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Abstract. The generating rank is determined for several GF(2)-embeddable geometries and it is demonstrated
that their generating and embedding ranks are equal. Specifically, we prove that each of the two generalized
hexagons of ordef2, 2) has generating rank 14, that the central involution geometry of the Hall-Janko sporadic
group has generating rank 28, and that the dual polar space DU(6,2) has generating rank 22. We also include a
survey of all instances in which either the generating or embedding rank of an embeddable GF(2) geometry is
known.
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1. Introduction

An incidence systers a triple(P, L, |) consisting of a seP whose elements are called
points a setL whose members are callédes and a symmetric relatiohc (P x L) U
(LxP).If peP,l eLand(p,!|) el thenwe saypisincidentoror. (P, L, |)is said to

be alinear incidence systewr apoint-line geometryf two points are incident with at most

one line. In this case we may identify each line with the set of points with which it is incident
and replacd with the symmetrization of the relation and then we will write(P, L) in

place of(P, L, I). (P, L) is a said to be ageometry of order 2r, alternatively for the
purpose of this paper, a GF(2) geometry if every one of its lines has three points. For a finite
GF(2)-geometry a projective embedding is an injective mappiy — PG(n—1,2) = I1

such that

(1) (&(P))g, = M and
(2) foranylinel = {x, vy, z}, e(x) + e(y) + e(z) = 0.

The latter condition is equivalent t@(1)), is a projective line off1. Assume thatP, L)

is a GF(2)-geometry. LetH] be the vector space over GF(2) with basts For a line

| ={x,y,z}letl = x+y+ze[PlandsetL] = (I || € L) asubspace off]. LetU (P)

be the quotientP]/[L] and forx € P set &x) = x + [L]. Then an embedding exists
for (P, L) if and only if the the maye is injective. In this case this embedding is called
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the universal embeddind~or such a geometry we define tambedding rankf (P, L),
er(P, L), equal to be the dimension bf(P).

By a subspaceof an incidence systefi = (P, L) we mean a subseX of the point
set P with the property that if a line meet¥ in at least two points then the line is en-
tirely contained inX. Clearly the intersection of subspaces is a subspace. Consequently,
for an arbitrary subseX of P we can define theubspace generatday X to be the in-
tersection of all subspaces containi¥gand will be denoted byX) . This is the unique
minimal element among the collection of subspaces which coraiwe will say that
a subsetX generates Ff (X)p = P and we define thgenerating rankof (P, L),
gr(P, L) to be the size of a generating set of minimal cardinality. It is an immediate con-
sequence of these definitions thalif= (P, L) is an embeddable GF(2)-geometry then
gr(l") = en().

This paper is part of a larger project to determine the generating rank of highly regular
geometries with three points on a line and more generally to investigate the relationship
between the embedding and generating rank. Elsewhere we conjectured the generating and
embedding ranks are equal for GF(2) geometries but that has been shown to be false ([20]).
His counterexample, however, is not a common geometry so the question remains whether
for Lie type geometries or geometries for sporadic groups the embedding and generating
ranks are equal. Here we will determine the generating rank of four GF(2) embeddable
geometries which are all generalized hexagons or near polygons. By amgan2ve
mean a geometryP, L) in which the collineairity graph has diameterand which has
the property that for each point line paip, |) there is a unique closest point fo on
I. ([25]). A generalized hexagde a near hexagon (6-gon) with the additional property that
for two points at distance two there is a unique common neighbor. ([8]). The particular
geometries studied here are the smallest Lie geometries for which the generating rank was,
heretofore, unknown. For each we will determine its generating rank and, in particular, show
that it is equal to the previously determined embedding rank. Specifically, we prove the
following

Theorem A

(a) The usual G(2) generalized hexagon has generating rddk

(b) The dual G(2) generalized hexagon has generating rdak

(c) The involution geometry of the Hall-Janko simple group has generating2@nk

(d) The unitary dual polar spacBU(6, 2) has generating ranR2. In each instance the
generating rank is equal to the universal embedding rank.

By the “usual”’G,(2) generalized hexagon we mean the duality class which has an em-
bedding inPG(5, 2). The outline of this paper is as follows: In Section two we determine
the generating rank of the usu@h(2) generalized hexagon. Section three is devoted to its
dual. Section four treats the involution geometry of the Hall-Janko group. In Section five
we study the last of our four geometries, the dual polar space of unitary D@, 2).
Finally, in Section six we include a survey of generating and embedding ranks of GF(2)
embeddable geometries.
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2. The usualG;,(2) generalized hexagon
The purpose of this section is to prove the following
Proposition 2.1 The usual G(2) generalized hexagon has generating rank 14.

Let DSR2n, q) denote the dual polar space of symplectic type in dimensioav2r the
field Fy (see [12]) for a description of this geometry.

