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Abstract. We present formulas for operators which add a row or a column to the partition indexing the power,
monomial, forgotten, Schur, homogeneous and elementary symmetric functions. As an application of these oper-
ators we show that the operator that adds a column to the Schur functions can be used to calculate a formula for
the number of pairs of standard tableaux the same shape and height less than or equal to a fixedk.
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1. Notation

Using the notation of [3], we will consider the power{pλ[X]}λ, Schur{sλ[X]}λ, monomial
{mλ[X]}λ, homogeneous{hλ[X]}λ, elementary{eλ[X]}λ and forgotten{ fλ[X]}λ bases for
the symmetric functions. We will often appeal to [3] for proofs any symmetric function
identities.

These bases are all indexed by partitions, non-increasing sequences of non- negative
integers. Thei th entry of the partition will be denoted byλi . The length of a partitionλ is
the largesti such thatλi is non-zero and will be denoted byl (λ). The size of the partition
will be denoted by|λ| and is equal to the sum over all the entries ofλ. The symbolni (λ)

will be used to represent the number of parts of sizei in the partitionλ. The conjugate
partition will be denoted byλ′ and is the partition such thatλ′i = the number ofj such that
λ j is greater than or equal toi .

There is a standard inner product on symmetric functions〈pλ, pµ〉 = zλδλµ whereδxy = 1
if x = y and 0 otherwise andzλ =

∏
i≥1 i ni (λ)ni (λ)!.

We will use a few non-standard operations on partitions that will require some notation.
The first is adding a column (or a sequence of columns) to a partition. Letak | λ denote
the partition(λ1 + a, λ2 + a, . . . , λk + a). We will assume that this partition is undefined
whenl (λ) > k.

Use the notationλ − (µ) to denote the partition formed by removing the parts that
are equal toµ from the partitionλ. This of course assumes that there is a sequenceI =
{i1, i2, . . . i l (µ)} ⊂ {1, 2, . . . l (λ)} such thatµ = (λi1, λi2, . . . , λi l (µ) ). If this sequence does
not exist thenλ− (µ) is again undefined.
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The last operation will be inserting parts into a partition and will be represented byλ+(µ).
This will be the partition formed by ordering the sequence(λ1, λ2, . . . , λl (λ), µ1, µ2, . . . ,

µl (µ)) into a partition.
Occasionally within sums we will have an expression such asmλ−(µ) or h1k|λ when it is

not necessarily the case thatµ is a subpartition ofλ or thatλ has height less than or equal
k. We will consider expressions like these to be zero. This simplifies many summation
formulas which otherwise would have to have three or four conditions to their arguments,
but it is important to verify at each step that transformations to equations are in fact legal.

We will say that two bases for the symmetric functions{aλ}λ and{bλ}λ are dual if they
have the property that〈aλ, bµ〉 = δλµ. By definition, the power symmetric functions are dual
to the basis{pλ/zλ}λ. The monomial and homogeneous symmetric functions are dual. The
forgotten and the elementary symmetric functions are dual. The Schur symmetric functions
are self dual (〈sλ, sµ〉 = δλµ).

There exists an involution,ω, on symmetric functions that relates the elementary and
homogeneous bases byωhµ = eµ and the monomial and forgotten bases byωmµ = fµ. It
also has the property thatωsλ = sλ′ .

Denote the operation of ‘skewing’ by a symmetric functionf by f ⊥. It is defined as
being the operation dual to multiplication by the symmetric functionf in the sense that
〈 f ⊥P, Q〉 = 〈P, f Q〉. Its action on an arbitrary symmetric functionP may be calculated
by the formulaf ⊥P =∑λ〈P, f aλ〉bλ for any dual bases{aλ}λ and{bλ}λ.

Using results and notation in [3] (p. 92–93 example (I.5.25)), by setting1 f =∑µ(a
⊥
µ f )

⊗ bµ where{aµ}µ and{bµ}µ are any dual bases. It follows that if1 f = ∑i ci ⊗ di then
f ⊥(P Q) =∑i c⊥i (P)d

⊥
i (Q). Using this result and consideringf to be multiplication by

some symmetric function we have,

h⊥k f =
∑

i

(
h⊥i f

)
h⊥k−i (1)

e⊥k f =
∑

i

(
e⊥i f

)
e⊥k−i (2)

p⊥k f = (p⊥k f
)+ f p⊥k (3)

By the phrase ‘vertex operators’ we are referring to linear symmetric function operators
that add a row or a column to the partitions indexing a particular family of symmetric
functions. Formulas of this type for symmetric functions are sometimes called Rodrigues
formulas. In this article we look at those symmetric function operators which lie in the
linear span of{ fi g⊥i }i where fi and gi are symmetric functions to find expressions for
vertex operators for each basis.

By Corollary 3 in Section 4 we know that it is always possible to produce such a vertex
operator. Yet for some applications a more refined formula is necessary, and it seems that
only for a very small class of operators will this formula reduce to something elegant.

The vertex operators for the elementary and forgotten symmetric function basis are
related to the operators for the homogeneous and monomial (resp.) symmetric functions by
conjugating by the operatorω.
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The existence of such operators for the Schur ([3] p. 96–97, [5] p. 69), and (row only)
Hall-Littlewood ([3] p. 237–238, [2]) symmetric functions are known. For the multiplicative
bases, it is clear that there exists operators that add a row to the symmetric functions of this
form sinceekeλ = eλ+(k), hkhλ = hλ+(k) andpk pλ = pλ+(k), but adding a column is not an
obvious operation.

