
Journal of Algebraic Combinatorics13 (2001), 29–40
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.
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Abstract. For a finite reflection groupW and parabolic subgroupWJ , we establish that the quotient of Poincar´e
polynomials W(t)

WJ (t) , when evaluated att = −1, counts the number of cosets ofWJ in W fixed by the longest element.
Our case-by-case proof relies on the work of Stembridge (Stembridge,Duke Mathematical Journal, 73 (1994),
469–490) regarding minuscule representations and on the calculations ofW(−1)

WJ (−1)
of Tan (Tan,Communications in

Algebra, 22 (1994), 1049–1061).
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1. Introduction

The t = −1 phenomenon, which has been studied by Stembridge [4, 5], is said to occur
when one has a finite setX equipped with an involutionθ : X → X and an integer-valued
function| | : X→ Z such that the generating function polynomial

∑
x∈X

t |x|

counts the number of fixed points ofθ when evaluated att = −1. Stembridge studied the
t = −1 phenomenon while working in the context of representations of Lie algebras. His
main result [5] shows that certain specialization polynomials when evaluated at−1 count
the number of weight vectors fixed by a map called Lusztig’s involution, which is intimately
connected to the longest element of the corresponding Weyl group. This paper presents a
result similar to that of Stembridge in the setting of reflection groups. An understanding of
reflection groups and representations of Lie algebras is all we assume. For reference, the
reader may refer to Chapter 1 of Humphreys [2] and Chapters 3 and 6 of Humphreys [1].

Let (W, S) be a finite reflection group with simple reflectionsS, and let1 denote the set
of corresponding simple roots. Let8 and8+ denote the set of all roots and the set of all
positive roots respectively. For any subsetJ ⊆ S, one may form the parabolic subgroupWJ

generated by the simple reflections inJ. Now each left cosetwWJ has a unique element
of minimal length. These coset representatives of minimal length are calleddistinguished
representatives. Let WJ be the set of distinguished representatives forWJ ⊆ W. Let PJ

andNJ denote the number of elements inWJ of even and odd length respectively, and let
DJ = PJ − NJ .
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One can now form the Poincar´e polynomials

WJ(t) =
∑

w∈WJ

tl (w)

WJ(t) =
∑

w∈WJ

tl (w)

wherel (w) denotes the length ofw. It is well-known [2] thatWJ(t) is the quotient of
Poincaré polynomials corresponding toJ andS,

WJ(t) = WS(t)

WJ(t)
.

Recall from [2] that thedegreesof a finite reflection groupW are the degrees of a set
of algebraically independent generators of the ring ofW-invariant polynomials. Now let
d1, d2, . . . , dk denote the degrees ofW andd′1, . . . , d′m the degrees ofWJ . Notem ≤ k.
Factorization of the Poincar´e polynomials [2] yields

WJ(t) =
∏k

i=1

(
tdi − 1

)
(t − 1)k−m

∏m
i=1

(
td′i − 1

) .
By definition WJ(−1) = DJ . Observe in the unexpanded factorization above that there
cannot be more even powers oft in the denominator than in the numerator, for that case
would imply limt→−1 WJ(t) = ±∞, an impossibility. If there are more even powers oft
in the numerator than in the denominator, thenWJ(−1) = 0. If there is an equal number
of even powers oft in numerator and denominator, the factors which have odd powers oft
cancel to 1 and by L’Hopital’s rule,WJ(−1) > 0. In any case,WJ(−1) is a non-negative
integer. Given one has encountered previous examples of thet = −1 phenomenon, the
natural question to ask is whetherWJ(−1) is counting the fixed points of an involution on
WJ . The goal of this article will be to prove the theorem below and show that this is in
fact the case. The proper involution to consider isu 7→ w0uwJ

0 wherew0 andwJ
0 are the

longest elements inW andWJ respectively.

