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Abstract. In this paperk-sets of type(a, b) with respect to hyperplanes are constructed in finite projective
spaces using powers of Singer cycles. These are then used to construct further examples of séts bf tygiag

various disjoint sets. The parameters of the associated strongly regular graphs are also calculated. The construction
technique is then related to work of Foulser and Kallaher classifying rank three subgroaps ¢f, pR). It

is shown that the sets of tyge, b) arising from the Foulser and Kallaher construction in the case of projective
spaces are isomorphic to some of those constructed in the present paper.
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1. Introduction

In a finite projective space of dimensiorand ordery, ak-set of type(a, b) is a setkC of
k points such that every hyperplane of the space nmi€etseithera or b points, for some
integersa < b.

In projective planesk-sets of type(a, b) have been extensively studied. They include
hyperovalsk = q +2,a = 0,b = 2, q even), maximal arck(= q(b — 1) + b, a = 0),
unitals k = g¥?+1,a = 1,b = q/2+1,q asquare) and Baer subplanks{ q+q*?+1,
a=1,b=q%?+1,qasquare). See [6] and its bibliography for various constructions
and results.

For higher dimensions an extensive survey can be found in [1]. The paper also surveys
the relationships betwedksets of type(a, b), strongly regular graphs and two weight
codes.

The aim of the current paper is to give a constructiok-géts of typga, b) which both
provides new examples and unifies certain of those previously known. In Seckesey
of type (a, b) are constructed using suitable powers of Singer cycles. The parameters of
the sets are calculated, and disjoint unions of such sets are shown to givk-geisawith
two intersection numbers. In Section 3, the sets construct®d®, q) are studied and
some of them are shown to be isomorphic to those arising from previously known construc-
tions. In Section 4 the relationship of this work to a theorem of Foulser and Kallaher is
examined.
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In the following we will use the notationx | y to denote thak dividesy; gcd(x, y) to
denote the greatest common divisorxofindy; X = y(2) to denote thak is congruent to
y moduloz; |x|y = z to denote the order of moduloy is z; for integerx, y andz.

2. Construction of k-sets of type &, b) in projective spaces

In this Section sets of typ@, b) are constructed in projective spaces using certain powers
of Singer cycles.

ConsiderGF(g") as ann — 1-dimensional projective spa€s(n — 1, q) over GF(q).

The points ofPG(n — 1, q) are represented as elementsGF(q")*/GF(q)*, with two
elementsw; andw, of GF(q") representing the same point if and onlyuif = kw, for
somek in GF(q). Letw be a generator of the multiplicative group®F(q")*. Thenw has
orderg" — 1 and acts linearly o&F(q")* by multiplication, i.e.x — wx. Furtherw9-1
acts regularly on the points &fG(n — 1, q), i.e. it is a Singer cycle oRG(n — 1, q).

In the following we will take certain powers af and show that their orbits atesets
of type (a, b) with respect to hyperplanes PG(n — 1, q). The main theorem we use to
show that these are sets of tyfae b) is that if a group acting on a projective space has two
orbits on points then it has two orbits on hyperplanes (see for instance [2,2.3.1]). Having
two orbits on hyperplanes then means that the set stabilised has at most two intersection
numbers with respect to hyperplanes.

The simplest case we can consider is orbitséf Suppose that is even andj is odd,
theng" — 1 and(@" — 1)/(q — 1) = " 1+qg" 2+ ...+ q+1 are even. The group
(w?) then has two orbit$l, w2, w?, ..., w93} and{w, w3, w®, ..., w92} on GF(Q").
Further the groupw?9-2) acts as a Singer cycle ®G(n — 1, q) with two orbits on points,
and we have the following Theorem.

Theorem 1 Let n > 4 be an even integer and g an odd prime poyvthen there exists
a(Q"—1)/2(q — 1)-set of typda, b) in PG(n — 1, q) for some integers a and b.

The values ofr andb will be calculated below. More generally we can consider orbits
of w" wherer is prime as follows.

Theorem2 Letn> 2be anintegerp be a primeh a positive integerand r # 2 a prime
such that p is a primitive root modulg and g"" = 1(r). Suppose that either"p 1(r)
or r divides gcdn, p" — 1).