In general, formulas for adding a row or a column can be useful in proving a combina-
torial interpretation for a symmetric function or deriving new formulas or properties. The
author’s interest in this particular question comes from trying to find vertex operators for
the Macdonald symmetric functions. The Macdonald vertex operator must specialize to the
vertex operators for other symmetric functions and so understanding these operators is an
important first step.

2. The power vertex operator

This is the warm up case for the other 5 bases. The commutation relation betweenp⊥k and
pj (given by Eq. (3)) has a nice expression:p⊥k pj = pj p⊥k +kδk j . This can be used to show
the slightly more general relationp⊥λ pk = pk p⊥λ + knk(λ)p⊥λ−(k) (where it is assumed that
p⊥λ−(k) = 0 if λ does not contain a part of sizek).

The vertex operator is given by the following theorem

Theorem 1 For a ≥ 0 and k≥ 0 define the following linear operator

CPak =
∑

λ : l (λ)≤k

pk−l (λ)
a

l (λ)∏
i=1

(pλi+a − pλi pa)p
⊥
λ

/
zλ

where the sum is over all partitionsλ with less than or equal to k parts(if k = 0 then
CPa0 = 1). CPak has the property that CPak pµ = pak|µ for all µ such that l(µ) < k.

Proof: The proof is by induction on the number of parts ofµ. Clearly this operator has
the property thatCPak1= pk

a sincep⊥λ kills 1 for |λ| > 0. From the commutation relation
of p⊥λ and pk we derive that

CPak pj = (pj+a − pj pa)CPak−1 + pj CPak (4)

The proof by induction follows from this relation. 2

The formulaCPak was chosen so that it has two properties: it adds a column to the power
symmetric functions, and it has a relatively simple expression when written in this notation.
The action of this operator onpλ whenl (λ) > k is not specified by these conditions, but it
is determined.

If one wishes to give an expression for an operator that has the same action onpλ for
l (λ) ≤ k and the action onpλ for l (λ) > k is something else (say for instance 0), this is
possible by adding in terms of the formpµp⊥λ wherel (λ) > k to CPak .
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3. Homogeneous and elementary vertex operators

We require the following commutation relation between the homogeneous and monomial
symmetric functions.

Lemma 1 For k ≥ 0,

h⊥k mλ =
∑
i≥0

mλ−(i )h⊥k−i

m⊥λ hk =
∑
i≥0

hk−i m
⊥
λ−(i )

where we will assume the convention mλ−(i ) = 0 wheneverλ− (i ) is undefined.

Proof: Note that〈h⊥i mλ, hµ〉 = 〈mλ, hi hµ〉 = δµ,λ−(i ). Therefore

h⊥i (mλ) = mλ−(i ) (5)

andh⊥i (mλ) = 0 if λ does not have a part of sizei . The first identity follows from Eq. (1).
The second identity is a restatement of the first since〈

m⊥λ hk P, Q
〉 = 〈P, h⊥k mλQ

〉 =∑
i≥0

〈
P,mλ−(i )h⊥k−i Q

〉
(6)

=
∑
i≥0

〈
hk−i m

⊥
λ−(i )P, Q

〉
(7)

2

DefineCH1k to be the operatorCH1k =∑λ : `(λ)≤k(−1)|λ|e1k|λm⊥λ , and the operatorCE1k

to beCE1k =∑λ : `(λ)≤k(−1)|λ|h1k|λ f ⊥λ .
The vertex operator property that we prove for the homogeneous and elementary sym-

metric functions is

Theorem 2 If l (λ) ≤ k, then CH1k hλ = h1k|λ and CE1keλ = e1k|λ.

Proof: The proof is a matter of showing that fork > 1 operatorCH1k andhn (considered
as an operator that consists of multiplication byhn) has the commutation relationCH1k hn =
hn+1CH1k−1 andCH11(hn) = hn+1.

CH1k hn =
∑

λ:`(λ)≤k

(−1)|λ|e1k|λm⊥λ hn (8)

The sum here is overλ with the number of parts less than or equal tok. Apply Lemma 1
and rearrange the terms in the sum.

CH1k hn =
∑

λ:`(λ)≤k

(−1)|λ|e1k|λ
∑
i≥0

hn−i m
⊥
λ−(i ) (9)
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=
∑

λ:`(λ)≤k

∑
i≥0

(−1)|λ|−i (−1)i e1k|λhn−i m
⊥
λ−(i ) (10)

=
∑

λ:`(λ)≤k

∑
i≥0

(−1)|λ|−i (−1)i hn−i ei+1e1k−1|(λ−(i ))m⊥λ−(i ) (11)

In the last equation, there is an assumption thate1k−1|(λ−(i )) = 0 if λ − (i ) is undefined.
As long ask > 1, making the substitutionλ→ λ+ (i ) yields the equation:

=
(

n∑
i=1

(−1)i hn−i ei+1

)( ∑
λ:`(λ)≤k−1

(−1)|λ|e1k−1|λm⊥λ

)
(12)

This is equal to= hn+1CH1k−1 using the well known relation
∑n

r=0(−1)r er hn−r = 0 for
n ≥ 0. If k = 1 then

CH11(hn) =
n∑

i=1

(−1)i hn−i ei+1 = hn+1 (13)

Notice also thatCH1k acting on 1, yieldshk
1 since only one term is not 0.