Theorem 1 Let (W,S) be a finite reflection group with simple reflections S. Let J⊆ S,
and WJ be the distinguished left coset representives for WJ ⊆ W. Letw0 andwJ

0 be the
longest elements of W and WJ respectively. The map2 : u 7→ w0uwJ

0 is a well-defined
involution from WJ to WJ. Let WJ(t) =∑w∈WJ tl (w). Then

WJ(−1) = |{uWJ | u ∈ W andw0uWJ = uWJ}|
= |{u ∈ WJ | 2u = u}|.

Stembridge [4] essentially proved a special case of this theorem, and the work in this
article relies on it. However, his related later work [5] on the canonical basis, which is deep
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and general, does not appear to include Theorem 1 in any obvious way, for in working with
the canonical basis and quantum groups, one assumes the crystallographic condition on the
root system. At any rate, no knowledge of quantum groups is assumed here.

2. Reduction to the irreducible maximal case

To begin, we first show that this involution is well-defined and that it fixes a distinguished
element if and only if the longest element fixes the corresponding coset.

Claim 1 The map2 : u 7→ w0uwJ
0 is a well-defined map fromWJ to WJ.

Proof: As u ∈ WJ , l (uv) = l (u) + l (v) for all v ∈ WJ . See Humphreys [2], p. 19.
Consider the cosetw0uWJ . We will show thatw0uwJ

0 is the distinguished representative
for this coset. Sincew0 sends the set of positive roots to the set of negative roots, every
positive root sent to a negative root byy ∈ W remains positive whenw0y is applied to
it. Similarly, every positive root that stays positive undery is sent to a negative root by
w0y. Thusl (w0y) = |8+| − l (y) for all y ∈ W. Now letw0uv be an arbitrary element of
w0uWJ . Then

l (w0uv) = |8+| − l (uv)

= |8+| − l (u)− l (v)

≥ |8+| − l (u)− l
(
wJ

0

)
= |8+| − l

(
uwJ

0

)
= l

(
w0uwJ

0

)
. 2

Corollary 1 Let u∈ WJ. Then2u = u if and only ifw0uWJ = uWJ.

Proof: The direction⇒ is obvious.
If w0uWJ = uWJ , then by the above claim,w0uwJ

0 andu are both the distinguished
representative inuWJ . Thusw0uwJ

0 = u. 2

Let (W, S) be an irreducible finite reflection group with simple systemS. Let J ⊆ Sbe
a maximal subset, that is,|J| = |S| − 1. In this situation Tan [6] explicitly describes the
elements of the setWJ and as an application computesDJ = WJ(−1). Tan then usesDJ

to compute the differences in signs appearing in the Laplace expansion for the determinant.
However, Tan does not observe the connection betweenWJ(−1) and the fixed points of2.
This connection will be made later in this article using case-by-case techniques. Right now,
let us show it suffices to reduce to the case that(W, S) is irreducible withJ ⊆ Smaximal
by means of some multiplicativity lemmas.

Suppose(W, S) is a finite reflection group. ThenW decomposes as the internal direct
sum W = WS1×̇WS2×̇ · · · ×̇WSk where each(WSi , Si ) is an irreducible finite reflection
group. LetwSi

0 denote the longest element of the parabolic subgroupWSi , and form the
polynomialsW(t) =∑w∈W tl (w) andWSi (t) =

∑
w∈WSi

t l (w).
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Adopting the notation found in Tan [6], we letWJI denote the set of distinguished coset
representatives forWI in WJ , wheneverI ⊆ J ⊆ S. Let PJI andNJI denote the number of
elements inWJI of even and odd length respectively and setDJI = PJI − NJI . In particular,
WSJ= WJ . For J ⊆ S, consider the setsJ ∩ Si ⊆ Si , and formWJ∩Si andWSi ,J∩Si . We
have the following claim, whose proof is left to the reader.

Claim 2 Using the notation just introduced, the following hold:

(a) W(t) =∏k
i=1 WSi (t).

(b)
∑

w∈WJ tl (w) =∏k
i=1(

∑
w∈WSi ,J∩Si t l (w)).

(c) The number of cosets ofWJ in W fixed byw0 equals

k∏
i=1

(
number of cosets of WJ∩Si in WSi fixed bywSi

0

)
.