It is well known that the usudb,(2) generalized hexagon is a geometric hyperplane of
DSHG6, 2) ([24]). We describe this inclusion: L&P, £) be the dual polar spadeSR6, 2)
and fori < 3letA; denote the pairs of points at distancand letd(, ) denote the distance
function. For a poina € P denote byH, the geometric hyperplane consisting of all points
at distance at most two froan

Ha=A-x(@ ={beP|d(ab) <2}
Then for any pair of pointa, b € Az the sum
Ha ® Hp = [Ha N Hb] U [(P\Ha) N (P\Hb)]

is a geometric hyperplane isomorphic to the usBal2) generalized hexagon.
In ([15]) the following method for constructing a new GF(2) geometry from a given
GF(2) geometrny™ = (P, L) is introduced:

Letl ={1,2,3}.SetY =1 xP,Z=1{o:1 - P|Im(o) € L}. ThenP =Y U Z is the
new set of points.

The lines are of four types:

() Foriel,l eL,{i}xI|elL;
(i) Forx e P, 1 x{x} e L;
(i) For (i,x) € Y,o0 # 1 € Z;{(i,X),0,7} € L if Im(o) = Im(2),0(i) = (i) = X;
and
(iv) {o1,02,03} C Zisin L if the Im(a;) are distinct and if each

{o1(), 02(i), 03(1)} € L.

Itis further shownin ([15]) thatif* = (P, L) isageneralized quadrangle of order 2 thier

(P, [)isDSR®, 2). We will make use of this model. Before doing so, however, we also need

auseable description of ageneralized quadrangle of order 2. ThdsHgs, X2, V1, Vo) be

a four dimensional symplectic space over GF(2) and assumgithat, L y, 1 y; L X;.
Letag =X1,aa=V¥2, @3=X1+ Y2, b1 =Xz, 0 =¥1, b3 =x2+ y; and sea= (1, &), b =

(2, a) so thatd: (a, b) = 3. We first enumerate the points(H, & Hp) N'Y which we shall

denote byA:

A= (Ha® Hp)NY
= (1, &), (1,by), (1, @2+ by), (1, 02), (1, 82 + b2), (1, b3), (1, & + by),
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(2,a1), (2,by), (2,81 + by), (2, b), (2, a1 + 1), (2, ba), (2, 81 + b3),
(3,a3), (3,by), (3, a3 + by), (3, by), (3, a3 + by), (3, b3), (3, a3 + bz).

This set of 21 points is generated by the following nine points:
(1), (2,&),(3,a),(,bj),i=12]=123.

Now we claim thatH, @ Hy, is generated by these nine points together with the following
five points from(H, & Hy) N Z:

o1 = (a1, by, & + b1), 00 = (I, &, @ + ), 03 = (a3, @z + b, b),
04 = (a2 + bz, a1 + by, az + 1), o5 = (a2 + by, a3 + bz, az + by).

Let X denote the subspace Bfgenerated by these 14 points so tatontains(H, @
Hp)NY.

ZN(Hy @ Hp) has 42 points and each of these is of the foxiny, z) where{x, y, z} isa
line of I'. There are, of course, 15 lineslirand 9 of them are of the forf@; , b, & +b;} for
i, j € |.Foreach inthis latter set there are exactly twoe ZN (H, @ Hp) with Im(o) = 1.
Moreover, if one such is in X then there will be a unique point i collinear witho and
then the third pointy on the line joining these two will also have(r) = | and hence also
t € X. For each among the remaining six lines there are foeut Z N (Hy & Hp) with

Im(o) = I. In fact, for each such linkethere is a unique € Z with Im(o) = | such that
(i,o()) € Afori =1, 2, 3. If we setr; equal to the third point on the line joining and
(i, o(i)) thenti € ZN (Hy @ Hp) andim(zj) = I. It therefore suffices to show that for each

linel of I there is some € X such thaim(c) = 1.

For a permutatiomr € S3 and as € Z we shall denote by o the effect of permutating
the three entries of by x. Whens is a transposition(ij) then the resulting point oZ
is the point on the line joining to (k, o (k)) where{l, 2, 3} = {i, j, k}. So, for example,
(13)01 = (a1 + by, by, @) is the point ofZ on the line joiningo; to (2, by). Since these
are both inX it follows that (13)07 € X. In each of the cases below the permutations of the
oi are obtained by joining; to a point of A. We shall also indicate that two points Bf
are collinear by writingk ~ y and in this case the third point on the line will be denoted by
X+ Y.

o1~ oz andoy + oo = (a3 + by, a + by, ag + bg).

(13)01 ~ (12)03 and(13)01 + (1203 = (A + by, ag + b1, & + bs).
(13)01 ~ (23)04 and(13)o1 + (23)04 = (a3 + by, ag, by).

o1 ~ (1205 andoy + (12)o5 = (bs, az, a + bs).