Let g be a Singer cycle of R6 — 1, p") and K an orbit of (g"). ThenK is a (p"" —
1)/r (p" — 1)-set of typga, b) in PG(n — 1, p") for some integers a and b.

Proof: It is worth while first explaining some of the assumptions of the Theorem. We
requirer to divide(p"" — 1)/(p" — 1), the number of points iRG(n — 1, ). Hence in the
statement we have first assumed tp#t = 1(r), i.e. that dividesp™ —1. Butp""—1 =

(p" = 1 (p"™D 4 ... + ph + 1) so we also require that eithedoes not dividep" — 1 or

that it divides the greatest common divisor(@f' — 1) and(p™ + p"™D 4 ... 4 ph 4+ 1)
whichis gcd(n, p" —1). Hence the assumptions that  1(r) orr divides gd(n, p" —1).
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First suppose thap" # 1(r). Letg be a Singer cycle odPG(n — 1, p") andK be an
orbit of (g"). All orbits of (g") are equivalent under powers @f Let w be a generator of
GF(p"M*. Without loss of generalityg is given by multiplication byw'.

Let G be the semidirect product ¢fo") and AutGF(p™"). Notice that elements o
map powers ofw" to powers ofw’. Hence one orbit oG is given by the set of powers
of w". The complement of this also corresponds to an orbiBpsincep is a primitive
root modulor as follows. The setw")w' is given by{w? *' :a € Z} and the images af'
under the group generated by the Frobenious automorphism is the'8etj € Z}. So
the seGw is the complement dfw? :a € Z} since 1 p, p?, ..., p' ! are all the non-zero
elements modulo.

ThusG has two orbits on points d?G(n — 1, p") and so two orbits on hyperplanes of
PG(n—1, p"). It follows that each of the orbits on points is a set of tyagh) with respect
to hyperplanes, for som@, b).

Now suppose that| gcd(n, p" — 1). Let G be the semidirect product of P~y and
Aut(GF(p"™). Note thatp" = 1(r) implies (p™ — 1)/(p" — 1) = 0(r). Proceeding as
above gives the required result. O

2.1. Parameter calculations

We now calculate the values farandb in Theorems 1 and 2. The following is a straight
forward generalisation of counts flarsets of typega, b) in projective planes found in [9]
and [10].

For ease of notation we writg, = (q" — 1)/(q — 1), whereq = p". Let K be one of
the sets constructed in Theorems 1 or 2. The siz€ of then given by = ,,/r (where
r = 2 in the case of Theorem 1). The complemenkahen has siz& — 1)t,/r. Lett,
andt, be the numbers of hyperplanes that mi€eh a andb points, respectively. Then

ta + th = . (1)

Counting ordered pair@d, ) such thatP is a point offC andX is a hyperplane containing
P in two ways gives

at, + bty = kz_1. 2

Counting ordered tripled?, Q, ) such thatP andQ are points ofC and¥ is a hyperplane
containingP andQ in two ways gives

a@— Dta + bb — Dty = k(K — D) 1n_o. 3)

The action on hyperplanes is the same as that on points. One hyperp@aR&j over
GF(q)isK = {x| T(x) = 0} whereT is the trace map fror&F(q") to GF(q). Defineg by
$(X) = x"1K and¢ (yK) = y~1. Now x is incident withyK if and only if T(xy %) =0
and¢(x) is incident with¢ (yK) if and only if y=* is incident withx 1K if and only if
T(xy™}) = 0. So¢ is a polarity. Letg be the Singer cyclew — wx. Theng maps
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yK to wyK. So¢ge~t = g~1. So¢ normalisesg). Since the normaliser afy) in the
correlation group contains a dualipy ¢ interchanges the orbits on points of the normaliser
N of (g) in the collineation group with the orbits & on hyperplanes. Therefore we can
chooséd, = k andt, = (r — 1)k.

Solving (2) and (3) fom andb then gives

n-1
a=c(l—r)+r(q -1 and b — c
rq-—1 rq-1

wherec is a root of
X +21-g"Hx+g" 2 —q" - q"+1=0.
This has solutions
c=@" ' -D+q7@-1
giving

n-1 20— _ n-1_ 2 —
L_@t-pEg¥@-va-n o @t-hEa¥@-1
rq-1 rQ-121

Notice that the difference of the two solutions fois Zq%z/r. Both of the solutions
for b may not simultaneously be integers unless 2. Similarly fora. Hence for given
r # 2,nandg we have unique solutions farandb.

