in terms of the homogeneous basis
using the last lemma and equate coefficients, 0bn both sides of the equation. O

Lemma 4 For k > O, gm,= >, r.mM (), Where m_,=0if A — (u) is
undefined.

Proof: By Eq. (2)gem,. = )i, & (M)e;. The expansion of the" in terms ofhy; is
given in the last lemma and so we have that

eKLm)‘ = Z <Zrﬂhft_(m)\)>ei—i = Z (Zrumk—(u))@_—i (16)

i>0 \ pti i>0 \ pki
by Eq. (5), and this is equivalent to the statement of the lemma. O

Lemma5 Fora > 0,mgm, = Zizo(l‘i' Na+i (A))M_)+(a+i) Where it is assumed that
M, —iy+@+i) = 0if A — (i) is undefined.

Proof: For partitionsu of || + &, one has that the coefficient of, in mgm, is equal
to hi‘ (m(a) m)\).

We note that for alh > 0 thathima, = m@ahid + hi_,. Apply this to the expression
for the coefficient oim,

I (1)
N (M) = D0 - (M) (17)
=t

This implies that for the coefficient to be non-zero thanust be equal ta with a part
(say of sizei) pulled away and a part of size+ i added in. The coefficient will be the
number of times thad + i appears in the partition (one more time than it appears in the
partition)). O

The first vertex operator that is presented here for the monomial symmetric functions
adds a row but it also multiplies by a coefficient, but this operator provides an easy method
for obtaining an operator that does not have this coefficient.
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Proposition 1 Fora > 0,let RMP = >~ _(—1)' M) g* then
RMPm, = (1+ na()Msi)
Proof:

RMPm; =) (1) Mg g-m; (18)
i>0

Apply Lemma 4 to get

= (=D My Y ruMi 19)

i>0 ki

The sum over andu may be combined to form one sum over all partitipns

= > =DM My My (20)

m

Now multiplying by a monomial symmetric function with one part has an expansion
given in Lemma 5.

=) DM@ Nag g ) 3= GODM Gy ratind (21)
woj=0

The terms indexed by the same monomial symmetric function may be grouped together
by lettingv = 1 + (j).

=D Y DM@ A Nagy = () = DMyt (22)
v j>0
= L+ Nagpu M@ YD r ) (23)
v j=0
But Y o(—=1)"""Ir, ), = 0if |v| > 0 by Lemma 3. There is one term left.
= (14 na(2) M4 (24)
|

An expression for an operator that adds a row without a coefficient can be written in
terms of this operator.

Theorem 3 For a > Odefine RM = Zkzo(—l)k(ﬁ'l\(”f{)l))k!+l (h%)* then RMm;, = m;; (a).
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Proof: Apply the previous proposition to this formula and reduce using the following
steps.

(RMEYT
RMam; = ;<— Y e m (25)
a(M) + 1 a(M) +i+1

= Z( 1)I (Na(%) ). ,( )+ )m)»f(a‘)Jr(a‘*l) (26)

= (i + 1!

Na(A) : Na(A) + 1

=Y v (M me @
= Mt (28)
The last equality is true because for- 0, Y7, (—1)' 1) = 1. a

Notice that the action of theM, operators on the monomial basis implies tR&,RM,
= RMyRM,. This property is difficult to derive just from the definition of the operator.

This expression for the operatBM;, is a little unsatisfying since the computation of
(RM®) can be simplified. The following operator shows h&M, can be reduced to
closer resembl&€Hq. To add more than one row at a time to a monomial symmetric
function, the formula resembles the vertex operator that adds a column to the homogeneous
basis.

Proposition 2 Fora > 0and k> 0, we have that
(RM®D)*
RMQ() = T? = ;(—1)|Mmak‘)hei_

with the understanding that g, = 0 if a K|x is undefined. It follows that Rg\‘llm,\ =
( na()h)-‘rk )mk+(ak)

Proof:  Byinduction ork, we will show thaRMPRMK = (k+1)RMK+D. It follows that
(RME)K = KIRMY. Since(RMEEM, = (Na(3) + 1)(Na(h) +2) - (Ma(i) + KM

k 2(A)+1)(Na (L) +2 2 (M) +K
thenRM©m; = (1a0) +1) N L2 0aGIHI
RM,RM¥ —Z( DIma e Z( )M g6t (29)
j=0

Commute the action af- andmg, using Lemma 4.

=> (- 1)Jm(a+”2( N ‘Zr Mak— () € & (30)
=0
_ ZZZ( DM M ) Maeg (M)eL \mex (31)

j=0 A
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The formula for multiplying a monomial symmetric function with one part is given in
Lemma 5.

