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Abstract. In this paperk-sets of type(a, b) with respect to hyperplanes are constructed in finite projective
spaces using powers of Singer cycles. These are then used to construct further examples of sets of type(a, b) using
various disjoint sets. The parameters of the associated strongly regular graphs are also calculated. The construction
technique is then related to work of Foulser and Kallaher classifying rank three subgroups ofA0L(1, pR). It
is shown that the sets of type(a, b) arising from the Foulser and Kallaher construction in the case of projective
spaces are isomorphic to some of those constructed in the present paper.
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1. Introduction

In a finite projective space of dimensionn and orderq, ak-set of type(a, b) is a setK of
k points such that every hyperplane of the space meetsK in eithera or b points, for some
integersa < b.

In projective planes,k-sets of type(a, b) have been extensively studied. They include
hyperovals (k = q + 2, a = 0, b = 2, q even), maximal arcs (k = q(b− 1) + b, a = 0),
unitals (k = q3/2+1,a = 1,b = q1/2+1,q a square) and Baer subplanes (k = q+q1/2+1,
a = 1, b = q1/2 + 1, q a square). See [6] and its bibliography for various constructions
and results.

For higher dimensions an extensive survey can be found in [1]. The paper also surveys
the relationships betweenk-sets of type(a, b), strongly regular graphs and two weight
codes.

The aim of the current paper is to give a construction ofk-sets of type(a, b) which both
provides new examples and unifies certain of those previously known. In Section 2,k-sets
of type (a, b) are constructed using suitable powers of Singer cycles. The parameters of
the sets are calculated, and disjoint unions of such sets are shown to give morek-sets with
two intersection numbers. In Section 3, the sets constructed inPG(2,q) are studied and
some of them are shown to be isomorphic to those arising from previously known construc-
tions. In Section 4 the relationship of this work to a theorem of Foulser and Kallaher is
examined.
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In the following we will use the notation:x | y to denote thatx dividesy; gcd(x, y) to
denote the greatest common divisor ofx andy; x ≡ y(z) to denote thatx is congruent to
y moduloz; |x|y = z to denote the order ofx moduloy is z; for integerx, y andz.

2. Construction of k-sets of type (a, b) in projective spaces

In this Section sets of type(a, b) are constructed in projective spaces using certain powers
of Singer cycles.

ConsiderGF(qn) as ann − 1-dimensional projective spacePG(n − 1,q) overGF(q).
The points ofPG(n − 1,q) are represented as elements ofGF(qn)∗/GF(q)∗, with two
elementsw1 andw2 of GF(qn) representing the same point if and only ifw1 = kw2 for
somek in GF(q). Letw be a generator of the multiplicative group ofGF(qn)∗. Thenw has
orderqn− 1 and acts linearly onGF(qn)∗ by multiplication, i.e.x 7→ wx. Furtherwq−1

acts regularly on the points ofPG(n− 1,q), i.e. it is a Singer cycle onPG(n− 1,q).
In the following we will take certain powers ofw and show that their orbits arek-sets

of type (a, b) with respect to hyperplanes inPG(n − 1,q). The main theorem we use to
show that these are sets of type(a, b) is that if a group acting on a projective space has two
orbits on points then it has two orbits on hyperplanes (see for instance [2,2.3.1]). Having
two orbits on hyperplanes then means that the set stabilised has at most two intersection
numbers with respect to hyperplanes.

The simplest case we can consider is orbits ofw2. Suppose thatn is even andq is odd,
thenqn − 1 and(qn − 1)/(q − 1) = qn−1+qn−2+ · · · + q+ 1 are even. The group
〈w2〉 then has two orbits{1, w2, w4, . . . , wqn−3} and{w,w3, w5, . . . , wqn−2} on GF(qn).
Further the group〈w2(q−1)〉 acts as a Singer cycle onPG(n−1,q)with two orbits on points,
and we have the following Theorem.

Theorem 1 Let n ≥ 4 be an even integer and q an odd prime power, then there exists
a (qn − 1)/2(q − 1)-set of type(a, b) in PG(n− 1,q) for some integers a and b.

The values ofa andb will be calculated below. More generally we can consider orbits
of wr wherer is prime as follows.

Theorem 2 Let n≥ 2 be an integer, p be a prime, h a positive integer, and r 6= 2 a prime
such that p is a primitive root modulo r, and pnh ≡ 1(r ). Suppose that either ph 6≡ 1(r )
or r divides gcd(n, ph − 1).