The following are the key multiplicative lemmas that will allow reduction to the case
J⊆ Swith J maximal.

Lemma 1 (Tan [6]) Suppose I⊆ J ⊆ S. Then WSI = WSJWJI and DSI = DSJDJI.

Let w0, w
J
0 , w I

0 denote the longest elements ofW, WJ , andWI respectively. Let

ÄSI =
∣∣{uWI | u ∈ W andw0uWI = uWI }

∣∣
ÄSJ=

∣∣{uWJ | u ∈ W andw0uWJ = uWJ}
∣∣

ÄJI =
∣∣{uWI | u ∈ WJ andwJ

0 uWI = uWI
}∣∣.

Lemma 2 Suppose I⊆ J ⊆ S. ThenÄSI = ÄSJ ·ÄJI .

Proof: Let us show that the map

φ : ÄSJ×ÄJI → ÄSI

given by(xWJ, yWI ) 7→ xyWI is a bijection, wherex andy are chosen inWSJ andWJI

respectively. Noww0xWJ = xWJ , which impliesw0xwJ
0 = x by Corollary 1. Similarly

wJ
0 yw I

0 = y. Thenw0xyw I
0 = w0xwJ

0 wJ
0 yw I

0 = xy, giving w0xyWI = xyWI . Thusφ

maps to the right place.
Supposeφ(xWJ, yWI ) = φ(x′WJ, y′WI ) wherex, x′ ∈ WSJ and y, y′ ∈ WJI . Then

xyWI = x′y′WI . From Lemma 1,xy andx′y′ are both the distinguished representative in
xyWI for WI ⊆ W. Thenxy = x′y′. ThenxWJ = x′WJ , giving x = x′. And y = y′

follows. Thusφ must be one-to-one.
Supposew0uWI = uWI , whereu ∈ WSI. Write u = ab with a ∈ WSJ andb ∈ WJI

using Lemma 1. Sincew0abWI =abWI , thenw0aWJ =aWJ . Both w0awJ
0 = a and

w0abw I
0 = ab hold by Corollary 1. Now usea−1 · ab= b to see thatwJ

0 bw I
0 = b. Thus

wJ
0 bWI = bWI . It follows thatφ(aWJ, bWI ) = uWI , and hence thatφ is onto. 2
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Proposition 1 Suppose WJ(−1)=ÄSJ for every finite irreducible reflection group(W,S)

with J ⊆ S maximal. Then WJ(−1) = ÄSJ for any finite reflection group(W,S) and any
subset J⊆ S.

Proof: Consider first an arbitrary finite reflection group(W, S) with J ⊆ S maximal.
ThenW decomposes as the internal direct sumW = WS1×̇ · · · ×̇WSk where each(WSi , Si )

is irreducible. NowJ ∩ Si = Si for all i except one, sayi = m. LetwSi
0 denote the longest

element ofWSi . By Claim 2,

WJ(−1) =
k∏

i=1

( ∑
w∈WSi ,J∩Si

t l (w)

) ∣∣∣∣∣
t=−1

=
∑

w∈WSm,J∩Sm

t l (w)

∣∣∣∣∣
t=−1

= number of cosets ofWJ∩Sm in WSm fixed byw
Sm
0

=
k∏

i=1

(
number of cosets ofWJ∩Si in WSi fixed byw

Si
0

)
= number of cosets ofWJ in W fixed byw0

= ÄSJ.