=222 DM@ A= (W = O+ @+ + )

j>0 A wu 1>0

X Mgk 2~ ()~ )+ @) & 1 & (32)

The next step is to change the sum oueso that it includes the part of sizethis is
equivalent to making the replacement-> u — (I).

- ZZZZ(_DMHJ[‘M*(DHEAHH @ | r—(w+@+l+j)

j>0 A w 1>0

X Mt~ oy @t +) €] 1 € (33)
Leti = j +1, then the sum ovej can be converted to a sum over
= ZZZZ( D nagi @ | A — (0) + @+1))
no1=0 ix=l
X mak|x—<u)+(a+i)eiiw A (34)

Interchange the sum overand the sum ovelr. Sincel > 0 andi > | theni > 0 and
o<l <i.

=>> =D'r iy (=DM gy @ | A — () + @+1))
A

i>0 1=0
ul
X Mgk () +(@ti) B 1 € (35)
Notice that sincee;i_m| is zero for alli < |u|, then all terms are zero unleiss |u|.

= ZZZZ( D'y (=DM nagi @ | A — (w) + @+1))

woizpl =
X maklx—w+<a+i)e.7|mexL (36)

The sum ovet is equal to 0 as long dg| > 0 using Lemma 3.

=YY (DM g @ | A+ @+ D) Mapp @i G € 37)

A i>0

Let the sum ovek include the part of size, theni = A + (i).

—Z( DM g @ | Mmge e (38)

i>0
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The sum over is now independent of since) ;_ Na+i @1 | 1) will always bek + 1.
=(k+1) Z(—l)‘“makwexL = (k + HRMKHD (39)
A

O

It follows that the formula foRM can be substituted into Theorem 3 and this provides
a more reduced form of the first formula given fM,.

Corollary 1 Fora > 0,RMa = Y o >, (=D ¥ mge; el (W)L

Since the forgotten basis is related to the monomial basis by an application of the in-
volution w, then the formulas for the symmetric function operator that adds a row to the
forgotten symmetric functions follows immediately.

Corollary 2 Fora > 0,RFa =Y. > ; (—D)* ¥ faca; hi-(ek)* has the property that
RF, fA = f)Hr(a)

There exists an operat@_x of the same form as the operators that exist already in
this paper that has the property thaty P[ X] = 0, if P[X] is a homogeneous symmetric
function of degree greater than 0 afidy1 = 1. This means that the operator applied to
an arbitrary symmetric function has the property that it picks out the constant term of the
symmetric function.

Proposition 3 Define the operator

T x = 2:(—1)“\‘31'5,\L

A

Then for any dual basgsy, },, and{b,}, (thatis (a,, b,) = §,,), this is equivalent to

Tx =) (~DMo@)b}
A

This operator has the property thdt xs, = Ofor |A| > 0Oand7_x1 = 1.

Proof:

T—XS[L = Z(—l)mS)‘S){?S/L (40)
A

This is exactly the same expression as formula ([3], p. 90, (1.5.23.1)) witk tleeiables
substituted for theg. This expression is O unlesg = 1.
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It requires very little to show that this operator can be given an expression in terms of
any dual basis.

T x =) (-DMo(s)s’ (41)
A
=Y DM Y (o), ob))o@,)s) (42)
A vy
=YY (=DMw@)(s. bs (43)
oAl
=Y (-DY"w(a,)b; (44)
"
O

Note that7_y is actually a special case of a plethystic oper&tlP[X] = P[X + Z].

Fix a basis of the symmetric functior{sy, },,, we may talk about the symmetric function
linear operator that sends to the expressiod,, (where{d,}, is any family of symmetric
function expressions). We can say that this operator lies in the linear span of the operators
sksj and an expression can be given fairly easily.

Corollary 3 (The everything operatpr Let{a,}, be a basis of the symmetric functions
and{b,}, be its dual basis. Then an operator that sengsathe expression,dis given by

{d} 1
Eld) = 2 4T}
w

In other words we have that {[E}} acts linearly, and on the basis,dt has the action
Elsia, = d,.

Proof: Note thatwhem)j acts on ahomogeneous polynomial, the resultis a homogeneous
polynomial of degreg¢u| less. Therefore ifu| > |A|, thenbjak = 0. If |u| < |A| then
T,xblfax = 0 since7_x kills all non-constant terms. Whejp| = |A|, we have that
b.ra, = 8,, and therefore7_ xb.;a, = 8,,. This also implies that

D AT xbra = dus, =d; (45)
iz n
O

This operator looks too general to be of much use, but using known symmetric function
identities it is possible to reduce and derive expressions for other operators. For instance,
the symmetric function operator that adds a column to the monomial symmetric functions
is a special case of this.
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Theorem4 Fora > 0, let
na(A) + Kk
CMge = ;(—1)“< e )mwak)ef,

then CMym;, = mg, with the convention that ga, = 0 if ak|x is undefined.