Let g be a Singer cycle of PG(n − 1, ph) andK an orbit of 〈gr 〉. ThenK is a (pnh −
1)/r (ph − 1)-set of type(a, b) in PG(n− 1, ph) for some integers a and b.

Proof: It is worth while first explaining some of the assumptions of the Theorem. We
requirer to divide(pnh−1)/(ph−1), the number of points inPG(n−1,q). Hence in the
statement we have first assumed thatpnh ≡ 1(r ), i.e. thatr dividespnh−1. But pnh−1=
(ph− 1)(ph(n−1) + · · · + ph+ 1) so we also require that eitherr does not divideph− 1 or
that it divides the greatest common divisor of(ph− 1) and(phn+ ph(n−1)+ · · · + ph+ 1)
which is gcd(n, ph−1). Hence the assumptions thatph 6≡ 1(r ) or r divides gcd(n, ph−1).
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First suppose thatph 6≡ 1(r ). Let g be a Singer cycle ofPG(n − 1, ph) andK be an
orbit of 〈gr 〉. All orbits of 〈gr 〉 are equivalent under powers ofg. Letw be a generator of
GF(pnh)∗. Without loss of generality,g is given by multiplication bywr .

Let G be the semidirect product of〈wr 〉 and AutGF(pnh). Notice that elements ofG
map powers ofwr to powers ofwr . Hence one orbit ofG is given by the set of powers
of wr . The complement of this also corresponds to an orbit ofG, sincep is a primitive
root modulor as follows. The set〈wr 〉wi is given by{war+i : a ∈ Z} and the images ofwi

under the group generated by the Frobenious automorphism is the set{wi p j
: j ∈ Z}. So

the setGw is the complement of{war : a ∈ Z} since 1, p, p2, . . . , pr−1 are all the non-zero
elements modulor .

ThusG has two orbits on points ofPG(n− 1, ph) and so two orbits on hyperplanes of
PG(n−1, ph). It follows that each of the orbits on points is a set of type(a, b)with respect
to hyperplanes, for some(a, b).

Now suppose thatr | gcd(n, ph − 1). Let G be the semidirect product of〈w(ph−1)r 〉 and
Aut(GF(pnh)). Note thatph ≡ 1(r ) implies (pnh − 1)/(ph − 1) ≡ 0(r ). Proceeding as
above gives the required result. 2

2.1. Parameter calculations

We now calculate the values fora andb in Theorems 1 and 2. The following is a straight
forward generalisation of counts fork-sets of type(a, b) in projective planes found in [9]
and [10].

For ease of notation we writeτn = (qn − 1)/(q − 1), whereq = ph. LetK be one of
the sets constructed in Theorems 1 or 2. The size ofK is then given byk = τn/r (where
r = 2 in the case of Theorem 1). The complement ofK then has size(r − 1)τn/r . Let ta
andtb be the numbers of hyperplanes that meetK in a andb points, respectively. Then

ta + tb = τn. (1)

Counting ordered pairs(P, 6) such thatP is a point ofK and6 is a hyperplane containing
P in two ways gives

ata + btb = kτn−1. (2)

Counting ordered triples(P, Q, 6) such thatP andQ are points ofK and6 is a hyperplane
containingP andQ in two ways gives

a(a− 1)ta + b(b− 1)tb = k(k− 1)τn−2. (3)

The action on hyperplanes is the same as that on points. One hyperplane ofGF(qn) over
GF(q) is K = {x | T(x) = 0}whereT is the trace map fromGF(qn) toGF(q). Defineφ by
φ(x) = x−1K andφ(yK) = y−1. Now x is incident withyK if and only if T(xy−1) = 0
andφ(x) is incident withφ(yK) if and only if y−1 is incident withx−1K if and only if
T(xy−1) = 0. Soφ is a polarity. Letg be the Singer cyclew 7→ wx. Theng maps
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yK to wyK. Soφgφ−1 = g−1. Soφ normalises〈g〉. Since the normaliser of〈g〉 in the
correlation group contains a dualityφ, φ interchanges the orbits on points of the normaliser
N of 〈g〉 in the collineation group with the orbits ofN on hyperplanes. Therefore we can
chooseta = k andtb = (r − 1)k.