The corresponding result for theCE1k operator follows by noting thatCE1k = ωCH1kω.
2

The action ofCH1k onhλ whenl (λ) > k is not known. The sum in the formula forCH1k

is only over partitionsλ such thatl (λ) ≤ k and by adding terms of the same form but with
l (λ) > k it is possible to modify the formula so that the action on thehλ whenl (λ) > k is
0, but the formula will not be as simple.

It would be interesting to know the action of these vertex operators on other bases besides
the one that it adds a row and column to. For instance, actions ofek, hk, andpk are known on
the Schur basis, but what is the action of an operator that adds a column to the homogeneous,
elementary, or power basis when it acts on the Schur basis?

Note the following two formulas that relateCH1k andCE1k .

CH1k =
∑

λ:l (λ)≤k

(−1)|λ|CE1k(eλ)m
⊥
λ (14)

CE1k =
∑

λ:l (λ)≤k

(−1)|λ|CH1k(hλ) f ⊥λ (15)

This is the first instance when a pair of operators share a relation like this, and it will
occur with pairs of the other operators that appear in this article. These relations fall under
the category of ‘eerie coincidences’ (since they are very unexpected and can probably be
explained on some higher dimensional plane).
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4. Monomial and forgotten vertex operators

The vertex operators for the monomial and forgotten symmetric functions require a few
identities.

Lemma 2 Let rµ = (−1)|µ|−l (µ) l (µ)!
n1(µ)!n2(µ)!...

then for k≥ 0, ek =
∑

µ`k rµhµ

Proof: [3] example I.2.20, p. 33 2

Lemma 3 Forµ a partition with|µ| > 0,
∑

j≥0(−1) j rµ−( j ) = 0 where it is assumed that
if µ− ( j ) does not exist then rµ−( j ) = 0.

Proof:
∑k

j=0(−1) j ek− j h j = 0. Now expandek− j in terms of the homogeneous basis
using the last lemma and equate coefficients ofhµ on both sides of the equation. 2

Lemma 4 For k ≥ 0, e⊥k mλ=
∑

µ rµmλ−(µ)e⊥k−|µ| where mλ−(µ)= 0 if λ − (µ) is
undefined.

Proof: By Eq. (2)e⊥k mλ =
∑

i≥0 e⊥i (mλ)e⊥k−i . The expansion of thee⊥i in terms ofh⊥µ is
given in the last lemma and so we have that

e⊥k mλ =
∑
i≥0

(∑
µ`i

rµh⊥µ(mλ)

)
e⊥k−i =

∑
i≥0

(∑
µ`i

rµmλ−(µ)

)
e⊥k−i (16)

by Eq. (5), and this is equivalent to the statement of the lemma. 2

Lemma 5 For a > 0, m(a)mλ =
∑

i≥0(1+ na+i (λ))mλ−(i )+(a+i ) where it is assumed that
mλ−(i )+(a+i ) = 0 if λ− (i ) is undefined.

Proof: For partitionsµ of |λ| + a, one has that the coefficient ofmµ in m(a)mλ is equal
to h⊥µ(m(a)mλ).

We note that for alln ≥ 0 thath⊥n m(a) = m(a)h⊥n + h⊥n−a. Apply this to the expression
for the coefficient ofmµ

h⊥µ(m(a)mλ) =
l (µ)∑
j=1

h⊥µ−(µ j )+(µ j−a)(mλ) (17)

This implies that for the coefficient to be non-zero thatµ must be equal toλ with a part
(say of sizei ) pulled away and a part of sizea + i added in. The coefficient will be the
number of times thata+ i appears in the partitionµ (one more time than it appears in the
partitionλ). 2

The first vertex operator that is presented here for the monomial symmetric functions
adds a row but it also multiplies by a coefficient, but this operator provides an easy method
for obtaining an operator that does not have this coefficient.
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Proposition 1 For a > 0, let RM(1)
a =

∑
i≥0(−1)i m(a+i )e⊥i then

RM(1)
a mλ = (1+ na(λ))mλ+(a)

Proof:

RM(1)
a mλ =

∑
i≥0

(−1)i m(a+i )e
⊥
i mλ (18)

Apply Lemma 4 to get

=
∑
i≥0

(−1)i m(a+i )

∑
µ`i

rµmλ−(µ) (19)

The sum overi andµ may be combined to form one sum over all partitionsµ.

=
∑
µ

(−1)|µ|rµm(a+|µ|)mλ−(µ) (20)

Now multiplying by a monomial symmetric function with one part has an expansion
given in Lemma 5.

=
∑
µ

∑
j≥0

(−1)|µ|rµ(1+ na+|µ|+ j (λ− (µ)))mλ−(µ)−( j )+( j+a+|µ|) (21)

The terms indexed by the same monomial symmetric function may be grouped together
by lettingν = µ+ ( j ).

=
∑
ν

∑
j≥0

(−1)|ν|− j rν−( j )(1+ na+|ν|(λ− ((ν)− ( j ))))mλ−(ν)+(a+|ν|) (22)

=
∑
ν

(1+ na+|ν|(λ))mλ−(ν)+(a+|ν|)
∑
j≥0

(−1)|ν|− j rν−( j ) (23)

But
∑

j≥0(−1)|ν|− j rν−( j ) = 0 if |ν| > 0 by Lemma 3. There is one term left.

= (1+ na(λ))mλ+(a) (24)

2

An expression for an operator that adds a row without a coefficient can be written in
terms of this operator.

