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Abstract. For a finite reflection groujv and parabolic subgroly;, we establish that the quotient of Poinear”

polynomials% ,when evaluated at= —1, counts the number of cosets#f in W fixed by the longest element.

Our case-by-case proof relies on the work of Stembridge (Stembiiiges Mathematical Journal3 (1994),
469-490) regarding minuscule representations and on the calculati%ﬁ%_«% of Tan (TanCommunications in
Algebra 22(1994), 1049-1061).
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1. Introduction

Thet = —1 phenomenon, which has been studied by Stembridge [4, 5], is said to occur
when one has a finite s&t equipped with an involutiof : X — X and an integer-valued
function| |: X — Z such that the generating function polynomial

Zt\XI

xeX

counts the number of fixed points &fwhen evaluated dat= —1. Stembridge studied the

t = —1 phenomenon while working in the context of representations of Lie algebras. His

main result [5] shows that certain specialization polynomials when evaluatetl @unt

the number of weight vectors fixed by a map called Lusztig’s involution, which is intimately

connected to the longest element of the corresponding Weyl group. This paper presents a

result similar to that of Stembridge in the setting of reflection groups. An understanding of

reflection groups and representations of Lie algebras is all we assume. For reference, the

reader may refer to Chapter 1 of Humphreys [2] and Chapters 3 and 6 of Humphreys [1].
Let (W, S) be a finite reflection group with simple reflectioBsand letA denote the set

of corresponding simple roots. Létand®™ denote the set of all roots and the set of all

positive roots respectively. For any subdet S, one may form the parabolic subgrouf

generated by the simple reflectionsdn Now each left coseyW; has a unique element

of minimal length. These coset representatives of minimal length are chditadguished

representativesLet WY be the set of distinguished representativesviGrc W. Let P,

andN; denote the number of elementsw’ of even and odd length respectively, and let

D; = P; — Nj.
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One can now form the Poin@polynomials

WJ(t) — Z tl(w)

weW?

Wit) = ) '™

weW,;

wherel (w) denotes the length ab. It is well-known [2] thatw?(t) is the quotient of
Poincag polynomials corresponding thandS,

Ws(t)
W (t) = —2.
W; (1)

Recall from [2] that thedegreesof a finite reflection groupV are the degrees of a set
of algebraically independent generators of the ring\bfnvariant polynomials. Now let
di, dy, ..., dg denote the degrees ¥ andd;, ..., d;, the degrees ofV;. Notem < k.
Factorization of the Poincaolynomials [2] yields

[Tt - 1)
(t — DR, (4 — 1)

W (t) =

By definitonW?(—1) = D;. Observe in the unexpanded factorization above that there
cannot be more even powerstoin the denominator than in the numerator, for that case
would imply lim_, _; WY (t) = 400, an impossibility. If there are more even powerg of

in the numerator than in the denominator, tW(—1) = 0. If there is an equal number

of even powers of in numerator and denominator, the factors which have odd powers of
cancel to 1 and by L'Hopital’s rulajV? (—1) > 0. In any caseW”’ (—1) is a non-negative
integer. Given one has encountered previous examples df the-1 phenomenon, the
natural question to ask is whethét (—1) is counting the fixed points of an involution on
W, The goal of this article will be to prove the theorem below and show that this is in
fact the case. The proper involution to consideu is> wouwg wherewg and wg are the
longest elements iV andW; respectively.

Theorem 1 Let(W,S) be a finite reflection group with simple reflections S. Let 5,
and W be the distinguished left coset representives fgr W. Letwgy and wg be the
longest elements of W and;Wespectively. The map : u — wouwg is a well-defined
involution from W to WY, Let W2 (t) = 3~ o t'). Then

WY(=1) = [{uW; | u € W andwouW; = uW,}|
=|{ue W’ |Ou=ul.

Stembridge [4] essentially proved a special case of this theorem, and the work in this
article relies on it. However, his related later work [5] on the canonical basis, which is deep
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and general, does not appear to include Theorem 1 in any obvious way, for in working with
the canonical basis and quantum groups, one assumes the crystallographic condition on the
root system. At any rate, no knowledge of quantum groups is assumed here.