Whenr = 2, we get

@ -1 (+07)@-1 gy @ -DEa¥@-1
2q-1) 2q-1)

giving a unique solution (up to interchangeaoandb).

2.2. Disjoint sets of type (a, b)

Let £ and M be disjointk-sets of typga, b) with parameters as is the previous Section.
We show that the uniolt U M is a X-set of type(a + b, 2b) with respect to hyperplanes.
The counts that we use to do this are a generalisation to higher dimensions of counts for
PG(2, q) in [5].

First, letA be the number db-secants tdC on a point not oriC. Then counting the set
of pairs(P, X) such thatP ¢ K, £ a hyperplane containing and meetindC in b points
in two ways gives

(IPG(n —1,9) — KDA = (IPG(n — 1, )| — b)ty.
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Substituting the above valuesloft, andk and solving fon. then gives

g -1 @ -DEqT@-
q-1 rQ-1

Let x be the number of hyperplanes that &reecant toC anda-secant taM. Then
counting the set of pairéP, ) such thatP € M, X a hyperplane containin@ and
meetingkC in b points in two ways gives

IM|r = xa+ bty — X)

and hence

o _ IMi2— bt
T a—-b °

Substituting for the above values afb, t, andA and simplifying gives

n_
X = g 1
(—Dr

But this is exactly the number of hyperplanes thatasecants to\l. Hence everg-secant
to M is ab-secant tdC. Similarly, everya-secant tdC is ab-secant toM. Hence every
hyperplane meets the g€tu M in eithera + b or 2b points. ThusC U M is a Xk-set of
type(a + b, 2b).

More generally it follows that a union of (disjoint) orbits gives arsk-set of type
(a+ b(s— 1), sh) and we have the following Theorem.

Theorem 3 Letn> 2be anintegerp be a primeh a positive integerand r # 2 a prime
such that p is a primitive root modulo r and'p= 1(r). Suppose that either"p£ 1(r) orr
dividesged(n, p"—1). Thenforeverys {1...r —2} there exist§p""—1)/r (p" —1)-sets
of type(a + b(s — 1), sb) with respect to hyperplanes in R&— 1, p"), with a and b as
given in the previous Section.

Proof: Apply Theorem 2 and take a union of amyf the orbits of the th power of a
Singer cycle. O

2.3. Strongly regular graphs

Associated with every set of typ@, b) with respect to hyperplanes PG(n — 1, q) are
strongly regular graphs, see [1] for details. We conclude this section by calculating the
parameters of the strongly regular graphs arising from the sets ofaypég constructed in

the previous subsections.



72 HAMILTON AND PENTTILA

Theorem 4 The sets of typéa, b) constructed in Theorermisand?2 give rise to strongly
regular graphs with parametens=q", k= (q" — 1)/r,

Q" —3r +1+9"%@r —r2-2) and qQ"—r+14+q9"%0r -2
= k] :u’: M

Proof: Straight forward calculation using the parameter correspondence for sets of type
(a, b) and strongly regular graphs given in [1] yields the result. O

Theorem 5 The sets of typéa + b(s — 1), sb) constructed in Theorer8 give rise to
strongly regular graphs with parameters= q", k = s(q" — 1)/r,

s?(q"+1) — 3rs £ q"2(3rs —r? — 2s?)
A= > ,
s(sq —r +s+qv2(r — 2s))
= = :

3. Setsoftyped, b) in PG(2, q)

In this Section we examine the sets constructed by TheoremPGi, q). Note that
Theorem 1 does not apply as 2 does not dijde- q + 1.

The assumptions of Theorem 2 are tipais prime, h a positive integerg = p", such
that p is a primitive root modula, p' = 1(r) and that eithep” = 1(r) or r divides
gcd(3, p" — 1). The values fom andb become:

a— q+1+qgY?(1—r)
N r

14+ 1/2
and b= u

First note that since we requicg’? = p"/? to be an integeth must be even.