Theorem 3 For a > 0 define RMa =
∑

k≥0(−1)k (RM(1)
a )k+1

(k+1)! (hk
a)
⊥ then RMamλ = mλ+(a).
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Proof: Apply the previous proposition to this formula and reduce using the following
steps.

RMamλ =
∑
i≥0

(−1)i
(
RM(1)

a

)i+1

(i + 1)!

(
hi

a

)⊥
mλ (25)

=
∑
i≥0

(−1)i
(na(λ)+ 1) . . . (na(λ)+ i + 1)

(i + 1)!
mλ−(ai )+(ai+1) (26)

=
na(λ)∑
i=0

(−1)i
(

na(λ)+ 1

i + 1

)
mλ+(a) (27)

= mλ+(a) (28)

The last equality is true because forn > 0,
∑n

i=1(−1)i−1(ni ) = 1. 2

Notice that the action of theRMa operators on the monomial basis implies thatRMaRMb

= RMbRMa. This property is difficult to derive just from the definition of the operator.
This expression for the operatorRMa is a little unsatisfying since the computation of

(RM(1)
a )

i can be simplified. The following operator shows howRMa can be reduced to
closer resembleCH1k . To add more than one row at a time to a monomial symmetric
function, the formula resembles the vertex operator that adds a column to the homogeneous
basis.

Proposition 2 For a > 0 and k≥ 0, we have that

RM(k)
a =

(
RM(1)

a

)k
k!

=
∑
λ

(−1)|λ|mak|λe⊥λ

with the understanding that mak|λ = 0 if ak|λ is undefined. It follows that RM(k)a mλ =
( na(λ)+k

k
)mλ+(ak).

Proof: By induction onk, we will show thatRM(1)
a RM(k)

a = (k+1)RM(k+1)
a . It follows that

(RM(1)
a )

k = k!RM(k)
a . Since(RM(1)

a )
kmλ = (na(λ)+ 1)(na(λ)+ 2) · · · (na(λ)+ k)mλ+(ak),

thenRM(k)
a mλ = (na(λ)+1)(na(λ)+2)···(na(λ)+k)

k! mλ+(ak).

RMaRM(k)
a =

∑
j≥0

(−1) j m(a+ j )e
⊥
j

∑
λ

(−1)|λ|mak|λe⊥λ (29)

Commute the action ofe⊥j andmak|λ using Lemma 4.

=
∑
j≥0

(−1) j m(a+ j )

∑
λ

(−1)|λ|
∑
µ

rµmak|λ−(µ)e⊥j−|µ|e
⊥
λ (30)

=
∑
j≥0

∑
λ

∑
µ

(−1)|λ|+ j rµm(a+ j )mak|λ−(µ)e⊥j−|µ|e
⊥
λ (31)
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The formula for multiplying a monomial symmetric function with one part is given in
Lemma 5.

=
∑
j≥0

∑
λ

∑
µ

∑
l≥0

(−1)|λ|+ j rµna+ j+l (a
k | λ− (µ)− (l )+ (a+ l + j ))

×mak|λ−(µ)−(l )+(a+l+ j )e
⊥
j−|µ|e

⊥
λ (32)

The next step is to change the sum overµ so that it includes the part of sizel , this is
equivalent to making the replacementµ→ µ− (l ).

=
∑
j≥0

∑
λ

∑
µ

∑
l≥0

(−1)|λ|+ j rµ−(l )na+ j+l (a
k | λ− (µ)+ (a+ l + j ))

×mak|λ−(µ)+(a+l+ j )e
⊥
j+l−|µ|e

⊥
λ (33)

Let i = j + l , then the sum overj can be converted to a sum overi .

=
∑
λ

∑
µ

∑
l≥0

∑
i≥l

(−1)|λ|+i−l rµ−(l )na+i (a
k | λ− (µ)+ (a+ i ))

×mak|λ−(µ)+(a+i )e
⊥
i−|µ|e

⊥
λ (34)

Interchange the sum overi and the sum overl . Sincel ≥ 0 andi ≥ l then i ≥ 0 and
0≤ l ≤ i .

=
∑
λ

∑
µ

∑
i≥0

i∑
l=0

(−1)l rµ−(l )(−1)|λ|+i na+i (a
k | λ− (µ)+ (a+ i ))

×mak|λ−(µ)+(a+i )e
⊥
i−|µ|e

⊥
λ (35)

Notice that sincee⊥i−|µ| is zero for alli < |µ|, then all terms are zero unlessi ≥ |µ|.

=
∑
λ

∑
µ

∑
i≥|µ|

i∑
l=0

(−1)l rµ−(l )(−1)|λ|+i na+i (a
k | λ− (µ)+ (a+ i ))

×mak|λ−(µ)+(a+i )e
⊥
i−|µ|e

⊥
λ (36)

The sum overl is equal to 0 as long as|µ| > 0 using Lemma 3.

=
∑
λ

∑
i≥0

(−1)|λ|+i na+i (a
k | λ+ (a+ i ))mak|λ+(a+i )e

⊥
i e⊥λ (37)

Let the sum overλ include the part of sizei , thenλ = λ+ (i ).

=
∑
λ

(−1)|λ|
∑
i≥0

na+i (a
k+1 | λ)mak+1|λe⊥λ (38)
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The sum overi is now independent ofλ since
∑

i≥0 na+i (ak+1 | λ) will always bek+ 1.