2. Reduction to the irreducible maximal case

To begin, we first show that this involution is well-defined and that it fixes a distinguished
element if and only if the longest element fixes the corresponding coset.

Claim1 The map® : u wouwy is a well-defined map frorv? to W7.

Proof: Asu e WY, [(uv) = I(u) + I(v) for all v € W;. See Humphreys [2], p. 19.
Consider the cosetquW;. We will show thatwouwg is the distinguished representative
for this coset. Sincevy sends the set of positive roots to the set of negative roots, every
positive root sent to a negative root lpye W remains positive whemgy is applied to

it. Similarly, every positive root that stays positive undeis sent to a negative root by
woY. Thusl (wey) = |®*| —I(y) for all y € W. Now letwouv be an arbitrary element of
wouW;. Then

[ (wouv) = |®T| — I (uv)
=0T — () — ()
> [T —1(u) —1(wg)
= [®*] — 1 (uwy)

= | (wouwg). O
Corollary 1 Letue WY. Then®u = u if and only ifwouW; = uW;.

Proof: The direction= is obvious.
If wouW; = uWj, then by the above cIaimpOUwg andu are both the distinguished
representative inW;. ThUSwOUwg = u. O

Let (W, S) be an irreducible finite reflection group with simple syst8niet J C Sbe
a maximal subset, that is]J| = |S| — 1. In this situation Tan [6] explicitly describes the
elements of the sa/’ and as an application comput®g = W’ (—1). Tan then use®;
to compute the differences in signs appearing in the Laplace expansion for the determinant.
However, Tan does not observe the connection betWeén-1) and the fixed points ab.

This connection will be made later in this article using case-by-case techniques. Right now,
let us show it suffices to reduce to the case tN¥t S) is irreducible with] € Smaximal
by means of some multiplicativity lemmas.

SupposgW, S) is a finite reflection group. Thew decomposes as the internal direct
sumW = Wg xWs,x --- xWg where eachWs, S) is an irreducible finite reflection
group. Letwg denote the longest element of the parabolic subgiéip and form the
polynomialsW(t) = Y, t'™ andWs(t) = 3" thw),

we weWsg



32 ENG

Adopting the notation found in Tan [6], we I&¢”' denote the set of distinguished coset
representatives fa, in W;, whenevel € J C S. Let P;; andN; denote the number of
elements inW?' of even and odd length respectively andBgt= P; — Ny. In particular,
WSI=W?. ForJ C S, consider the set3 N § < §, and formW;g andWS 375, We
have the following claim, whose proof is left to the reader.

Claim 2 Using the notation just introduced, the following hold:

@W(t) = [T, Ws (.

(0) X ews 11 =TT (3, ewsons 1),
(c) The number of cosets 8¥; in W fixed by wo equals

K
(number of cosets of Ws in Wy fixed byws ).
i=1

The following are the key multiplicative lemmas that will allow reduction to the case
J € Swith J maximal.

Lemma 1(Tan[6]) Suppose Ic J € S. Then W' = WS W' and Ds) = Dg;Dy;.

Let wo, wg, w(') denote the longest elements\Wf W;, andW, respectively. Let

Qsi = [{uW | ue W andwouW = uW,}|
Qsy= [{uW; | ue W andwouWs = uW,}|
Qy = [{uW | ue Wy andwguW =uWw }|.

Lemma2 Suppose IC J C S. Themg = Qs3- Q.

Proof: Let us show that the map
¢ Qs3x Q3 — Qs

given by (xW;, yW) — xyW is a bijection, wherex andy are chosen iwSJ and W'
respectively. NowwoxW; = xWj;, which implieSwOXwg = X by Corollary 1. Similarly
waywy = Y. Thenwoxyw) = woXwgd wgyw) = Xy, giving woxyW = xyW. Thusé
maps to the right place.