(23)02 ~ 03 and(23)02 + 03 = (az + b2, a1 + by, @z + ba).

o2 ~ (12)04 andos + (12)04 = (a4, bz, a1 + by).

(23)02 ~ (13)05 and(23)02 + (13)05 = (a3, &g + by, by).

o3 ~ (13)04 andos + (13)o4 = (b, ax + by, ap).



GENERATION OF EMBEDDABLE GF(2) GEOMETRIES 19

(12)03 ~ (23)05 and (1203 + (23)05 = (a1 + by, by, a).
(1204 ~ (23)05 and(12)o4 + (23)o5 = (az + bz, a; + by, a, + by).

These ten lines complement the five lines which are the images df<i <5. We have
therefore shown that for every lidethere is as € X such thatim(s) = |I. From the
above argument it then follows thxt= H, & H, and consequently, the usual generalized
hexagon of order 2 is generated by 14 points. By ([17]) we know as well that the universal
embedding rank is 14. This completes the results of this section.

3. The dualG,(2) generalized hexagon

In this section we prove part (b) of our main theorem. Throughout this setier(P, L)

will be the dualG,(2) generalized hexagon and we will denotediy) the distance func-

tion in the point-collinearity graph. Fox e P,i <3 an integer we letA; (xX) be the set

of points at distancé from x. We will also denote byA;(x) the collection of points

y such thatd(x, y) < i. As with the usualG,(2) generalized hexagon every line con-
tains three points and every point lies on three lines and then it is trivial to compute that
|[A1(X)| =6, |A2(X)| =24, | Az(X)| = 32.

The incidence system of this section can be realized as the geometry of reflection centers
for the groupG,(2) represented in a six space over the quaternions. This geometry is the
same as the long root subgroup geometry of the gé&(@) and in this section we make this
identification. As a reference see ([11]). For the remainder of this section W&edenote
a group isomorphic t@,(2). P is then the 63 central involutions of the gro@(those
which belong to the commutator subgroup which is isomorphld4@)). For a subgroup
Y of G we will let P(Y), L(Y) denote the points and lines contained/inWe remark that
P(Y) is a subspace d?. The possible relations between a paily € P of distinct central
involutions are as follows:

1. x andy are collinear, that igj(x, y) = 1. In this casy = yx € P and the line orx
andy is {X, y, xy}. Forx € P we denote by\;(x) the points at distance one froxm

2. d(x, y) = 2. Inthis caséx, y) is a dihedral group of order 8 and the unique point which
is collinear to bothx andy is (xy)? = Z((x, y)) = (X, y)'.

3. d(x, y) = 3 = |xy| and therefor€x, y) is isomorphic toSs.

We next record as a lemma the fact tlat(2) containsSL(3, 2) as a subgroup generated
by long root involutions:

Lemma 3.1 G = G(2) contains a single clas§ of subgroups isomorphic to &, 2)
generated by long root involutions. The set of long root involutions contained in S form
a subhexagon with paramete(g, 1). For S such a subgroup dNS) is isomorphic to
Aut(SL(3, 2)) and consequently there a8 such subgroups.

Proof: This is easily deduced from ([10]). O
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Lemma 3.2 Let Se S. Then for every xc P\P(S)|P(S) N A1(X)| = 1.

Proof: Note that ify, z € P(S) then(y, z) ¢ Sand consequent?({y, z)) C P(S).
Suppose now that, z € P(S) andd(y, z) = 2. ThenA1(y) N A1(2) = {(y2)?} € P(9).
From this it follows that foranx € P\P(S), | A1(X)NP(S) | < 1. Onthe other hand there
are 21 points irP(S). For each poiny € P(S) there is a unique ling, ony which is not
contained inP (S) and each such line contains 2 points which are n&ti8). Consequently,
there are 2k 2 = 42 pointsx € P\P(S) such thatP(S)N A1(x) # @. Since|P(S)| = 21
this accounts for all points. O

Lemma3.3 Lety,ze P,d(y,2) =2 Then|{Se S| ({y,z) < S}| =4.

Proof: G is transitive on such pairs of which there #&2* = 756.G is also transitive
on S. Moreover, forS € S there are21TX8 = 84 such pairs antllg(S) is transitive on the
distance two pairs contained 8 It then follows that for any such pafy, z} the number
a(y,2) = |{Se S| ({y,z < S} is independent of the pajy, z. Letting « denote this
common value we have 36 84 = 756x and hencer = 4. O

Lemma3.4 Lety,ze P,d(y, z) = 2and set x= (y2)? the unique point collinear with
both y and z. Let ue A1(y) N Ax(X). Then there are precisely two & S containing
u,y, X, Z.