We consider two cases of the Theorem:

() r dividesged(3, p" — 1). In this case = 3. Now p has order 2 modulo 3, and so
equivalentlyp = —1(3). Hence the assumptions are equivalent to the condition that
even andb = —1(3), and we have the Corollary:

Corollary1  Suppose that h is an even integer and p is a prime such that41(3). Put
q = p", then there exists &% + q + 1)/3-set of typea, b) in PG(2, q). If 4 divides h then
@,b) = (5(a-29"%+1), 3(9+g"*+1) else(@, b) = (5(@+29"2+1), 5(a—g">+1)).

The choices foa andb follow from the fact that since = —1(3), 3dividesg+qY/2+1 =
p" + p"/? + 1ifand only ifh/2 is even.

Thesek-sets of typga, b) were previously known, and are a subclass of a class credited
in [1] to an unpublished paper of R. Metz.

(1) pM 2 1(r). Now p™2° = p31 = 1(3), but p" 2 1(3), and sop"/2 either has order
3 or 6 modular. We consider these two cases:
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(I (a) p"/? has orde6 modulo . Note thag? +q+1 = (q+qY?+1)(g—q¥?+1), so
eitherr | (q+qY?+1) orr | (—q¥2+1), butnotboth. Since=3,r |q+qY?+1 < r |
9¥? -1 < q¥? = 113) « p®2 = 1(r) = p"? = 3(r). So for the current case
r | g —g¥? + 1, and we get the following result.

Corollary 2 Let p be a primeh an even positive integeand r # 3 a prime such that
p is a primitive root modulo r and P = 1(r). Suppose that'p= 1(r) and g2 has
order6 modulo r. Then there exists(g? + g + 1)/r-set of type(2(q + 1 — q¥2(1 —r)),

La+1-9%?)inPG2,q),q = p".

Sincer dividesq — q%?2 + 1, it follows that the order of the power of the Singer cycle
g that we are taking is some integer multiptesay, ofq + g2 + 1. Hence the subgroup
of (g") generated byg™ has ordey + q%/2 + 1. It is well known that the orbits of such
a subgroup of a Singer cycle aBaer subplanegsubplanes of orden®?) of the plane.
Hence the sets constructed in the Corollary are unions of Baer subplanes. In [3], M. de
Finis constructed partitions &G(2, q) into Baer subplaneg} a square, using powers of
Singer cycles and noted that the union of any subset of the partition gives tssets
of type (m, n). Hence the sets of the Corollary are a subclass of those constructed by de
Finis.

(I (b) p"/2 has order3 modulo r. In this case | q + q%/2 + 1. Sincep has order — 1
modulor it follows thatr — 1| (3h/2), and sch/2 is even, and we get the Corollary:

Corollary 3 Let p be a primeh a positive integer such thdt h, and r £ 3 a prime such
that p is a primitive root modulo r and¥ = 1(r). Suppose that'b=£ 1(r) and p¥? has
order3modulo r. Then there exists(g? + q + 1)/r-set of type(2(q + 1+ q¥/2(1 —r)),

1@+ 1+9Y¥%)inPG(2 q),q = p".

Now p"/4 must have order 3 or 6 moduto We consider these two cases:

(IN(b)(i) p"* has order6 modulo r.In this case, arguing as before| q¥/2 — q¥4 + 1,
andr fqY? 4+ g%* + 1. It follows that the power of the Singer cyclg’) has a subgroup
of orderq/? 4 q%/# 4+ 1. The orbits of such a subgroup of a Singer cycle are well known
to be subplanes of ordgt4. Hence the set is a union of subplanes of oxfét.

In [8], M.J. de Resmini constructs/? + q¥/% + 1)(q — q¥/? + 1)-sets of typeq¥/* +
1,q¥? + q¥* 4+ 1) in PG(2, q) using powers of Singer cycles. She then takelsjoint
copiess € {2...qY2—q¥4+1}, of these sets to giv&q¥2+ g4 + 1)(q — q/2+ 1)-sets
of type (s(q¥? + g4 + 1) — q%2, s(q¥? + q¥* + 1)). These can be seen as unions of
subplanes of ordeg/#. The current sets are a subclass of the examples of de Resmini.

(IN(b)(ii) p"/* has order3 modulo r. In this case of the Corollary the sets arising were
not previously known.

Note that with all of the above Corollaries we may also apply Theorem 3 to construct
morek-sets of typga, b).