Supposep (xW;, YW) = ¢(x’'W3, YW,) wherex, x’ € WS andy, y € WY'. Then
xyW = x'y'W,. From Lemma 1xy andx’y’ are both the distinguished representative in
xyW for W, € W. Thenxy = xX'y. ThenxW; = x’'Wj, givingx = X'. Andy =V
follows. Thus¢ must be one-to-one.

SupposewouW, =uW;, whereu € WS'. Write u = abwith a € WS andb € W
using Lemma 1. SincapabW =abW, thenwgaW; =aW;. Both woawg = a and
woabw) = ab hold by Corollary 1. Now usa~! - ab=b to see thatvgbw) = b. Thus
wabW = bW . It follows thatg (aW;, bWi) = uW;, and hence that is onto. O
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Proposition1 Suppose W(—1) = Qs;for every finite irreducible reflection groupyv, S)
with J € S maximal. Then W(—1) = Qg; for any finite reflection grougW, S) and any
subset JC S.

Proof: Consider first an arbitrary finite reflection grog@/, S) with J € S maximal.
ThenW decomposes as the internal direct sf= Wg, x - - - x W, where eactiWs, S)
is irreducible. Nowd N'§ = S for all i except one, say= m. Let woSi denote the longest
element ofWg. By Claim 2,

W%—l):ﬁ( > t'<w>)

i=1 \ wews.Ins

t=-1

thw)

weWSn.Insn

t=—1
number of cosets oV;ng, in Wy, fixed bng“
k
= [ [ (number of cosets dN;ng in Ws fixed bywg )
i=1
= number of cosets diV; in W fixed by wg
= QSJ.

ThusW? (—1) = Qg holds for any finite reflection grougw, S) with J € Smaximal.
Finally, let (W, S) be any finite reflection group and € S and subset. There is a
sequence of subsets

J=H<Ch<---C k=S
with J; maximal inJ ;. Then

WY (1) = Ds;
=Ds3,Dasas - Dug
= Q33 Qa3 QL

3. Minuscule representations

This paragraph summarizes some of the notation and well-known facts from the represen-
tation theory of Lie algebras. Lé&tdenote a simple Lie algebra over the complex numbers

C. Then its corresponding Weyl groM is irreducible. This Weyl group may be viewed

as reflection group acting on a real Euclidean vector space with bilinearfornfix a

set of simple root\ = {ay, ..., ar} for the Weyl group and corresponding fundamental
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weights{ws, ..., }, such thate;, w;) = 0ifi # j and((a?i’;i), i) = 1. Throughout the

rest of the article, let us assume the numbering of the simple roots as in Humphreys [1].
For any rootg € @, letg denote%. Let A be a dominant weight, and 1&Y; = W, be

the parabolic subgroup &% that inXesL Let V(1) be the irreducible representation with
highest weight., IT() the set of weights appearing \h(1), andV (1),, the weight space

of weightu in V (X). The real Euclidean vector space may be thought of as the real span of
the fundamental weights. Letdenote the expressioﬁ{=l 20 At a later point in this

. X (aj,ai) ”
section, we shall need the following length lemma:

Lemma 3 (Length Lemmp(Humphreys [2], p. 12) Leta € A andw € W. Then
() w(w) > 0iff | (ws,) =1(w) + 1.

(b) w(w) < 0iff I (wsy,) =(w) — 1.

(€) w ) > 0iff I (s,w) =l (w) + 1.

(d) w (@) < 0iff | (s,w) = l(w) — 1.

Recall the polynomiaW?(t) = }°, .. t'® and form the expressiofy (t) = Y, .,
dim(V (x),)t*—we-7) which Stembridge introduced in [4]. Observe thatifippears in
IT(A), thenwop € TI(A) andi — wop IS aZxp-linear combination of simple roots. It
follows that(A — wou, p) € Zso Since(a;, p) = 1 for each simple roak;. Thus f; (t)
is a polynomial. It will turn out that for certail, namely the minuscule weights, we have
f,.(t) = WY (t) for some subsets.