Proof: Sinced(u, x) = 2 andA1(u) N A1(X) = y = (ux)? it follows thatd(u, y) = 3,
(u, ¥, X, Z) = § andG,(2) is transitive on such quadruplés, vy, X, z) as can be seen from
Section 3 of ([11]). The number of such quadruples isx634 x 4. On the other hand the
number of such quadruples lying in an elemensas 21 x 8 x 2. Since|S| = 36 it now
follows that each such quadruple is contained in two elemenfsasf required. O

Before proceeding to our main proposition we require one last lemma:

Lemma 3.5 Gy(2) acts via conjugation as a rank three group Srwith subdegree$4
and21 Moreoverfor S+ S € S, SN S = (P(SN S)) and is either isomorphic to Por
S;.

Proof: LetS e S. Scontains 21 two-Sylow subgroups isomorphi©gand 14 subgroups
isomorphic toS;. Let X be a subgroup o isomorphic toS,. ThenX is maximal inSand

by (3.4) there are two members 8f containing X one of which isS. In this way we
obtain 14 element§ € S with SN S = (P(SN S)) = ;.. Now each two-Sylow oSis
contained in two subgroups isomorphicSpand these are the unique maximal subgroups
of S containing the two-Sylow. LeT be a two-Sylow ofS. From (3.3)T is contained in
four elements ofS of which Sis one. By the above there are subgrotipsT, = S, of S
containingT . By (3.4) each off; is contained in two members 8fone of which isS. In this
way we obtain two membelS, S, # S € S containingT suchthalS N T = §,,i =1, 2.
Consequently, there is one more elem8nt& S containingT and for thisS, SN S’ is not
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isomorphic t0S,. ThereforeSN'S = T = Dg. This accounts for 21 subgroups$hand
hence the remaining ones since-14 + 21 = 36. O

We can now prove our main proposition which is part (b) of Theorem A:
Proposition 3.6 The dual G(2) generalized hexagon can be generated #yoints.

Proof: Lety,z e P,d(y,z) = 2 and sek = (y2?. By (3.5) there aré&§;, S € S with

S NS = {y, z). Now we can generate eachBfS),i = 1, 2 by 8 points (for example
takeAz(@a) N P(S) foranyae P(S)). Moreover, we can take three of those points to be
Y, X, Z. Therefore the subspacelot= (P, L) generated by (S) U P(S) can be generated

by 13 points. We now determine the points of this subspace. We claim that it contains all
points iNA <2(X). O

Note that|P(S§) N A2(X)| = 8,i = 1, 2. As indicated above there are 6 pointsAR(x)
and 24 points im,(x). We further note that\(y) is already contained iR (S;) U P(S)
since eachP () contains two lines oy and they have in common only the lif (X, y)).
This is also true for the pointsy, z and xz. Now supposea is one of the 8 points in
P(S) N As(x). By (3.2) there is a unique poitit € P(S$) N Ai(a). Sinced(a, x) = 3
b¢ Ai(X)NP(S) = P((y, 2)\{X}. Also,b ¢ A,(x). Forifb € Ay(x) thenc = (bx)? €
P(S) NA1(X) € P(S) N P(S). However,b is collinear with a unique point ifP(S;)
by (3.2) and this contradicts the fact thais collinear witha. Thusb € Az(x). Then the
pointab € A,(x), butab ¢ [P(S) U P(S)]. In this way we obtain eight points in,(x)
not contained irP(S,) U P(S). This now accounts for all 24 points iR, (x). Since every
point in A;(X) is contained on a line containing two points &8f(x) it follows that this
subspace contains; (x) and consequentlyy <»(X).

Thus, altogether this subspace containthe six points imA;(x), the 24 points im,(x),
and 16 points from\3(x). It is known (see, for example, figure 1 in [9]) that there are only
three subspaces properly containifig,(x): two subspaces with cardinality 47 of which
the present one is an example, and alPoft follows that the subspad® (S,), P(S))risa
maximal subspace and therefore with one further point chosenArgi) we can generate
all of P. Finally, we remark that in ([17]) it is shown that the universal embedding rank of
the dualG,(2) generalized hexagon is 14.

Before we move on we collect as corollaries some generation results which will prove
useful in the subsequent section.

Corollary 3.7 Letxe P,Se S,and xe P(S). Then(P(S), A<2(x)) is a subspace with
47 points.

Proof: As in the proof of (3.6) assume we ha8S € S with SN S = Dg so that the
subspaceX generated by (S) U P(S) has 47 points. Now let = Z(SN S). By the proof

of (3.6), X D A-2(x) and consequentlyP(S), A<»(X)) C X. Because we are transitive
onpairs(S, x) € S x P, x € P(9) it suffices to prove that we have equality. Now there are
21 points inP(S) and 31 points iM\ <»(x). The intersection has 13 points and so the union
has 39 points. Now by (3.2) every point af>(x)\ P(S) is collinear to a unique point of
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P(S). Of the 16 points iM,(x)\ P(S), eight are collinear with a point iR (S) N A1(X).