ThusWJ(−1) = ÄS J holds for any finite reflection group(W, S) with J ⊆ Smaximal.
Finally, let (W, S) be any finite reflection group andJ ⊆ S and subset. There is a

sequence of subsets

J = J0 ⊆ J1 ⊆ · · · ⊆ Jt = S

with Ji maximal inJi+1. Then

WJ(−1) = DSJ

= DJt Jt−1 · DJt−1 Jt−2 · · · DJ1 J0

= ÄJt Jt−1 ·ÄJt−1 Jt−2 · · ·ÄJ1 J0

= ÄJt J0

= ÄSJ. 2

3. Minuscule representations

This paragraph summarizes some of the notation and well-known facts from the represen-
tation theory of Lie algebras. LetL denote a simple Lie algebra over the complex numbers
C. Then its corresponding Weyl groupW is irreducible. This Weyl group may be viewed
as reflection group acting on a real Euclidean vector space with bilinear form(, ). Fix a
set of simple roots1 = {α1, . . . , αr } for the Weyl group and corresponding fundamental



34 ENG

weights{ω1, . . . , ωr }, such that(αi , ω j ) = 0 if i 6= j and( 2αi
(αi ,αi )

, ωi ) = 1. Throughout the
rest of the article, let us assume the numbering of the simple roots as in Humphreys [1].
For any rootβ ∈ 8, let β̌ denote 2β

(β,β)
. Let λ be a dominant weight, and letWJ = Wλ be

the parabolic subgroup ofW that fixesλ. Let V(λ) be the irreducible representation with
highest weightλ, 5(λ) the set of weights appearing inV(λ), andV(λ)µ the weight space
of weightµ in V(λ). The real Euclidean vector space may be thought of as the real span of
the fundamental weights. Letρ̌ denote the expression

∑r
i=1

2ωi
(αi ,αi )

. At a later point in this
section, we shall need the following length lemma:

Lemma 3 (Length Lemma) (Humphreys [2], p. 12) Letα ∈ 1 andw ∈ W. Then
(a) w(α) > 0 iff l (wsα) = l (w)+ 1.
(b) w(α) < 0 iff l (wsα) = l (w)− 1.
(c) w−1(α) > 0 iff l (sαw) = l (w)+ 1.
(d) w−1(α) < 0 iff l (sαw) = l (w)− 1.

Recall the polynomialWJ(t) =∑w∈WJ tl (w) and form the expressionfλ(t) =
∑

µ∈5(λ)

dim(V(λ)µ)t (λ−w0µ,ρ̌), which Stembridge introduced in [4]. Observe that ifµ appears in
5(λ), thenw0µ ∈ 5(λ) andλ − w0µ is a Z≥0-linear combination of simple roots. It
follows that(λ − w0µ, ρ̌) ∈ Z≥0 since(αi , ρ̌) = 1 for each simple rootαi . Thus fλ(t)
is a polynomial. It will turn out that for certainλ, namely the minuscule weights, we have
fλ(t) = WJ(t) for some subsetsJ.

A dominant weight is calledminusculeif 5(λ), the set of weights appearing inV(λ),
forms a single Weyl orbit. Equivalent formulations, which can be found in Humphreys
[1], include a)(λ, α̌) = 0, 1,or −1 for all rootsα; and b) if wheneverµ is a dominant
weight withλ − µ ∈ Z≥0-linear combination of simple roots,λ = µ. The representation
corresponding to a minuscule weight is also called minuscule. Certainly the trivial repre-
sentation, corresponding toλ = 0, is minuscule. The remaining minuscule weights have
all been classified [1] for simple Lie algebrasL as follows:

Ar : ω1, . . . , ωr

Br : ωr

Cr : ω1

Dr : ω1, ωr−1, ωr

E6 : ω1, ω6

E7 : ω7.

The algebrasE8, G2, andF4 have no nontrivial minuscule weights. From now on, minuscule
weights will be assumed nonzero unless stated otherwise. Notice that since5(λ) forms a
single Weyl orbit, the dimension of each weight space ofV(λ) is 1. Since the minuscule
weights in the table are all fundamental weights,WJ = Wλ will be such thatJ ⊆ S is
maximal.
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Let us return for the moment to(W, S), a not necessarily irreducible finite reflection
group.

Lemma 4 Let I ⊆ S. For the parabolic subgroup WI ⊆ W, form WI , the set of
distinguished representatives. From all elements in WI , choose u so l(u) is maximal. Let
w0 and w I

0 be the longest element of W and WI respectively. Thenw0 = uw I
0 and

l (u) = l (w0)− l (w I
0).