Solving (2) and (3) fora andb then gives

a = c(1− r )+ r (qn−1− 1)

r (q − 1)
and b = c

r (q − 1)

wherec is a root of

x2+ 2(1− qn−1)x + q2n−2− qn−2− qn + 1= 0.

This has solutions

c = (qn−1− 1)± q
n−2

2 (q − 1)

giving

a = (qn−1− 1)± q
n−2

2 (q − 1)(1− r )

r (q − 1)
and b = (qn−1− 1)± q

n−2
2 (q − 1)

r (q − 1)
.

Notice that the difference of the two solutions forb is 2q
n−2

2 /r . Both of the solutions
for b may not simultaneously be integers unlessr = 2. Similarly for a. Hence for given
r 6= 2, n andq we have unique solutions fora andb.

Whenr = 2, we get

a =
(qn−1− 1)−

(
± q

n−2
2

)
(q − 1)

2(q − 1)
and b = (qn−1− 1)± q

n−2
2 (q − 1)

2(q − 1)

giving a unique solution (up to interchange ofa andb).

2.2. Disjoint sets of type (a, b)

LetK andM be disjointk-sets of type(a, b) with parameters as is the previous Section.
We show that the unionK ∪M is a 2k-set of type(a+ b, 2b) with respect to hyperplanes.
The counts that we use to do this are a generalisation to higher dimensions of counts for
PG(2,q) in [5].

First, letλ be the number ofb-secants toK on a point not onK. Then counting the set
of pairs(P, 6) such thatP 6∈ K, 6 a hyperplane containingP and meetingK in b points
in two ways gives

(|PG(n− 1,q)−K|)λ = (|PG(n− 1,q)| − b)tb.
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Substituting the above values ofb, tb andk and solving forλ then gives

λ = qn−1− 1

q − 1
− (q

n−1− 1)± q
n−2

2 (q − 1)

r (q − 1)
.

Let x be the number of hyperplanes that areb-secant toK anda-secant toM. Then
counting the set of pairs(P, 6) such thatP ∈ M, 6 a hyperplane containingP and
meetingK in b points in two ways gives

|M|λ = xa+ b(tb − x)

and hence

x = |M|λ− btb
a− b

.

Substituting for the above values ofa, b, tb andλ and simplifying gives

x = qn − 1

(q − 1)r
.

But this is exactly the number of hyperplanes that area-secants toM. Hence everya-secant
toM is ab-secant toK. Similarly, everya-secant toK is ab-secant toM. Hence every
hyperplane meets the setK ∪M in eithera+ b or 2b points. ThusK ∪M is a 2k-set of
type(a+ b, 2b).

More generally it follows that a union ofs (disjoint) orbits gives ansk-set of type
(a+ b(s− 1), sb) and we have the following Theorem.

Theorem 3 Let n≥ 2 be an integer, p be a prime, h a positive integer, and r 6= 2 a prime
such that p is a primitive root modulo r and pnh ≡ 1(r ). Suppose that either ph 6≡ 1(r ) or r
dividesgcd(n, ph−1). Then for every s∈ {1 . . . r−2} there exist s(pnh−1)/r (ph−1)-sets
of type(a+ b(s− 1), sb) with respect to hyperplanes in PG(n− 1, ph), with a and b as
given in the previous Section.

Proof: Apply Theorem 2 and take a union of anys of the orbits of ther th power of a
Singer cycle. 2

2.3. Strongly regular graphs

Associated with every set of type(a, b) with respect to hyperplanes inPG(n − 1,q) are
strongly regular graphs, see [1] for details. We conclude this section by calculating the
parameters of the strongly regular graphs arising from the sets of type(a, b) constructed in
the previous subsections.
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Theorem 4 The sets of type(a, b) constructed in Theorems1 and2 give rise to strongly
regular graphs with parametersv = qn, k = (qn − 1)/r ,

λ = qn − 3r + 1± qn/2(3r − r 2− 2)

r 2
, and µ = qn − r + 1± qn/2(r − 2)

r 2
.

Proof: Straight forward calculation using the parameter correspondence for sets of type
(a, b) and strongly regular graphs given in [1] yields the result. 2

Theorem 5 The sets of type(a + b(s− 1), sb) constructed in Theorem3 give rise to
strongly regular graphs with parametersv = qn, k = s(qn − 1)/r ,

λ = s2(qn + 1)− 3rs± qn/2(3rs− r 2− 2s2)

r 2
,

µ = s(sqn − r + s± qn/2(r − 2s))

r 2
.