The remaining eight points are collinear with pointsRiS) N Az(x) and then the eight
points on these lines are iz (x). In this way the subspace generated?iys) andA »(x)
contains at least another eight points and hence at least 47 altogether. It follows that we
have equality. O

Corollary 3.8 Letx e P and{y,Y»,ys} be points from the three different lines on x. Then
{X,¥1,¥2,¥3} can be extended to a generating set.

Proof: As in the proof of (3.6) we construct a generating set by taking af& € S
with SN S = Dg, a generating set foP(SN S) and extending it to generating sets for
each ofS, S. If x is not the center 06N S, x € P(SN S) then the generating set contains
representatives of each of the three linexo&ince we are transitive on points the result
follows. O

4. The involution geometry of the Hall-Janko group

In this section™ = (P, L) will be the central involution geometry of the Hall-Janko group,
which we denote bidJ. Thus,P consists of the 315 central involutions of tHé group and

L is the collection of 525 elementry abelian subgroups of order 4 all of whose involutions
are central. This geometry is a near-octagon in the sense of Shult and Yanushka ([25]).
We letd(, ) denote the distance function for the point-collinearity graplRfL) and as
previously, we letA; (x) be the set of points at distancérom x wherei < 4. Now, the
possible relations between a pairy € P of distinct central involutions are as follows:

1. d(x, y) = 1inwhich case, as defined aboxg,= yx € P. |A1(X)| = 10, there are five
lines onx and the centralize;(x), induces the alternating groujss on these lines
and therefore permutes them three-transitively.

2. d(x, y) = 2.|Az(x)| = 80. In this caseéx, y) is a dihedral group of order 8. There is a
unique point collinear to botk andy which is(xy)2 = Z((X, y)) = (X, y)'.

3. d(x,y) = 3 = |xy| and thereforgXx, y) is isomorphic t0S;. |Az(X)| = 160. If ye
A3z(X) then there is a unique line gnwhich contains elements @4 (x).

4. d(x,y) =4, |xy] =5, (X, y) = Djp a dihedral group of order 10A4(x)| = 64.

For a subgrougX of HJ we denote byP(X) the set of central involutions containedXh
We point out thatP (X) is a subspace dP. We next record as a lemma the fact thik
contains a subgrougds(3) generated by central involutions:

Lemma 4.1 HJ contains a single class of subgroups isomorphic (63 generated by
central involutions. The number of such subgrougdi8and the action of HJ on this class
of subgroups has permutation rank three with subdegB&emd63. If G is a subgroup of
HJ isomorphic to Y(3) then for every xe P(G) there is a unique G= U3(3), G’ # G
such that RG) N P(G') = {x} U[P(G) N A1(x)] (this generates the subgro@h™ : As).
Moreover for every subgroup S of & = (P(9)) < G, S= SL(3,2) there is a unique G
such that G G* = S.
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Proof: This is easily deduced from ([10]). O
We will let G denote the conjugacy class of subgroups isomorpHi&t8).
Lemma 4.2 LetGe G. Then forevery x P\P(G),|P(G) N Ai(x)| = 1.

Proof: Note that ify, z € P(G) then(y, z) ¢ G and consequentl?({y, z)) c P(G).
Suppose now that, z € P(G) andd(y, 2) = 2. ThenA1(y) N A1(2) = {(y2)?} € P(G).
From this it follows that for ank € P\P(G), |A1(X) N P(G)| < 1. On the other hand
there are 63 points i (G). For each pointy € P(G) there are two line$ on y which
are not contained ifP(G) and each such line contains 2 points which are nd® ().
There are therefore 638 4 = 252 pointsx € P\ P(G) such thatP (G) N T'1(x) # @. Since
|P(G)| = 63 this accounts for all points. O

We can now prove our main result of this section which is part (c) of Theorem A:
Proposition 4.3 The central involution geometry of HJ can be generate@®goints.

Proof: Let G; and letx € P(Gj). By (4.1) there is a uniqu&, € G such that
P(G1) N P(Gy) = [P(G1) N Ax1(X)]. Set A = (P(G1), P(G2)). We first show that
A containsA»(x). Supposey € P(Gp) N Ax(X). By (4.2), P(G2) N A(y) consists
of a single point. Howeverxy)? = A1(X) N A1(y) € P(G,). It therefore follows that if
z € P(Gy) N Az(x) then the unique point irP(G,) N A(z) has distance 3 fronx.
Thus each point oP(G;) N Az(x) is collinear with a unique point oP(G>) N Az(X)
and conversely. Now if; € P(Gj) N Az(x),i = 1,2 are collinear points then it must
be the case that the third point on the ling, is in Ay(X). Since there are 32 points
in each of P(Gj) N Az(x) in this way we obtain 32 points ir\,(x) which are not in
P(Gj) N Az(x). On the other hand eadh(G;) N Ax(x) contains 24 points and this ac-
counts for 2x 24+ 32 = 80 points, hence all ah,(x). Since each point ith;(X) lies on
four lines| with two points fromA,(x) it follows that(P(G1), P(G2)) containsA <2(X).
SetZ; = (P(Gy), P(G2))r.