= (k+ 1)
∑
λ

(−1)|λ|mak+1|λe⊥λ = (k+ 1)RM(k+1)
a (39)

2

It follows that the formula forRM(k)
a can be substituted into Theorem 3 and this provides

a more reduced form of the first formula given forRMa.

Corollary 1 For a > 0, RMa =
∑

k≥0

∑
λ(−1)|λ|+kmak+1|λe⊥λ (h

k
a)
⊥.

Since the forgotten basis is related to the monomial basis by an application of the in-
volution ω, then the formulas for the symmetric function operator that adds a row to the
forgotten symmetric functions follows immediately.

Corollary 2 For a > 0, RFa =
∑

k≥0

∑
λ(−1)|λ|+k fak+1|λh⊥λ (e

k
a)
⊥ has the property that

RFa fλ = fλ+(a)

There exists an operatorT−X of the same form as the operators that exist already in
this paper that has the property thatT−X P[X] = 0, if P[X] is a homogeneous symmetric
function of degree greater than 0 andT−X1 = 1. This means that the operator applied to
an arbitrary symmetric function has the property that it picks out the constant term of the
symmetric function.

Proposition 3 Define the operator

T−X =
∑
λ

(−1)|λ|sλ′s⊥λ

Then for any dual bases{aµ}µ and{bµ}µ (that is, 〈aµ, bλ〉 = δλµ), this is equivalent to

T−X =
∑
λ

(−1)|λ|ω(aλ)b⊥λ

This operator has the property thatT−Xsλ = 0 for |λ| > 0 andT−X1= 1.

Proof:

T−Xsµ =
∑
λ

(−1)|λ|sλs⊥λ′sµ (40)

This is exactly the same expression as formula ([3], p. 90, (I.5.23.1)) with thex variables
substituted for they. This expression is 0 unlesssµ = 1.
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It requires very little to show that this operator can be given an expression in terms of
any dual basis.

T−X =
∑
λ

(−1)|λ|ω(sλ)s⊥λ (41)

=
∑
λ

(−1)|λ|
∑
µ`|λ|
〈ω(sλ), ω(bµ)〉ω(aµ)s⊥λ (42)

=
∑
µ

∑
λ`|µ|

(−1)|µ|ω(aµ)〈sλ, bµ〉s⊥λ (43)

=
∑
µ

(−1)|µ|ω(aµ)b⊥µ (44)

2

Note thatT−X is actually a special case of a plethystic operatorTZ P[X] = P[X + Z].
Fix a basis of the symmetric functions,{aµ}µ, we may talk about the symmetric function

linear operator that sendsaµ to the expressiondµ (where{dµ}µ is any family of symmetric
function expressions). We can say that this operator lies in the linear span of the operators
sλs⊥µ and an expression can be given fairly easily.

Corollary 3 (The everything operator) Let {aµ}µ be a basis of the symmetric functions
and{bµ}µ be its dual basis. Then an operator that sends aµ to the expression dµ is given by

E
{dµ}
{aµ} =

∑
µ

dµT−Xb⊥µ

In other words we have that E
{dµ}
{aµ} acts linearly, and on the basis aµ it has the action

E
{dµ}
{aµ}aµ = dµ.

Proof: Note that whenb⊥µ acts on a homogeneous polynomial, the result is a homogeneous
polynomial of degree|µ| less. Therefore if|µ| > |λ|, thenb⊥µaλ = 0. If |µ| < |λ| then
T−Xb⊥µaλ = 0 sinceT−X kills all non-constant terms. When|µ| = |λ|, we have that
b⊥µaµ = δλµ and therefore,T−Xb⊥µaλ = δλµ. This also implies that∑

µ

dµT−Xb⊥µaλ =
∑
µ

dµδλµ = dλ (45)

2

This operator looks too general to be of much use, but using known symmetric function
identities it is possible to reduce and derive expressions for other operators. For instance,
the symmetric function operator that adds a column to the monomial symmetric functions
is a special case of this.
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Theorem 4 For a > 0, let

CMak =
∑
λ

(−1)|λ|
(

na(λ)+ k

k

)
mλ+(ak)e

⊥
λ ,

then CMakmλ = mak|λ with the convention that mak|λ = 0 if ak|λ is undefined.

Proof: We will reduce an expression forE
{mak |λ}
{mλ} to one forCMak .

E
{mak |λ}
{mλ} =

∑
λ

mak|λ
∑
µ

(−1)|µ|mµe⊥µh⊥λ (46)

Let rλµ be the coefficient ofeµ in hλ (by an application of the involutionω it is also the
coefficient ofhµ in eλ). Then the expression is equivalent to

=
∑
λ

mak|λ
∑
µ

(−1)|µ|mµe⊥µ
∑
γ`|λ|

rλγe⊥γ (47)

Rearranging the sums this may be rewritten as

=
∑
λ

∑
µ

∑
γ

(−1)|µ|mak|λrλγmµe⊥µe⊥γ (48)

It is possible to group all the terms that skew by the same elementary symmetric function
by making the substitutionµ→ µ− (γ ) since the sum overµ andγ are over partitions.

=
∑
λ

∑
µ

∑
γ

(−1)|µ|−|γ |mak|λrλγmµ−(γ )e⊥µ (49)

Note thatmµ−(γ ) = h⊥γ (mµ) and
∑

γ (−1)|γ |rλγ h⊥γ = (−1)|λ|e⊥λ .