Proof: We will reduce an expression fcﬁ{{::f;"”] to one forCMac.
Mgk,
Epm)” =Y Maqs Y _(=Dm,erhy (46)
A Iz

Letr,, be the coefficient o, in h;, (by an application of the involutiom it is also the
coefficient ofh, in &;). Then the expression is equivalent to

= Map > (—D"mer > e (47)
A "

yHIAl

Rearranging the sums this may be rewritten as
=33 > =Dmgqrs, muere; (48)
A

Itis possible to group all the terms that skew by the same elementary symmetric function
by making the substitution — © — (y) since the sum over andy are over partitions.

= Z Z Z(_l)w_ly‘mak\lrly muf(y)et (49)
Aoonoy
Note thatm,,_.,) = h){(mﬂ) andzy(—l)‘”r,\yh}f = (-DMel,

=Y D> (DHHma(—=HMermy)e; (50)
1% A

Notice that the first part of this expression is exactly the opeRIMIF’ acting exclusively
onm,. We may then apply Proposition 2 and note that the expression reduces to the sum
stated in the theorem. O

The symmetric function operator that adds a column (or a group of columns) to the
forgotten symmetric functions can be found by conjugating @é,« operator by the
involution w to derive the following corollary.

Corollary 4 Fora > 0,let
na(A) + Kk
CFq = ;(—D“( e ) Frr@ohy,

then CRy f, = fa;, with the convention thatufj, = O if ak|x is undefined.
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Remark Lemma 5 is not true foa =0, therefore the proofs of Proposition 1 and Propo-
sition 2 do not hold fora = 0. Something interesting can be said of these operators
in this case. By following the calculation carefully, it is possible to see that if we set
RME)k) = ZA:K(A)<k(_1)Wm)~e)J;’ then

RMFm; = (k _lf (A))mk (51)

With the convention thaty(1) = —£(), Theorem 4 and Corollary 4 and their proof make
sense.

The operator that adds a sequence of rows to the monomial symmetric functions and the
operator that adds a sequence of columns are related by a pair of formulas similar to in the
case of formulas (14) and (15). Notice that Proposition 2 and Theorem 4 say that

CMa = Y (=D*RMY (m;)ef (52)
A

RMY = Z(—l)”"CMak(m,\)ei‘ (53)
A

This is ‘eerie coincidence’ number two. The relation between these two operators is very
similar to the relation betwee@H« andCEy« but not exactly the same. Once again this is
unexpected and unexplained.

5. Schur vertex operators

A symmetric function operator that adds a row to the Schur functions is given in [3] (p. 95-96
1.5.29.d) that is of the same flavor as the other vertex operators presented here.

Theorem 5 Bernstein Let RG = Zizo(—l)iha+iq-i, then RS, = Si1@ ifa > 1. In
addition R§RS = —RS_1RS 1.

Proof: Repeated applications of this operator yields expressions of the Jacobi-Trudi sort.
Use the relatioRS$ hy = hyRS, — hx_1RS. 1 (Which follows from [3] example (1.5.29.b.5)

and (1.5.29.d))RS.(1) = h, and follow the proof of [3] (1.3.(3.4") p. 43) which does not
actually require that the indexing sequence be a partition. It follows then that

RS-VLRS-’Z...R%(]') Zdeﬂhsi—j+i|1§i,j§n (54)

O

Conjugating this operator by produces an operator that adds a column to a Schur
symmetric function. We will show in this section that a nice expression exists for a formula
for an operator that adds a column to a Schur function, but with the property that the result
is 0 if the partition is longer than the column being added.
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It follows from the commutation relation of tHeS,, that there is a combinatorial method
for calculating the action d®®S, on a Schur function whem < A;. Lethtc () be the integer
i suchthat )k = (n2—Lpus—1, ..., ui — 1, w1 +1 —K, fit1, ..., tiw) is chosen to
be a partition. This amounts to removing the fiktells from the border of.. If it is not
possible to find such ansuch thafu | is a partition then say that]y is undefined.

Corollary 5 Letv = A + (a+ k) where k> A; — a (v is A resting on a sufficiently long
first row).

RSs, = (-1 s,
where it is assumed thaf;s = 0if v does not exist.