In (I)(a) and (I)(b)(i) above it was noted that the sets could be described as unions of
subplanes of the plane. In the following we show that many of the sets, including some of
those in (I)(b)(ii), can be described as unions of subplanes.
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Letq = pmzi_, wherei andm are integersm odd. Then the number of points in the plane
is p™*" + pM2 4 1 which equals

(p2m+ pm+1)(p2m _ pm+l)(p4m _ p2m+ 1) (pmzi _ pmzifl n 1).

Suppose that divides the terrrqomzj - p’“z"'1 + 1 for somej, and putx = (pmzj —
p™ " 4+ 1)/r. Then the order off is

X(pmzj i pmzi—l n l)[(pmzjﬂ _ pmzi + 1) . (pmzi _ pm2i*1 + l)]

Notice that this has a subgroup of ordef"? + pmZH + 1). The orbits of such a subgroup
are well known to be subplanes of ordef? '. Hence these such sets can be seen as a
union of (p™ — p™" +1)...(p™ — p™ " + 1))/r subplanes of ordep™ .

We conclude this Section by giving some examples of the parameters of sets not previously
known, i.e. those ofll)(b)(ii) above.

Example Suppose = 7. Then we require that is congruent to 3 or 5 modulo 7, ahd
is congruent to 8 or 16 modulo 24. The smallest examples are:

(a) a 6150469-set of typ@68 949 in PG(2, 3%). Since 7| 32 — 3 + 1 this can be seen
as a union of subplanes of order 3.

(b) a21798325893-set of ty[g65268 55893 in PG(2, 58). Since 7| 5> — 5+ 1 this can
be seen as a union of subplanes of order 5.

Example Suppose = 13. Then we require thai is congruent to 26, 7 or 11 modulo

13, andh is congruent to 16 or 32 modulo 48. The smallest example is a 330387141-set
of type (4805 5061) in PG(2, 21%). Since 13| 2* — 22 + 1 this can be seen as a union of
subplanes of order 4.

4. Subgroups ofT'L(1, pR)

In the following we recall work of Foulser and Kallaher ([4]) which classifies subgroups of
I'L(1, p®) that have two orbits o&BF(pR)*. In certain cases these gikesets of typea, b)
in PG(n — 1, p®™). We show that for a large number of cases (includ®@(2, q)) the
k-sets of typea, b) obtainable from such subgroups are isomorphic to those constructed
in Section 2.

We follow the notation of Foulser and Kallaher in [4]. Letbe a generator aBF(pR)*
anda :x — xP be a generator of the automorphism grou#f( pR). The group(w, «)
generated by ande is thenI'L (1, pR).

Lemma 1([4,2.1]) Let G be a subgroup dfw, «). Then G has form G= (w9, wea®),
where d e and s can be chosen to satisfy the following conditions

pr—1
R R_1 = .
sIR, d|p ., and e<ps_1) 0(d)
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Such a subgroup is said to bestandard form

Theorem 6([4,3.9]) Let p be a primee an integerand let m, v, s and R be positive
integers satisfying:

(1) the primes of mdivide p — 1.

(2) visaprime v # 2, |p°™|, =v — 1

(3) ged(e, my) = 1.

(4) ms(v — DIR.

Letd=myv, A = (pR—1)/d and m = (v — 1)my. Then G= (w?, w®) is in standard
form and has two orbits on GBR)* of lengthAm; and Am,, where m < my.

A similar theorem is proved for subgroups which have two equal lemggh m,) orbits
onGF(pR)*.

It is worth noting that in the Theore@ N (w) = (w9), and that the groupw®«®) acts as
a permutation on the orbits ¢&?). In fact the orbit of lengthAm; is a union ofm; orbits
of (w9), and similarly for the orbit of lengttAms.

If n > 2 is an integer that divideR thenGF(pR) gives a model foPG(n — 1, pR/") as
in the previous sections. We now consider when the groups of Theorem 6 act on projective
spaces.

Theorem 7 Suppose hR, for integers n and R. Then if a k-set of ty@e b) in PG(n —
1, pR/™ arises from Theorer@ it is isomorphic to one of those in Theor@n

Proof: First note that iffw9, wé«®) satisfies the conditions of Theorem 6 then so does
(w?, wea®) whered = myv. This follows immediately sincép®™|, = v — 1 implies
|pSl, = v — 1. Further w9, weaS) is a subgroup ofw?, wea®). It follows that the groups
both have the same orbits.