=
∑
µ

∑
λ

(−1)|µ|mak|λ(−1)|λ|e⊥λ (mµ)e
⊥
µ (50)

Notice that the first part of this expression is exactly the operatorRM(k)
a acting exclusively

on mµ. We may then apply Proposition 2 and note that the expression reduces to the sum
stated in the theorem. 2

The symmetric function operator that adds a column (or a group of columns) to the
forgotten symmetric functions can be found by conjugating theCMak operator by the
involutionω to derive the following corollary.

Corollary 4 For a > 0, let

CFak =
∑
λ

(−1)|λ|
(

na(λ)+ k

k

)
fλ+(ak)h

⊥
λ ,

then CFak fλ = fak|λ with the convention that fak|λ = 0 if ak|λ is undefined.



VERTEX OPERATORS FOR SYMMETRIC FUNCTIONS 95

Remark Lemma 5 is not true fora= 0, therefore the proofs of Proposition 1 and Propo-
sition 2 do not hold fora = 0. Something interesting can be said of these operators
in this case. By following the calculation carefully, it is possible to see that if we set
RM(k)

0 =
∑

λ:`(λ)≤k(−1)|λ|mλe⊥λ , then

RM(k)
0 mλ =

(
k− `(λ)

k

)
mλ (51)

With the convention thatn0(λ) = −`(λ), Theorem 4 and Corollary 4 and their proof make
sense.

The operator that adds a sequence of rows to the monomial symmetric functions and the
operator that adds a sequence of columns are related by a pair of formulas similar to in the
case of formulas (14) and (15). Notice that Proposition 2 and Theorem 4 say that

CMak =
∑
λ

(−1)|λ|RM(k)
a (mλ)e

⊥
λ (52)

RM(k)
a =

∑
λ

(−1)|λ|CMak(mλ)e
⊥
λ (53)

This is ‘eerie coincidence’ number two. The relation between these two operators is very
similar to the relation betweenCH1k andCE1k but not exactly the same. Once again this is
unexpected and unexplained.

5. Schur vertex operators

A symmetric function operator that adds a row to the Schur functions is given in [3] (p. 95–96
I.5.29.d) that is of the same flavor as the other vertex operators presented here.

Theorem 5 (Bernstein) Let RSa =
∑

i≥0(−1)i ha+i e⊥i , then RSasλ = sλ+(a) if a ≥ λ1. In
addition, RSaRSb = −RSb−1RSa+1.

Proof: Repeated applications of this operator yields expressions of the Jacobi-Trudi sort.
Use the relationRSahk = hkRSa−hk−1RSa+1 (which follows from [3] example (I.5.29.b.5)
and (I.5.29.d)),RSa(1) = ha and follow the proof of [3] (I.3.(3.4”) p. 43) which does not
actually require that the indexing sequence be a partition. It follows then that

RSs1RSs2 · · ·RSsn(1) = det|hsj− j+i |1≤i, j≤n (54)

2

Conjugating this operator byω produces an operator that adds a column to a Schur
symmetric function. We will show in this section that a nice expression exists for a formula
for an operator that adds a column to a Schur function, but with the property that the result
is 0 if the partition is longer than the column being added.
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It follows from the commutation relation of theRSa, that there is a combinatorial method
for calculating the action ofRSa on a Schur function whenm< λ1. Lethtk(µ) be the integer
i such thatµck = (µ2 − 1, µ3 − 1, . . . , µi − 1, µ1 + i − k, µi+1, . . . , µl (µ)) is chosen to
be a partition. This amounts to removing the firstk cells from the border ofµ. If it is not
possible to find such ani such thatµck is a partition then say thatµck is undefined.

Corollary 5 Letν = λ+ (a+ k) where k≥ λ1 − a (ν is λ resting on a sufficiently long
first row).

RSasλ = (−1)htk(ν)−1sνck

where it is assumed that sνck = 0 if νck does not exist.

The proof of this corollary is not difficult, just a matter of showing that the commutation
relation of RSaRSb agrees with this definition ofνck and that the vanishing condition
exists becauseRSaRSa+1 = 0. This definition and corollary are useful in showing that
an expression for(RSa)

k can be reduced to a form that is very similar to the other vertex
operators presented here.

Lemma 6 For a ≥ 0,

(RSa)
k =

∑
λ

(−1)|λ|sak|λs⊥λ′

with the convention that sak|λ is 0 if ak|λ is undefined.

Proof: By induction onk. The statement agrees with Theorem 5 fork = 1.

RSa(RSa)
k =

∑
i≥0

(−1)i ha+i e
⊥
i

∑
λ

(−1)|λ|sak|λs⊥λ′ (55)

e⊥i can be commuted with the Schur function to produce

=
∑
i≥0

(−1)i ha+i

∑
λ

(−1)|λ|
i∑

j=0

e⊥j (sak|λ)e⊥i− j s
⊥
λ′ (56)

Interchange the order of all of the sums.

=
∑
λ

∑
j≥0

∑
i≥ j

(−1)|λ|+i ha+i e
⊥
j (sak|λ)e⊥i− j s

⊥
λ′ (57)

Make the substitution thati → i + j , changing the sum so that it is over alli ≥ 0 and
expand the producte⊥i s⊥λ′ . The notation thatγ /λ′ ∈ Vi means thatγ differs fromλ′ by a
vertical i strip (λ′j ≤ γ j ≤ λ′j + 1 and|γ | = |λ| + i ).