Proof: First observe thatl (w0) ≥ l (uw I
0) = l (u)+ l (w I

0). Write w0 = xy for x ∈ WI

andy ∈ WI . Thenl (w0) = l (x) + l (y) ≤ l (u) + l (w I
0). Thusl (w0) = l (u) + l (w I

0) =
l (uw I

0). Hencew0 = uw I
0 andl (u) = l (w0)− l (w I

0). 2

Lemma 5 For I andw I
0 as in the previous lemma, set m= l (w0)− l (w I

0) and choose i
so that0 ≤ i ≤ m. Let T= {a ∈ WI | l (a) = i },U = {b ∈ WI | l (b) = m− i }. Then
|T | = |U |.

Proof: Define a mapφ : T → U bya 7→ w0aw I
0. This is well-defined sincel (w0aw I

0) =
l (w0)− l (aw I

0) = l (w0)− l (w I
0)− l (a) = m− i , and from the well-definedness of2 we

know thatw0aw I
0 is indeed inWI . Moreoverφ2 =identity. Thus|T | = |U |. 2

Lemma 6 Letλ be minuscule, and supposew ∈ W. Then(wλ, α̌) = 0,1, or −1 for any
root α ∈ 8.

Proof: From the equivalent formulations of minuscule found in [1] we have that for any
β ∈ 8, that(λ, β̌) = 0, 1, or−1. Setβ = w−1α ∈ 8. Then

(wλ,α̌) = (λ, w−1(α̌))

=
(

λ,
2w−1α

(α, α)

)
=
(

λ,
2w−1α

(w−1α, w−1α)

)
= (λ,β̌) = 0, 1, or − 1. 2

Lemma 7 Letρ̌= 1
2

∑
α∈8+

2α
(α,α)
=∑r

i=1
2ωi

(α,α)
. Letλbe minuscule, and assumew ∈ WJ

where WJ = Wλ = {σ ∈ W | σλ = λ}. Then(wλ, ρ̌) = (λ, ρ̌)− l (w).

Proof: Induct onl (w). If l (w) = 0, thenw is the identity and the result is obvious.
Supposel (w) = n > 0. Take a reduced expression of simple reflections forw, w =

si1si2 · · · sin , wheresi j denotes the simple reflection corresponding to the simple rootαi j .
Thensi j · · · sin ∈ WJ andl (si j · · · sin) = n− j + 1 for all 1≤ j ≤ n. Now for any simple
rootα, (ρ̌, α) = (

∑r
i=1

2ωi
(αi ,αi )

, α) = 1 andsα ρ̌ = ρ̌ − α̌. Then

(wλ, ρ̌) = (si1 · · · sinλ, ρ̌
)

= (si2 · · · sinλ, si1 ρ̌
)
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= (si2 · · · sinλ, ρ̌ − α̌i1

)
= (si2 · · · sinλ, ρ̌

)− (si2 · · · sinλ, α̌i1

)
.

But by the length lemma,(si2 · · · sin)
−1 α̌i1 > 0. Then(λ, (si2 · · · sin)

−1α̌i1) ≥ 0. But
if (λ, (si2 · · · sin)

−1α̌i1) = 0, thensi1 · · · sinλ = si2 · · · sinλ. This impliessi1 · · · sin WJ =
si2 · · · sin WJ , which yields si1 · · · sin = si2 · · · sin , a contradiction. Hence(λ, (si2 · · ·
sin)
−1α̌i1) > 0. Then(si2 · · · sinλ, α̌i1) = 1 by the previous lemma. Finally,(wλ, ρ̌) =

(si2 · · · sin, ρ̌)− 1= (λ, ρ̌)− (n− 1)− 1= (λ, ρ̌)− n as desired. 2

Lemma 8 Assume the hypotheses of the previous lemma, and letw0 andwJ
0 be the longest

elements of W and WJ respectively. Then2(λ,ρ̌) = l (w0)− l (wJ
0 ).