Now setQ = {1, 2, 3, 4,5} and setll = Q¥ the collection of three element subsets
from Q. Letx € P and letlj, i € ©, be the the five lines or. Fora € IT setY, = Ujgli.
By (4.1) there are two subgrou@, G, € G which containyY,, and for these two groups
P(G1) N P(G2) = Y,. We will denote these b@{",i = 1, 2.

Lete = {1,2,3}, 8 = {1, 2,4}, y = {1,2,5}. Supposd, j,k € {1,2}. ThenG} N
G‘g G N G| are subgroups B¢ = U3(3) generated by root elements and |somorph|c
to SL(3 2). Moreover P(G) N P(Gﬂ) N P(Gy) containsl; U I, and by (3.1) we have
(P(GH) N P(Gﬂ) N P(G )) = S or D8 In either case it follows thahs(x) N [P(G{) N
P(Gﬂ) N P(Gy )] = 9.

SetB = (P(G%), P(GY), P(G}))r. We claim thatP(G?) c Bforalls € {a, B, ¥}.i =
1, 2. SinceB D (P(GY), P(G$%))r it follows by the above argument th& > A _»(x).
Now A3(x) N P(G§) N P(G3) = . On the other han&¥ N G} = SL(3, 2) and there-
fore P(G{") N P(GV) contains 8 points ofAz(x) for i, j = 1 2. Similarly, P(Gﬂ) N
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P(G”) meetsAz(x) in eight points and these are disjoint from the points FHTQ;") U
P(G“)] N P(G”) SinceA -»(x) is contained irB it now follows from (3.7) thatP (G

B for j = 1, 2 But then by interchanging the roles gf y we also getP(Gﬁ]) C
B.

BecauseCy;(X) acts 3-transitive oLy, the set of lines orx, it follows that for any
permutationr of © thatP(G7®) c (P(G]“), P(G3“)., P(GT "))

Sets = {1, 3,4} andC = (B, P(G)));-. LetT = {r € 1| P(G}) c Cfori = 1, 2}.
Supposer € IT with 1 € 7. We claim thatr € T. By the above argument we know that
{1,2,3},{1,2 4},{1, 2,5} € T. Also, by the same argumeft, 3, 4}, {1, 3,5} € T. Since
{1, 2,4}, {1, 3,4} € T this argument also implies thft, 4, 5} € T completing the claim.

Nowsety = {2, 3,4}andD = (C, P(G)))-. We claim thaD containsA _3(x). Towards
this end, seS = {o € I1 | P(GY) c D fori = 1, 2}. By the argument of the previous
paragraph it € I1, 0 N {1, 2} # @ thenP(G]) C D fori = 1, 2. This includes alb
except{3, 4, 5}. However, sincd1l, 4, 5}, {2, 4,5} € Sit then follows that{3, 4,5} € S.
Consequently, for everl@ € G which containsc we haveP(G) c D. SinceHJis transitive
on pairs(x, z) with z € Az(x) it follows that there is & € G containingx andz. It then
follows thatz € D.

We can now complete the prod?.(G$) N P(G3) = Y, which can be generated by four
points:x together with one further point from each of the lihes € «. Now each ofP (G}')
can be generated b together with 10 other points by (3.8). ThAs= (P(G%), P(G$))r
can be generated with 24 points. NG N G‘f = SL(3, 2) and|P(G’3) N[P(GY) U P(G% )]

N A3(x)| = 16. A containsA <»(x) and thereforeP(Gﬁ)ﬂ A<2(X). If 21 € Az(x)N P(G )

but is not contained |(1P(GB) N[P(GY) U P(G%)] N Az(x)) then P(G‘s) c (A, z3)r and
thenwe getA, z;) = B andB can be generated by 241 = 25 points. Arguing similarly,

C can be generated by 26 points abdoy 27 points. By what we have shown abdve
containsA 3(x). By ([9]), A4(x) has a single connected component which implies that for
any pointu € A4(x), (D, u)p = P andP can be generated by 28 points. Finally, Frohardt
and Smith ([18]) have shown that the embedding rank for the HJ central involution geometry
is 28. O

5. The unitary dual polar space DU(6, 2)

We refer to ([13]) for a definition and properties of the dual polar spaces of unitary type and
make use of the notation introduced there. Thus, we le¢ a space of dimension 6 over the
fieldF,withbasisx, yi,i = 1,2, 3andleh:VxV — F; = {0, 1, w, »?} be the Hermitian

form with h(x;, y;) = &, h(xi, Xj) = h(yi, yj) = 0fori, j € {1, 2, 3}. We denote the set

of isotropic one spaces Wy and the collection of maximal totally isotropic subspaces by