A dominant weight is calledninusculef T1(1), the set of weights appearing Vh(1),
forms a single Weyl orbit. Equivalent formulations, which can be found in Humphreys
[1], include a)(x, a) = 0, 1,or —1 for all rootser; and b) if whenevey is a dominant
weight withA — u € Z-¢-linear combination of simple roots, = . The representation
corresponding to a minuscule weight is also called minuscule. Certainly the trivial repre-
sentation, corresponding 2o= 0, is minuscule. The remaining minuscule weights have
all been classified [1] for simple Lie algebrhsas follows:

A lwg, ..., o
B : o

C m

Dr L w1, Wr_1, Wy
Es : w1, ws

E; : wy.

The algebra&g, G,, andF4 have no nontrivial minuscule weights. From now on, minuscule
weights will be assumed nonzero unless stated otherwise. Notice thatkjaréorms a
single Weyl orbit, the dimension of each weight spac&' ¢f) is 1. Since the minuscule
weights in the table are all fundamental weighit¢; = W, will be such thatd C Sis
maximal.
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Let us return for the moment tOVN, S), a not necessarily irreducible finite reflection
group.

Lemma 4 Let| < S. For the parabolic subgroup W< W, form W', the set of
distinguished representatives. From all elements ih Woose u so(l) is maximal. Let
wo and w) be the longest element of W and Wespectively. Them, = uw} and
[(u) = 1 (wg) — 1 (w}).

Proof:  First observe that(wg) > | (Uwy) = I (u) +1(w}). Write wo = xy for x € W'
andy € W,. Thenl(wg) = I(X) +1(y) < () + I (w}). Thusl(wg) = I(U) + 1 (w}) =
| (Uwy). Hencewy = uw} andl (u) = I (wo) — I (w)). O

Lemma5 Forl and w(') as in the previous lemmaet m= | (wg) — I(w(')) and choose i
sothatO <i <m. LetT={aeW' |I@ =i},U={beW|[I(b)=m—i}. Then
IT|=1Ul.

Proof: Defineamap : T — U bya — woaw). Thisis well-defined sincgwoaw) =
| (wo) — I (@wy) = I (wo) — I (wy) — (@) = m — i, and from the well-definedness 6fwe
know thatwoawy is indeed inW'. Moreoverg? =identity. Thus|T| = |U]|. O

Lemma6 Letx be minusculgand suppose € W. Then(wa, «) = 0,1, or —1 for any
roota € .

Proof: From the equivalent formulations of minuscule found in [1] we have that for any
B € @, that(r, B) =0,1,or—1. Setf = wla € ®. Then

(wh,a) = (b, w @)
< 2wla>
=,
(o, @)

_ (s 2wty
T\ (wle, wle)

=pA) =01, or —1 O

Lemma7 Letp=33,cor 255 = Yi-1 oy~ Leth be minusculgand assume € W?

where W = W, = {6 € W | oA = A}. Then(wi, p) = (&, p) — | (w).

Proof: Induct onl(w). If I (w) = 0, thenw is the identity and the result is obvious.
Supposd (w) = n > 0. Take a reduced expression of simple reflectionufpw =
S,S, - S,, wheres; denotes the simple reflection corresponding to the simpleaioot
Thens; ---s, € w andl(s;---s,)=n—j+1foralll<j <n. Now forany simple
roote, (p, @) = (Xi_, o @) =1lands, p=p— a. Then

(U))‘ﬂ 5) = (Sl e Sn)\s 15)
- (Sz tt Sn)\'a 5115)
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= (s, S,k p—aiy)
— (Sz .. 'Sn)h 15) — (32 .. .Snk’ &il)'

But by the length lemma(s, ---s,) ta;, > 0. Then(x, (s, --s,) a,) > 0. But
if (A, (Sz-~-sn)’lo?i1) = 0, thens,---s, A = S, --5,A. This impliess,---s W; =
S, --S,W;, which yieldss,---s, = s,---S,, a contradiction. Hencea, (s, - -
s.) %) > 0. Then(s, --S,A, ai,) = 1 by the previous lemma. Finallywx, p) =
S, S, 0)—1=@,p)— (-1 —1= (%, p) —nasdesired. O

Lemma8 Assume the hypotheses of the previous leramdletw, andwg be the longest
elements of W and Wespectively. TheB(x,p) = | (wg) — |(wg).