=
∑
λ

∑
j≥0

∑
i≥0

(−1)|λ|+i+ j ha+i+ j e
⊥
j (sak|λ)

∑
γ /λ′∈Vi

s⊥γ (58)



VERTEX OPERATORS FOR SYMMETRIC FUNCTIONS 97

Make the substitutionγ→ γ ′ so that the sum is over all partitionsγ that differ fromλ
by a horizontali strip and rearrange the sums.

=
∑
λ

∑
i≥0

∑
γ /λ∈Hi

(−1)|λ|+i
∑
j≥0

(−1) j ha+i+ j e
⊥
j (sak|λ)s⊥γ ′ (59)

Now it is only necessary to notice that the sum overj is actually an application of the
Schur vertex operator acting exclusively on the symmetric functionsak|λ. Switch the order
of the sums over the partitions and expression becomes

=
∑
γ

(−1)|γ |
∑
i≥0

∑
λ:γ /λ∈Hi

RSa+i (sak|λ)s⊥γ ′ (60)

There is a sign reversing involution on these terms so that only one term in the sum over
i andλ survives, namely,sak+1|γ . If i = γ1 thenRSa+γ1(sak|(γ−(γ1))) = sak+1|γ .

Take any partitionλ in this sum such thatγ /λ is a horizontal strip of length less thanγ1.
If RSa+i (sak|λ) = 0, then this term does not contribute to the sum. IfRSa+i (sak|λ) = sak|ν
thenν = λ+ (i + n)cn, wheren = γ1 − i . There is a combinatorial statement that can be
made about partitions that satisfy this condition, this is a lemma stated in [4] (Lemma 3.15,
p. 34).

Lemma 7 There exists an involution In
γ on partitionsµ such thatµ/γ is a horizontal

n strip, µcn exists andγ 6=µcn with the property that htn(I n
γ (µ)) = htn(µ) ± 1 and

µcn = I n
γ (µ)cn.

This is exactly the situation here. Setµ = λ+ (i + n) thenµ/γ is a horizontal strip of
size|µ| − |γ | = |λ| + i + n− |γ | = n. The result then is that all terms cancelexceptfor
the terms such thatγ = λ+ (i + n)cn or i = γ1 andRSa+i (sak|λ) = sak+1|γ .

The sum therefore reduces to

=
∑
γ

(−1)|γ |sak+1|γ s⊥γ ′ (61)

2

With this expression for the Schur function vertex operator, it is possible to reduce the
expression for the ‘everything operator’ that adds a column to the Schur functions but is
zero when the length of the indexing partition is larger than the height of the column being
added.

Theorem 6 For a, k ≥ 0, let CSak = ∑
λ(−1)|λ|(RSa)

k(sλ)s⊥λ′ . This operator has the
property that CSaksλ = sak|λ if l (λ) ≤ k and CSaksλ = 0 for l (λ) > 0.
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Proof: Take the expression for the everything operator that addsa columns of heightk
using the convention thatsak|λ is zero wheneverak | λ is undefined.

E
{sak |λ}
{sλ} =

∑
λ

sak|λ
∑
µ

(−1)|µ|sµs⊥µ′s
⊥
λ′ (62)

The coefficients of the expansion ofsµsλ in terms of Schur functions are well studied
and there exists formulas and combinatorial interpretations for their calculation. The only
properties that we require here is that the coefficients in the the expressionsµsλ =

∑
ν cνλµsν

have the property thatcνλµ = cν
′
λ′µ′ ands⊥λ sν =

∑
ν cνµλsµ.

=
∑
λ

sak|λ
∑
µ

(−1)|µ|sµ
∑
ν

cν
′
λµ′s

⊥
ν ′ (63)

Next, we rearrange the sums and make the substitutioncν
′
λµ′ = cνλ′µ.

=
∑
λ

sak|λ
∑
ν

(−1)|ν|−|λ|
∑
µ

cνλ′µsµs⊥ν ′ (64)

Therefore the sum overµ is just an application ofs⊥λ′ on (sν) and the sums can be
rearranged.

=
∑
ν

(−1)|ν|
∑
λ

(−1)|λ|sak|λs⊥λ′ (sν)s
⊥
ν ′ (65)

The sum overλ is now exactly an application of Lemma 6.

=
∑
ν

(−1)|ν|(RSa)
k(sν)s

⊥
ν ′ (66)

This is the expression given in the statement of the theorem. 2

The last of the ‘eerie coincidences’ of this article is that theCSak and(RSa)
k are related

by a pair of formulas similar to the case of formulas (14), (15) and (52), (53).

CSak =
∑
λ

(−1)|λ|(RSa)
k(sλ)s

⊥
λ′ (67)

(RSa)
k =

∑
λ

(−1)|λ|CSak(sλ)s
⊥
λ′ (68)

They say that once is happenstance, twice is coincidence and three times is a conspiracy.
This relationship can be made more explicit and it explains why these operators come in
pairs, but not why column adding operators happen to be related row adding operators for
both the Schur and monomial bases and why a similar relation exists with the homogeneous
and elementary vertex operators.
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Let V be a linear operator from the space of symmetric functions to itself. Define

V̄ =
∑
λ

(−1)|λ|V(sλ)s⊥λ′ =
∑
λ

(−1)|λ|V(aλ)(ωbλ)
⊥ (69)

where the sum is over all partitionsλ and{aλ}λ and{bλ}λ are any two dual bases.
It is not difficult to show that

=
V=V and that Eqs. (52), (53), (67), (68) may be summarized

asRM(k)
a = CMak and(RSa)

k = CSak . The relationship between (14) and (15) is not exactly
the same, but it follows thatCH1k(hλ) = CE1k(hλ) for all `(λ) ≤ k.