P. For a totally isotropic subspadewe letU (A) = {me P | A c m} = P(Ab). The set

of lines,£ = {U(A) | dim A= 2, Atotally isotropig. Whenx is an isotropic pointyJ (x)

is a convex subspace and a generalized quadrangle (a quad of the the near hexagon formed
by the dual polar space). This generalized quadrangle is dual to the generalized quadrangle
induced onx*/x which is aU (4, 2) generalized quadrangle with parameters (4, 2). We
therefore have
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Lemma 5.1 For an isotropic point of the unitary space V the geometry induced 60 U
is a (2, 4)generalized quadrangle isomorphic to the singular points and totally singular
lines in an orthogonal space 46, 2).

Proof: Itis well known that the dual to the unitary quadranglé4, 2) is the orthogonal
generalized quadrangl® (6, 2). For example, see ([22]). O

We require one more lemma before proceeding to our main result:

Lemma5.2 Letl, mbe two disjoint lines in a generalized quadran@® L) isomorphic
to O~ (6, 2). Then P can be generated by n together witt2 further points. In particulay
P can be generated [/points.

Proof: A pair of opposite lines generates a grid and the automorphism gro(p, &f)

is transitive on such grids. From the orthogonal geoméxry6, 2) it is clear the subspace
generated by the grid and any other pointis a (2, 2) generalized quadrangle and that there
are three such subspaces. This follows since the stablizer of a grid fixes its orthogonal
complement (an elliptic space of dimension tv@; (2, 2)), and is transitive on its three
points, whence the three hyperplanes containing the grid. Moreover, any one of these must
be maximal as follows: LeB denote the set of points of the grid. Suppbse= 1, 2, 3 are

three disjoint lines which coveés andx € P\G. Thenx is collinear with a unique point on

eachl; and hence with precisely three (non-collinear) point&oNow suppose € P\G

and setP, = (G, x). We claim that every poing € P\ Py is collinear with 5 points of.

Each point ofPy is collinear with 2x 2 = 4 points of P\ P. On the other hand each of

the 12 points ofP\ P, are collinear with at most 5 points & since for such a poiny

the points inP, N A1(y) are pairwise non-collinear and so a partial ovoid. However, since
15 x 4 = 12 x 5 we must have that for every poigte P\Py, P, N A1(y) is an ovoid.

Now A1(y) N G is three points and consequenyiys collinear with two points o\ G.
Without loss of generality we may assume thandy are collinear. Now the third poirzt

on the line(x, y) belongs to neithePy or P, = (G, y). But then(Py, y) containsPy, Py

andP, = (G, z) and consequently all points &f. It now follows thatP can be generated

by 6 points. O

We can now prove our main result which is part (d) of Theorem A:
Proposition 5.3 The dual unitary polar space D8, 2) can be generated B2 points.

Proof: For an isotropic pointi let z, be the unique transvection with centeand axis
ut contained inG = {0:V =V | h(c(u),c(v)) = h(u,v),Yu,v € V}. Also, letH
denote the set of hyperbolic linesVh that is, the set® (A) whereA is a non-degenerate
subspace o¥ of dimension two. For a subsitof isotropic points we will denote b§X),,
the subspace afP, H) spanned by this set of points.

LetU = (X3, X2, V1, Y2), @ non-degenerate subspace/obf dimension four. Seti; =
(X1), Uz = (Y1), Uz = (0?X1 + wy1 + @?Xz + wY2), Us = (X1 + X2), Us = (Xz), and let
7, = 1. Now note that{us, u,, us, uy} is independent for eithée = 4 or 5 and hence
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spansU. Also note that(us, u,, uz) is a non-degenerate three subspace and hence for
i # ] e€{1,2 3}u,u;jarenon-orthogonal. We now claimth@at | 1 <i < 5),, = P(U).
LetY = (ui | 1 <i < 5)y. The groupl = (; | 1 <i < 5) leavesY invariant which can
be seen as follows: Lat € Y. If u; L athent(a) = a. On the other hand, ifi; anda
are non-orthogonal then they span a hyperbolic line which contains three isotropic points.
Two of these ar@, u;. Also, 7j (a) is isotropic and lies ifa, u;) and hence this is the third
point. But P({(a, u;)) is the hyperbolic line o andu; and asa, u; € Y if follows that
P((a,u;)) C Y. Thus,ti(@) € Y andT leavesY invariant as claimed.

We nextclaimthal = Ng(U) N Cg(U1) = SU(4, 2). Thisiis easily deduced from ([21]):
(11, T2, T3) IS @ group of order 54. Then the group obtained by adjoirinig an extension
of an elementary abelian group of order 27 by the symmetric g&uyhich is a maximal
subgroup in SU(4, 2). Consequently, with the additionthe entire group is generated.
Now sinceNg(U) N Cg(U™) is transitive onP (U) it follows thatY = P(U).