We consider the grou = (w", w®«®). Note that there are orbits ofw® on GF(pR),
and the union ofm; of them make up one orbit @fv?, wea®) and(v — 1)m; of them make
up the other orbit. Son; = 1,d = v means that thk-set of type(a, b) arising fromG is
a single orbit ofw?.

ForG, d = myv = v, so condition 2 of Theorem 6 becomes that|, = v — 1. Hence
p®, and sop, are primitive roots modulo. It follows immediately that &-set of type(a, b)
stabilised by such a group is isomorphic to that obtained by the construction of Theorem 2
withr = v andh = R/n. ]

As it was mentioned before, Foulser and Kallaher prove a similar result to Theorem 6 for
the case when a subgroupIof (1, pR) has two orbits of the same lengtih£ 2). Arguing
as in the previous theorem with the growe, we®) containing(w?, wees) whered = 2m
shows that such groups only give rise to the sets of tgpb) constructed in Theorem 1.

In the previous Theorem we have classifieckadlets of typga, b) in PG(n — 1, p®¥/™)
that arise from subgroups BiL (1, pR) having two orbits on the points in the natural action.
It is worth noting that there are other subgroupd af(1, pR) which have orbits that are
k-sets of typga, b), though the subgroups do not have two orbits on points. For instance,
at the recenffwenty-third Australasian Conference on Combinatorial Mathematics and
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Combinatorial ComputingBatten announced that she and Dover had constructed an 829-
set of type(4, 9) in PG(2, 125 and a 3189-set of typ@!, 11) in PG(2, 343) by taking the
orbits of the 19th and 37th powers of the Singer cycles, respectively. Neither of these are
stabilised by a subgroup &fL (1, g%) having two orbits, indeed the planes that these occur
in do not have square order.

Foulser and Kallaher's results show that the sets of tgpb) constructed in Theorems 1
and 2 were in some sense known before. However, their results are not well known, the
conditions they gave were complicated, and it was not easy to tell when the sets existed,
let alone what the actual values fandb were, or the parameters of the strongly regular
graphs arising from them. In [7], Liebeck and Saxl calculate parameters for strongly regular
graphs arising from primitive rank three groups except those given in this paper. Our aim
here has been to give an easy condition for the existence of these sets ¢ tgpand
their parameters, as well as to construct new examples using disjoint sets ¢ditpeln
particular, despite their claims to the contrary, these examples of sets ofatyipewere
omitted from [1].

References

1. R. Calderbank and W.M. Kantor, “The geometry of two-weight codasll. London Math. Socl8 (1986),
97-122.

2. P. DembowskiFinite GeometriesSpringer, Berlin, 1968.

3. M. de Finis, “Ork-sets of typgm, n) in projective planes of square order,’fimite Geometries and Designs
P.J. Cameron, J.W.P. Hirschfeld and D.R. Hughes (Eds.), London Math. Soc. Lect. Notes Seriég, \ol.
1981, pp. 98-103.

4. D.A. Foulser and M.J. Kallaher, “Solvable, flag transitive, rank 3 collineation groGesim. Ded7 (1978),
111-130.

5. K. Grining, “A class of unitals of ordeq which can be embedded in two different planes of omgfgt J.
Geom29 (1987), 61-77.

6. J.W.P. HirschfeldProjective Geometries over Finite Field2nd ed., Oxford University Press, Oxford, 1996.

7. M.W. Liebeck and J. Saxl, “The finite primitive permutation groups of rank thigell: Lond. Math. Soc.
18(2) (1986), 165-172.

8. M.J. de Resmini, “An infinite family of typém, n) sets inPG(2, q2), g a square,]. Geon20(1983), 36-43.

9. M. Tallini Scafati, “Sui{k, n}—archi di un piano grafico finito,Atti Accad. Naz. Lincei Rend0 (1966),
373-378.

10. M. Tallini Scafati, 1k, n}—archi di un piano grafico finito, con particolare riguardo a quelli con due caratteri.
(Note I; 11),” Atti Accad. Naz. Lincei Rend0 (1966), 812-818, 1020-1025.