6. An application: The tableaux of bounded height

One observation about the operatorCSak that could have an interesting application is that
CS0ksλ = 0 if l (λ) > k andCS0ksλ = sλ if l (λ) ≤ k. Knowing this and the commutation
relation betweenRSa andhk allows us to calculate the number of pairs of standard tableaux
of the same shape of bounded height [1]

∑
λ`n : l (λ)≤k f 2

λ (where fλ is the number of standard
tableaux of shapeλ).

Proposition 4 Let CP(n, k) be the collection of sequences of non-negative integers of
length k such that the sum is n.

∑
λ`n : l (λ)≤k

f 2
λ =

∑
s∈CP(n,k)

(
n

s

)∏
i< j (sj + j − (si + i ))∏k

i=1(si + i − 1)!
n!

The formula follows by applyingCS0k to the symmetric functionhn
1 to arrive at a formula

for the symmetric function
∑

λ`n : l (λ)≤k fλsλ.

Lemma 8

CS0k

(
hn

1

) = ∑
λ`n:l (λ)≤k

fλsλ =
∑

s∈CP(n,k)

(
n

s

)
det|hsj− j+i |1≤i, j≤k

Proof: Use the relationRSahk= hkRSa− hk−1RSa+1, RSa1= ha and induction to calcu-
late that

RSk
0

(
hn

1

) = n∑
l=0

∑
s∈CP(n−l ,k)

(−1)n−l hl
1

(
n

l , s

)
det|hsj− j+i |1≤i, j≤k (70)

Using the relation thats⊥λ (h
n
1) = ( n|λ| ) fλh

n−|λ|
1 we have that

CS0k

(
hn

1

) =∑
λ

(−1)|λ|(RS0)
k(sλ)s

⊥
λ′
(
hn

1

)
(71)



100 ZABROCKI

=
∑
λ

(−1)|λ|(RS0)
k(sλ)

(
n

|λ|
)

fλh
n−|λ|
1 (72)

=
n∑

i=0

∑
λ`i

(−1)i
(

n

i

)
(RS0)

k( fλsλ)h
n−i
1 (73)

=
n∑

i=0

(−1)i
(

n

i

)
(RS0)

k
(
hi

1

)
hn−i

1 (74)

Now using (70) we can reduce this further to

=
n∑

m=0

m∑
l=0

∑
s∈CP(m−l ,k)

(−1)l
(

n

m

)(
m

l , s

)
hn+l−m

1 det|hsj− j+i |1≤i, j≤k (75)

Now switch the sums indexed byl andm and then make the replacementm→ m+ l

=
n∑

l=0

n−l∑
m=0

∑
s∈CP(m,k)

(−1)l
(

n

m+ l

)(
m+ l

l , s

)
hn−m

1 det|hsj− j+i |1≤i, j≤k (76)

Now switch the sums back and rearrange the binomial coefficients

=
n∑

m=0

n−m∑
l=0

∑
s∈CP(m,k)

(−1)l
(

n

n−m, s

)(
n−m

l

)
hn−m

1 det|hsj− j+i |1≤i, j≤k (77)

Now the sum
∑n−m

l=0 (−1)l ( n−m
l
) will always be zero unlessn − m = 0 and if n = m

then it is 1 and so the entire sum collapses to

=
∑

s∈CP(n,k)

(
n

s

)
det|hsj− j+i |1≤i, j≤k (78)

2

Proof of Proposition 4: The proposition follows from this lemma with a little manipula-
tion. There is a linear and multiplicative homomorphism that sends the symmetric functions
to the space of polynomials in one variable due to Gessel defined byθ(hn) = xn/n!. This
homomorphism has the property thatθ(sλ) = fλx|λ|/|λ|!. The image of the formula in the
lemma is then

θ
(
CS0k

(
hn

1

)) = θ( ∑
λ`n:l (λ)≤k

fλsλ

)
=

∑
λ`n:l (λ)≤k

f 2
λ

xn

n!
(79)

Therefore if we set(a)0= 1 and(a)i =a(a−1) · · · (a− i +1) then we have (by making a
slight transformation that reverses order of the sequence first. . . j → n+1− j , i → n+1−i
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andsi → sn+1−i ) that

∑
λ`n:l (λ)≤k

f 2
λ =

∑
s∈CP(n,k)

(
n

s

)
det

∣∣∣∣ (sj + j − 1)i−1

(sj + j − 1)!

∣∣∣∣
1≤i, j≤k

n! (80)

∑
λ`n:l (λ)≤k

f 2
λ =

∑
s∈CP(n,k)

(
n

s

)
det|(sj + j − 1)i−1|1≤i, j≤k∏k

i=1(sj + j − 1)!
n! (81)

The determinant is a specialization of the Vandermonde determinant in the variables
sj + j − 1 so the formula reduces to the expression stated in the proposition. 2

We note that in the case thatk = 1 this sum reduces to 1 and in the case thatk = 2 we
have that

∑
λ`n : l (λ)≤2

f 2
λ =

n∑
j=0

(
n

j

)
n− 2 j + 1

( j )!(n− j + 1)!
n! =

n∑
j=0

(
n

j

)2 n− 2 j + 1

n− j + 1
(82)

And this is an expression for the Catalan numbers. It would be interesting to see if these
expressions and equations could beq or q, t analogued.
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