Proof: Letu e WY be such that(u) is maximal. From Lemma 4,|wg = wp. On
the one hand(ux, p) = (&, p) — I(U) = (&, p) — I (wo) + | (wg). On the other hand,
(Ur, p) = (wok, p) = —(k, p). Thus—(%, p) = (r, p) — I (wo) + | (wg) and the result
follows. O

Proposition 2 LetA be minuscule and assume\W& W, is the parabolic subgroup fixing
A. Then

fu(t) = W (1).
Proof: Since the dimension of each weight space is 1,

f(t) = Z t O-—wop, p)

HEII(R)

— Z t* 2)= (w0 p)
2258 (0]

— Z t(l,ﬁ)—(//«,—f))
22533 (09)

— Z t()»-H/-v/'))
Hell(R)

— Z t()tJrlU)»w/V?)
weW?

— Z t(}n/})-‘r(k,/‘))—'(w)
weW?

— Z t! (wo) = (wg)—I (w)

weW?
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wherewo andwg are the longest elements \&f andW; respectively. A= runs ovew?,
woawg runs overW?. Then

f, () = Z tl("’O)—|(wg)—|(woawg)

woawg
acW?
— Z t! (wo)—! (wd)—(I (wo)—! @) —I (wg))

aeW?

— Z @

aew?

=W (). O

If A is minuscule, the representations with highest weigfitsvherem is a nonnegative
integer have a very nice basis labeling due to a result of Seshadri. Both Stembridge [4]
and Proctor [3] study the combinatorial properties of this labeling.ALbe minuscule
and letW; = W, be the parabolic subgroup fixing it. Seshadri’'s monomial result states
that a weight basis fo¥ (mx) is indexed by weakly increasing sequences of lemgtin
W/Wj 1 <1 <--- 1. The weight for the vector indexed by such a sequence is simply
T1h + T2A + - - - + TmA. The main result of Stembridge [4] involves a natural involution of
sequences of lengthn given by

TI=T2==Tmt> WoTm = -+ = WOT1.
Stembridge proves thdt,, (—1) is the number of weakly increasing sequences of length
in W/W; fixed by this involution. Because of the above proposition, Stembridge’s result
can be restated in the following way in the particular case whete 1.
Claim 3 Assume is minuscule, and 1&V; = W, the parabolic subgroup fixing Then

W (—1) = number of left cosets € W/W; such thatwer = ©

= |{w e WY | wowwy =w}]

wherewg andwg are the longest elements \of andW; respectively

4. \ferification of thet = —1 phenomenon

Since the problem has been reducedw) S) irreducible and] € S maximal, the result
of Stembridge in Claim 3, which is a special case of Theorem 1, and some calculations of
Tan [6] now suffice to prove the= —1 phenomenon.

Proposition 3 Let (W, S) be a finite irreducible reflection group with simple reflections
S. Assume X S is maximal. Let WW; denote the left cosets for j\h W, and set
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Table 1 Selected values o’ (—1) from Tan.

Type S—-1J WY (—1)
Br; Dy, r even;Ez; Eg; Fa; Hz; Hg; 12(m), meven Any simple root 0
12(m), modd Any simple root

Dr,r odd s, k>1

Dy, r odd S1

Es scwithk #1,6

Qgy= |{‘L’ € W/WJ | woeT = ‘[}| Then
WY (-1) = Qs;.

Proof: Tan [6] has already computé/’(—1), and we display some of the results in
Table 1. All that is needed is to compus; and compare results.