3. Sets of type (a, b) in PG(2, q)

In this Section we examine the sets constructed by Theorem 2 inPG(2,q). Note that
Theorem 1 does not apply as 2 does not divideq2+ q + 1.

The assumptions of Theorem 2 are thatp is prime,h a positive integer,q = ph, such
that p is a primitive root modulor , p3h ≡ 1(r ) and that eitherph 6≡ 1(r ) or r divides
gcd(3, ph − 1). The values fora andb become:

a = q + 1± q1/2(1− r )

r
and b = q + 1± q1/2

r

First note that since we requireq1/2 = ph/2 to be an integer,h must be even.
We consider two cases of the Theorem:
(I) r dividesgcd(3, ph − 1). In this caser = 3. Now p has order 2 modulo 3, and so

equivalentlyp ≡ −1(3). Hence the assumptions are equivalent to the conditions thath be
even andp ≡ −1(3), and we have the Corollary:

Corollary 1 Suppose that h is an even integer and p is a prime such that p≡ −1(3). Put
q = ph, then there exists a(q2+q+1)/3-set of type(a, b) in PG(2,q). If 4 divides h then
(a, b) = ( 1

3(q−2q1/2+1), 1
3(q+q1/2+1))else(a, b) = ( 1

3(q+2q1/2+1), 1
3(q−q1/2+1)).

The choices fora andb follow from the fact that sincep ≡ −1(3), 3 dividesq+q1/2+1=
ph + ph/2+ 1 if and only if h/2 is even.

Thesek-sets of type(a, b) were previously known, and are a subclass of a class credited
in [1] to an unpublished paper of R. Metz.
(II) ph 6≡ 1(r ). Now p(h/2)

6 = p3h ≡ 1(3), but ph 6≡ 1(3), and soph/2 either has order
3 or 6 modulor . We consider these two cases:
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(II) (a) ph/2 has order6modulo r.Note thatq2+q+1= (q+q1/2+1)(q−q1/2+1), so
eitherr | (q+q1/2+1)orr | (q−q1/2+1), but not both. Sincer 6= 3,r |q+q1/2+1 ⇐⇒ r |
q3/2 − 1 ⇐⇒ q3/2 ≡ 1(3) ⇐⇒ p3h/2 ≡ 1(r ) ⇒ ph/2 ≡ 3(r ). So for the current case
r | q − q1/2+ 1, and we get the following result.

Corollary 2 Let p be a prime, h an even positive integer, and r 6= 3 a prime such that
p is a primitive root modulo r and p3h ≡ 1(r ). Suppose that ph 6≡ 1(r ) and ph/2 has
order6 modulo r. Then there exists a(q2+ q+ 1)/r -set of type( 1

r (q + 1− q1/2(1− r )),
1
r (q + 1− q1/2)) in PG(2,q), q = ph.

Sincer dividesq − q1/2 + 1, it follows that the order of the power of the Singer cycle
gr that we are taking is some integer multiple,x say, ofq+ q1/2+ 1. Hence the subgroup
of 〈gr 〉 generated bygrx has orderq + q1/2 + 1. It is well known that the orbits of such
a subgroup of a Singer cycle areBaer subplanes(subplanes of orderq1/2) of the plane.
Hence the sets constructed in the Corollary are unions of Baer subplanes. In [3], M. de
Finis constructed partitions ofPG(2,q) into Baer subplanes,q a square, using powers of
Singer cycles and noted that the union of any subset of the partition gives rise tok-sets
of type (m, n). Hence the sets of the Corollary are a subclass of those constructed by de
Finis.
(II)(b) ph/2 has order3 modulo r. In this caser |q+ q1/2+ 1. Sincep has orderr − 1

modulor it follows thatr − 1 | (3h/2), and soh/2 is even, and we get the Corollary:

Corollary 3 Let p be a prime, h a positive integer such that4 | h, and r 6= 3 a prime such
that p is a primitive root modulo r and p3h ≡ 1(r ). Suppose that ph 6≡ 1(r ) and ph/2 has
order3 modulo r. Then there exists a(q2+ q+ 1)/r -set of type( 1

r (q + 1+ q1/2(1− r )),
1
r (q + 1+ q1/2)) in PG(2,q), q = ph.