The proof of this corollary is not difficult, just a matter of showing that the commutation
relation of R§RS, agrees with this definition of |y and that the vanishing condition
exists becausRSRS,1 = 0. This definition and corollary are useful in showing that
an expression fofRS)¥ can be reduced to a form that is very similar to the other vertex
operators presented here.

Lemma6 Fora=> 0,

(RS =) "(-Dsy;s)
s

with the convention thats; is O if ak| is undefined.

Proof: By induction onk. The statement agrees with Theorem 5Kat 1.
RS(RS) =) (—D'harig" Y (—D)sy;s) (55)
i>0 A
e can be commuted with the Schur function to produce
i
=Y (=D'hasi ) (D™D el (sap)g- s (56)
i>0 A j=0

Interchange the order of all of the sums.

=Y DY (D" hasief (sw)g";S) (57)

A j=0i>j

Make the substitution that— i + j, changing the sum so that it is over al 0 and
expand the produa*s;. The notation thay /A’ € Vi means thay differs froma’ by a
verticali strip ()Jj <y < )Jj + 1land|y| = |A| +1i).

=Y D Y DM g e (swn) Y Sy (58)

A j>0i>0 y /N eV
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Make the substitutiony — y’ so that the sum is over all partitiopsthat differ froma
by a horizontal strip and rearrange the sums.

=Y D > O Y (DI hayiy g (sxp)sy (59)

A =0 y/reH; j=0

Now it is only necessary to notice that the sum oyes actually an application of the
Schur vertex operator acting exclusively on the symmetric funetion Switch the order
of the sums over the partitions and expression becomes

=Y DY > RSui(swp)sy (60)
14

i>0 Ay /reH;

There is a sign reversing involution on these terms so that only one term in the sum over
i andi survives, namelga1y, . If i = y1 thenRS,, (Sak iy — (1)) = Sak+1)y -

Take any partitiork in this sum such that /A is a horizontal strip of length less than
If RS (Sak5) = 0, then this term does not contribute to the sunRE.i (San) = Sapy
thenv = A + (i +n)|n, Wwheren = y; —i. There is a combinatorial statement that can be
made about partitions that satisfy this condition, this is a lemma stated in [4] (Lemma 3.15,
p. 34).

Lemma 7 There exists an involution;‘lon partitions such thatu/y is a horizontal
n strip, ]y exists andy # u |, with the property that hﬂ(l;‘(u)) = ht,(u) = 1 and

mln = |;(M)Jn

This is exactly the situation here. Set= A + (i + n) thenu/y is a horizontal strip of
size|u| — |y| = |A| +1 + n—|y| = n. The result then is that all terms canegteptfor
the terms such that = 1 4 (i +n) |, ori = y; andRS (Sakp) = S+,

The sum therefore reduces to

= > (=D"spy, sy, (61)
Y

With this expression for the Schur function vertex operator, it is possible to reduce the
expression for the ‘everything operator’ that adds a column to the Schur functions but is
zero when the length of the indexing partition is larger than the height of the column being
added.

Theorem 6 For a,k > 0, let CSx = Y, (=)™ (RS)(s.)s’. This operator has the
property that C&s, = Sy, if [ (1) < k and C&s;, = 0forl(2) > O.
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Proof: Take the expression for the everything operator that adttdumns of heighk
using the convention thag, is zero whenevea | 1 is undefined.

(st
Eig)” = DSt ) (-D¥ls s8] (62)
A w

The coefficients of the expansion gfs, in terms of Schur functions are well studied
and there exists formulas and combinatorial interpretations for their calculation. The only
properties that we require here is that the coefficients in the the expressijoa >, ¢; s,
have the property that, = cKﬁM, ands’'s, =), c;s,.

=Y s Y Y ds (63
A " v
Next, we rearrange the sums and make the substitu;ipn: oy

= s > DM e s sy (64)
A v "

Therefore the sum over is just an application o) on (s,) and the sums can be
rearranged.

=Y (=DM (—DMsu;si(s)s) (65)
v A

The sum ovei is now exactly an application of Lemma 6.

=Y (DM RS s)sy (66)

This is the expression given in the statement of the theorem. O

The last of the ‘eerie coincidences’ of this article is that@®« and(RS)¥ are related
by a pair of formulas similar to the case of formulas (14), (15) and (52), (53).

CSk =Y (-DMRS) (s (67)
A

RS =) (-D"Csk(s)s) (68)
s

They say that once is happenstance, twice is coincidence and three times is a conspiracy.
This relationship can be made more explicit and it explains why these operators come in
pairs, but not why column adding operators happen to be related row adding operators for
both the Schur and monomial bases and why a similar relation exists with the homogeneous
and elementary vertex operators.