Lets be the unique simple reflection - J, andw; the corresponding simple root. Let
r betherankofW, S), andforj =1, 2, ...,r, letH; denote the hyperplane «;. In other
words,Hj = {u € V | (1, @j) = 0}, whereV is the real Euclidean space upon whigh
acts. The —1 hyperplanesij wherej # i intersectinaline. Asaresult, we may find V
suchthati, ;) > Oand(x, «j) = Oforall j # i. Forexample. = w; willwork when the
reflection group is a Weyl group. EvidenW; = {w € W | wA = A}. ThenW/W; is in
one-to-one correspondence with iveorbit of .. ObserveQs; = [{x € WA | wou = u}l.

A EveryW; whereJ € Smaximal is the fixer for some;, a fundamental weight. In
the A, case, each fundamental weight is minuscule, and by ClaWi’3—1) = Qs3.

B:; Dy, r even;Ez; Eg; F4; Hs; Hy; 12(m), meven: Inthese cased) is the only vector
which can possibly be fixed by, = —1. HoweverW2x does not contaiti0) sincex has
nonzero length. Henc®s; = 0 in all these cases, matching the result of TarMibr(—1).

D;,r odd: Letey, eo, ..., & be an orthonormal basis with respect(tq ). Let A =
{0y =6e1—62,p = €2—63,...,Qr_1 = &_1—&, 0y = &_1+& } bethe Simple roots. The
groupW may be thought of as acting on this by signed permutations with an even number
of sign changes. The longest elementéfsends the; to —¢; fori = 1,2,...,r — 1
and fixese;. Each of the fundamental weights may be expressed in terms of thie as
follows:

w1 = &1

w2 = &1+ &2

wr2=¢&1+&+ -+ &2

1
wr-1 = 5(81 t+et+- - t+e2te-1— &)

1
wr = S(erte2t - te2 a1t e
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Table 2 TheEg case.

2 S-13J W, = W; l(wg) [ (wo) — 1 (wg)
®2 S As 15 21
w3 S AL x A 11 25
w4 Y Ao x Ar x Aq 7 29
ws S5 Asx Ay 11 25

Now for a fundamental weigliy, supposer € Wy is fixed by the longest element. Write
U =Cie1+---+Csg. Then—cCieg—- - - —C_16_1+C& = wolt = (. = C1e1+- - -+Cr &
Consequentlg; = ¢, = ---¢ -3 = 0, andu = ce; for some scalac. Hencewy can only
bew;. There are precisely two elementdifw; fixed bywg hamelys; and—e,. ForJ € S
maximal,W; is the stabilizer for one of the fundamental weighis If k > 1, Qs;= 0. If
k = 1, Qsy = 2, matching the results of Tan fav” (—1).

Es: In the case wher®V; is the stabilizer ofv; or wg, W?(=1) = Qg; follows from
Claim 3 since both of these fundamental weights are minuscule. Coidend letwg
andwg be the longest element @ andW; respectively. Using Claim Rs; = [{u € W |
wouwg = u}]. Now if wouwg = U, (wouwy) = I (u). Thatis) (wo)—I(U)—I(wg) = I(u),
orl(u) = M In the Eg case) (wg) = % = 36. Consider Table 2.

Sincel (wo) —I (wg) is odd in these remaining cases, there is W with wouwg = u.
HenceQs; = 0 in these cases, matching Tan’s computed valug\fd¢—1).

l(m), modd: IfJ =s;, W = {1, S, 5%, 9%, - . ., (slsg)mT_l}. The lengths of the
m distinguished representatives arel (2, ..., m — 1. ThuswW’(—1) = 1. Since the map
®:WJ - W’ sendingu — wouwg sends an element of lengthio an element of length
m — 1 —i and sincemis odd, the distinguished representative of Ier@ﬁ will be fixed
and will be the unique one fixed. As a consequetizg,= 1 = W’ (—1). Similarly for
J=s. O

This proposition combined with the previous work in this article, which reduces to the
case(W, S) finite irreducible and] € S maximal, establishes Theorem 1. The question
remains at least to this writer whether a case-free proof of it can be found.
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