Now ph/4 must have order 3 or 6 modulor . We consider these two cases:
(II)(b)(i) ph/4 has order6 modulo r. In this case, arguing as before,r | q1/2− q1/4+ 1,

andr 6 |q1/2 + q1/4 + 1. It follows that the power of the Singer cycle〈gr 〉 has a subgroup
of orderq1/2 + q1/4 + 1. The orbits of such a subgroup of a Singer cycle are well known
to be subplanes of orderq1/4. Hence the set is a union of subplanes of orderq1/4.

In [8], M.J. de Resmini constructs(q1/2 + q1/4 + 1)(q − q1/2 + 1)-sets of type(q1/4 +
1,q1/2 + q1/4 + 1) in PG(2,q) using powers of Singer cycles. She then takess disjoint
copies,s ∈ {2 . . .q1/2−q1/4+1}, of these sets to gives(q1/2+q1/4+1)(q−q1/2+1)-sets
of type (s(q1/2 + q1/4 + 1) − q1/2, s(q1/2 + q1/4 + 1)). These can be seen as unions of
subplanes of orderq1/4. The current sets are a subclass of the examples of de Resmini.

(II)(b)(ii) ph/4 has order3 modulo r. In this case of the Corollary the sets arising were
not previously known.

Note that with all of the above Corollaries we may also apply Theorem 3 to construct
morek-sets of type(a, b).

In (II)(a) and (II)(b)(i) above it was noted that the sets could be described as unions of
subplanes of the plane. In the following we show that many of the sets, including some of
those in (II)(b)(ii), can be described as unions of subplanes.
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Let q = pm2i
, wherei andm are integers,m odd. Then the number of points in the plane

is pm2i+1 + pm2i + 1 which equals

(p2m + pm + 1)(p2m − pm + 1)(p4m − p2m + 1) · · · (pm2i − pm2i−1 + 1
)
.

Suppose thatr divides the termpm2 j − pm2 j−1 + 1 for some j , and putx = (pm2 j −
pm2 j−1 + 1)/r . Then the order ofgr is

x
(
pm2 j + pm2 j−1 + 1

)[(
pm2 j+1 − pm2 j + 1

) · · · (pm2i − pm2i−1 + 1
)]
.

Notice that this has a subgroup of order(pm2 j + pm2 j−1+1). The orbits of such a subgroup
are well known to be subplanes of orderpm2 j−1

. Hence these such sets can be seen as a
union of((pm2 j − pm2 j−1 + 1) · · · (pm2i − pm2i−1 + 1))/r subplanes of orderpm2 j−1

.
We conclude this Section by giving some examples of the parameters of sets not previously

known, i.e. those of(II)(b)(ii) above.

Example Supposer = 7. Then we require thatp is congruent to 3 or 5 modulo 7, andh
is congruent to 8 or 16 modulo 24. The smallest examples are:

(a) a 6150469-set of type(868, 949) in PG(2, 38). Since 7| 32 − 3+ 1 this can be seen
as a union of subplanes of order 3.

(b) a 21798325893-set of type(55268, 55893) in PG(2, 58). Since 7| 52− 5+ 1 this can
be seen as a union of subplanes of order 5.

Example Supposer = 13. Then we require thatp is congruent to 2, 6, 7 or 11 modulo
13, andh is congruent to 16 or 32 modulo 48. The smallest example is a 330387141-set
of type(4805, 5061) in PG(2, 216). Since 13| 24 − 22 + 1 this can be seen as a union of
subplanes of order 4.

4. Subgroups ofΓL(1, pR)

In the following we recall work of Foulser and Kallaher ([4]) which classifies subgroups of
0L(1, pR) that have two orbits onGF(pR)∗. In certain cases these givek-sets of type(a, b)
in PG(n − 1, pR/n). We show that for a large number of cases (includingPG(2,q)) the
k-sets of type(a, b) obtainable from such subgroups are isomorphic to those constructed
in Section 2.

We follow the notation of Foulser and Kallaher in [4]. Letw be a generator ofGF(pR)∗

andα : x → xp be a generator of the automorphism group ofGF(pR). The group〈w, α〉
generated byw andα is then0L(1, pR).

Lemma 1 ([4,2.1]) Let G be a subgroup of〈w, α〉. Then G has form G= 〈wd, weαs〉,
where d e and s can be chosen to satisfy the following conditions:

s | R, d | pR− 1, and e

(
pR− 1

ps − 1

)
≡ 0(d).
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Such a subgroup is said to be instandard form.