VERTEX OPERATORS FOR SYMMETRIC FUNCTIONS 99

LetV be a linear operator from the space of symmetric functions to itself. Define

V=) DMVs)si =) (—DMV (@) byt (69)
A A

where the sum is over all partitionsand{a, }, and{b,}, are any two dual bases.

Itis not difficult to showthatV = V and that Egs. (52), (53), (67), (68) may be summarized
asRMY¥ = CMy and(RS,)X = CSx. The relationship between (14) and (15) is not exactly
the same, but it follows th&@Hix(h,) = CEx(h;) for all £(») < k.

6. An application: The tableaux of bounded height

One observation about the opera@fg,« that could have an interesting application is that
CSxs, = 0if (W) > kandCSxs, = s, if I(A) < k. Knowing this and the commutation
relation betweeRS, andhy allows us to calculate the number of pairs of standard tableaux
of the same shape of bounded heightY1], ., ;, 7 (wheref; is the number of standard
tableaux of shapg).

Proposition 4 Let CRAN, k) be the collection of sequences of non-negative integers of
length k such that the sum is n.

£2 = Z (n)niqisi + —-(S +|))n!
seCP(n,k) S Hi:l(s +i—-1!

AEncl(v) <k

The formula follows by applyin@ Sy« to the symmetric functioh? to arrive at a formula
for the symmetric functior) ;. <k S

Lemma 8

n
CS)k(hT) = Z f)\Sx = Z <S) det|hsj—j+i |l§i,j§k

AENI (L) <k seCP(n,k)

Proof: Use the relatiolRShy = hyRS, — hx_1RS11, RS 1 = h, and induction to calcu-
late that

n

R%(hrl]) = Z (_1)n—l hll <| ns> det|h3j7j+i l1<i,j<k (70)

1=0 seCP(n—I,k)
Using the relation thaﬂf(hg) = (|)r3| ) fkhg_"\‘ we have that

CS(n]) = Y (D" (R (s)s () (1)
A
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= )RS (S“(m> £, (72)
A

=) > (- (?)(Rs))k(nsk)hz‘i (73)
=0 AHi

= (-1 (?)(Rs»k(hil)hﬁi (74)
i=0

Now using (70) we can reduce this further to

Z ) (1)'(2)(Ims)h2+'-mdet|hsjmhg,jfk (75)

0 seCP(m—I,k)

Now switch the sums indexed byandm and then make the replacememt—> m + |

[
—ZZ Z (= 1)I<mj_|><n:—2)hr1]mdet|hsjj+i|l§i,j§k (76)

=0 m=0seCP(m,k)

Now switch the sums back and rearrange the binomial coefficients

n n—m n n—m
Z > (1)|(n—ms>< | )h?mdet|hsjj+i|l§i,j§k (77)

=0 seCP(m,k)

Now the sum) \""(—1)'(";™) will always be zero unless —m = 0 and ifn = m
then it is 1 and so the entire sum collapses to

n
= Z (S) det|hsj_j+i |1§i,j§k (78)

seCP(n,k)

O

Proof of Proposition 4: The proposition follows from this lemma with a little manipula-
tion. There is a linear and multiplicative homomorphism that sends the symmetric functions
to the space of polynomials in one variable due to Gessel definédhgy = x"/n!. This
homomorphism has the property tiids, ) = f,x*!/|A|!l. The image of the formula in the
lemma is then

X"
ANl (L) <k ANl () <k )

Therefore if we seta)p =1 and(a) =a(@a—1) - - - (a—i +1) then we have (by making a
slighttransformation that reverses order of the sequence fijst> n+1—j,i — n+1—i
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ands — S,.1-i) that

. 1 1 i
Y o= % (”) ger St Da) (80)
Anil (0 <k seCPmky \S (S +j—D! 1<i,j=<k
72 = Z <n) detl(Sjk+ ) — 1?i71|1§i,j5kn! (81)
Anil () <k seCP(n,k) Hi:l(si +]-D!

The determinant is a specialization of the Vandermonde determinant in the variables
sj + j — 1 so the formula reduces to the expression stated in the proposition. O

We note that in the case thiat= 1 this sum reduces to 1 and in the case that 2 we
have that

2 (N n-2j+1 . 4 (n)zn—2j+1
f*_z<j><j)!(n—j+1)!”"zj n—j+1 (82)

AFn:l(0) <2 =0 i=0

And this is an expression for the Catalan numbers. It would be interesting to see if these
expressions and equations couldgper g, t analogued.
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