Now as in section three of ([13]) iK is a set of isotropic points then the subspace of
I' = (P, £) generated by (x), X € Xis equal t0Jye(x), U (y). NowsetZ = (U(u;) | 1 <
i < 5)r. By what we have showZ = Uycpu)U (y). However, supposm is a maximal
isotropic subspace. ThenN U = 0 and ify is a point inmN U thenm € U(y) C Z.
Sincem is arbitary, it follows thatZ = P. It now remains to show that we can generate
U(u), 1 <i < 5with 22 points.

By (5.2) we can generate eath(u;),i = 1, 2, 3 with 6 points. Now consided (ug).
uj N (U, U, Ug) = (Uy, U3) is a hyperbolic line. Each df ({us, u1)), U ({us, uz)) is aline
inthe generalized quadranglgu,) and these lines are disjoint singgis not perpendicular
to uz. Moreover, these two lines are already contained in the subspdtg@efierated by
U),i = 1,2, 3 sinceU ({ug, ug)) € U(up) andU ({ug, ug)) C U(ug). Therefore by
(5.2) we need two further points to generbtéu,). In exactly the same fashion, th(us)
we have the two disjoint lineg) ((us, u;)) andU ((us, u,)) which are already contained in
U (up) andU (uyp), respectively. So, again by (5.2), we need two further points to generate
U (us). Thus, altogether we can generétu;) | 1 < i < 5) by 3x 6+2x 2 = 22 points.
However, by ([29])DU(6, 2) has a projective embeddingiiz(21, 2) and consequenity
22 is the minimal possible size for a generating set. This completes the proposition and the
proof of Theorem A. O

6. A survey of embedding and generating ranks of GF(2) embeddable geometries

The following table summarizes many other instances in which the generating rank and/or
the embedding rank of a GF(2) geometry is known but we make no pretense to stating that
it is complete. In particular, we have only included geometries which have embeddings in
PG(n, 2) for somen and consequently have excluded geometries with affine embeddings,
e.g. those Fischer spaces which are not cotriangular spaces. We have made an attempt to
include all instances of Lie geometries which are known. The last three entries in the table
refer to the central involution geometries of the gr&lyg3), and the sporadic groufaizand

Coy. ""U,4(3) refers to the near-hexagon on which the groy(8) acts as automorphism and

nhM,, refers to the near-hexagon on 759 points on whith acts. The notatiotXn, x refers

to a Lie incidence geometry arising from the groXp acting on the parabolic subgroup
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Geometryl’

Embedding rank

Generating rank

An1(2) = PG(N — 1, 2)

n

n

A1, 2<k<n-2 () [28] (¥) [5], [16], [23]
An_1.1n(2,n>3 n? —1[27] n? — 1[14]
Bn1(2),n > 2 2n+1[26] 2n+1[14]
Bn2(2,n >3 "5 1271 Y 4]
Bun(2,2<n<5 <2”+1)(§"*1+1) 6] <2”+1)(§"*1+1) [12]
Cn(2) 2n+1[19] 2n+11[19]
°DF(2) 2n[19] 2n[19]

c%n n—1[19] n—1[19]
Dn1(2),n>4 2n [26] 2n [14]
Dn2(2),n > 4 (3) 127 (%) 1141
Dnk(2,k=n—-1nn=>5 2-1128] 215, [16], [23]
’Dn1(2),n >3 2n [26] 2n [14]
2Dp(2),n =>4 ) [27] (%) [14]
DU(6, 2) 22 [29] 22
E61(2) 27[9], [16], [23] 27[9], [16], [23]
E71(2 56 [5], [16], [23] 56 [5], [16], [23]
3D4(2) 28 [18] ?

G2(2) 14 14

G2 (2)9 14 14

LTy 23[7] ?

HJ 28 [18] 28
nhy,(3) 21 (1], [7], [29] ?

Us(3) 701[2] ?

Suz 143 [3] ?

Cog 300 [4] ?

27

corresponding to removing thé" node. For exampleA,_1  is the Grassmannian &
dimensional vector subspaces of mdimensional vector space. BZ,(2) we mean the
co-triangular space whose points are the non-zero vectors and hyperbolic lines in a non-
degenerate symplectic space over GF{R},(2) is the geometry of nonsingular vectorsin a
non-degenerate orthogonal space of dimension 2n over GF(2) of tyde-, —} and®X, is

the geometry whose points are the pairs fi@re= {1, 2, ..., n} and whose lines are the the
triples with incidence given by inclusion. Finallgy,_1.1 n—» refers to the geometry whose
points are the full transvections grougpsp, H) for a given centep and axisH acting

on ann—dimensional vector space, where two points are collinear if they have a common
center or a common axis. We have also included the geometries treated in this paper.
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