Theorem 6 ([4,3.9]) Let p be a prime, e an integer, and let m1, v, s and R be positive
integers satisfying:
(1) the primes of m1 divide ps − 1.
(2) v is a prime, v 6= 2, |psm1|v = v − 1.
(3) gcd(e,m1) = 1.
(4) m1s(v − 1)|R.
Let d= m1v,1 = (pR−1)/d and m2 = (v−1)m1. Then G= 〈wd, weαs〉 is in standard
form and has two orbits on GF(pR)∗ of length1m1 and1m2, where m1 < m2.

A similar theorem is proved for subgroups which have two equal length (m1 = m2) orbits
onGF(pR)∗.

It is worth noting that in the TheoremG∩〈w〉 = 〈wd〉, and that the group〈weαs〉 acts as
a permutation on the orbits of〈wd〉. In fact the orbit of length1m1 is a union ofm1 orbits
of 〈wd〉, and similarly for the orbit of length1m2.

If n ≥ 2 is an integer that dividesR thenGF(pR) gives a model forPG(n− 1, pR/n) as
in the previous sections. We now consider when the groups of Theorem 6 act on projective
spaces.

Theorem 7 Suppose n| R, for integers n and R. Then if a k-set of type(a, b) in PG(n−
1, pR/n) arises from Theorem6 it is isomorphic to one of those in Theorem2.

Proof: First note that if〈wd, weαs〉 satisfies the conditions of Theorem 6 then so does
〈wv,weαs〉 whered = m1v. This follows immediately since|psm1|v = v − 1 implies
|ps|v = v− 1. Further,〈wd, weαs〉 is a subgroup of〈wv,weαs〉. It follows that the groups
both have the same orbits.

We consider the groupG = 〈wv,weαs〉. Note that there ared orbits ofwd on GF(pR),
and the union ofm1 of them make up one orbit of〈wv,weαs〉 and(v− 1)m1 of them make
up the other orbit. Som1 = 1, d = v means that thek-set of type(a, b) arising fromG is
a single orbit ofwv.

For G, d = m1v = v, so condition 2 of Theorem 6 becomes that|ps|v = v − 1. Hence
ps, and sop, are primitive roots modulov. It follows immediately that ak-set of type(a, b)
stabilised by such a group is isomorphic to that obtained by the construction of Theorem 2
with r = v andh = R/n. 2

As it was mentioned before, Foulser and Kallaher prove a similar result to Theorem 6 for
the case when a subgroup of0L(1, pR) has two orbits of the same length (v = 2). Arguing
as in the previous theorem with the group〈w2, weαs〉 containing〈wd, weαs〉whered = 2m
shows that such groups only give rise to the sets of type(a, b) constructed in Theorem 1.

In the previous Theorem we have classified allk-sets of type(a, b) in PG(n− 1, pR/n)

that arise from subgroups of0L(1, pR) having two orbits on the points in the natural action.
It is worth noting that there are other subgroups of0L(1, pR) which have orbits that are
k-sets of type(a, b), though the subgroups do not have two orbits on points. For instance,
at the recentTwenty-third Australasian Conference on Combinatorial Mathematics and
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Combinatorial Computing, Batten announced that she and Dover had constructed an 829-
set of type(4, 9) in PG(2, 125) and a 3189-set of type(4, 11) in PG(2, 343) by taking the
orbits of the 19th and 37th powers of the Singer cycles, respectively. Neither of these are
stabilised by a subgroup of0L(1,q3) having two orbits, indeed the planes that these occur
in do not have square order.

Foulser and Kallaher’s results show that the sets of type(a, b) constructed in Theorems 1
and 2 were in some sense known before. However, their results are not well known, the
conditions they gave were complicated, and it was not easy to tell when the sets existed,
let alone what the actual values fora andb were, or the parameters of the strongly regular
graphs arising from them. In [7], Liebeck and Saxl calculate parameters for strongly regular
graphs arising from primitive rank three groups except those given in this paper. Our aim
here has been to give an easy condition for the existence of these sets of type(a, b) and
their parameters, as well as to construct new examples using disjoint sets of type(a, b). In
particular, despite their claims to the contrary, these examples of sets of type(a, b) were
omitted from [1].
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