Proof: Let u ∈ WJ be such thatl (u) is maximal. From Lemma 4,uwJ
0 = w0. On

the one hand,(uλ, ρ̌) = (λ, ρ̌) − l (u) = (λ, ρ̌) − l (w0) + l (wJ
0 ). On the other hand,

(uλ, ρ̌) = (w0λ, ρ̌) = −(λ, ρ). Thus−(λ, ρ̌) = (λ, ρ̌) − l (w0) + l (wJ
0 ) and the result

follows. 2

Proposition 2 Letλ be minuscule and assume WJ = Wλ is the parabolic subgroup fixing
λ. Then

fλ(t) = WJ(t).

Proof: Since the dimension of each weight space is 1,

fλ(t) =
∑

µ∈5(λ)

t (λ−w0µ, ρ̌ )

=
∑

µ∈5(λ)

t (λ, ρ̌ )−(µ,w0 ρ̌ )

=
∑

µ∈5(λ)

t (λ, ρ̌ )−(µ,− ρ̌ )

=
∑

µ∈5(λ)

t (λ+µ, ρ̌ )

=
∑

w∈WJ

t (λ+wλ, ρ̌ )

=
∑

w∈WJ

t (λ, ρ̌ )+(λ, ρ̌ )−l (w)

=
∑

w∈WJ

tl (w0)−l (wJ
0 )−l (w)
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wherew0 andwJ
0 are the longest elements ofW andWJ respectively. Asa runs overWJ ,

w0awJ
0 runs overWJ . Then

fλ(t) =
∑

w0awJ
0

a∈WJ

tl (w0)−l (wJ
0 )−l (w0awJ

0 )

=
∑

a∈WJ

tl (w0)−l (wJ
0 )−(l (w0)−l (a)−l (wJ

0 ))

=
∑

a∈WJ

tl (a)

= WJ(t). 2

If λ is minuscule, the representations with highest weightsmλ wherem is a nonnegative
integer have a very nice basis labeling due to a result of Seshadri. Both Stembridge [4]
and Proctor [3] study the combinatorial properties of this labeling. Letλ be minuscule
and letWJ = Wλ be the parabolic subgroup fixing it. Seshadri’s monomial result states
that a weight basis forV(mλ) is indexed by weakly increasing sequences of lengthm in
W/WJ : τ1 ≤ τ2 ≤ · · · τm. The weight for the vector indexed by such a sequence is simply
τ1λ+ τ2λ+ · · · + τmλ. The main result of Stembridge [4] involves a natural involution of
sequences of lengthm given by

τ1 ≤ τ2 ≤ · · · ≤ τm 7→ w0τm ≤ · · · ≤ w0τ1.

Stembridge proves thatfmλ(−1) is the number of weakly increasing sequences of lengthm
in W/WJ fixed by this involution. Because of the above proposition, Stembridge’s result
can be restated in the following way in the particular case wherem= 1.

Claim 3 Assumeλ is minuscule, and letWJ = Wλ, the parabolic subgroup fixingλ. Then

WJ(−1) = number of left cosetsτ ∈ W/WJ such thatw0τ = τ

= ∣∣{w ∈ WJ
∣∣w0wwJ

0 = w
}∣∣

wherew0 andwJ
0 are the longest elements ofW andWJ respectively.

4. Verification of the t = −1 phenomenon

Since the problem has been reduced to(W, S) irreducible andJ ⊆ S maximal, the result
of Stembridge in Claim 3, which is a special case of Theorem 1, and some calculations of
Tan [6] now suffice to prove thet = −1 phenomenon.

Proposition 3 Let (W,S) be a finite irreducible reflection group with simple reflections
S. Assume J⊆ S is maximal. Let W/WJ denote the left cosets for WJ in W, and set
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Table 1. Selected values ofWJ(−1) from Tan.

Type S− J WJ(−1)

Br ; Dr , r even;E7; E8; F4; H3; H4; I2(m), m even Any simple root 0

I2(m), m odd Any simple root 1

Dr , r odd sk, k > 1 0

Dr , r odd s1 2

E6 sk with k 6= 1, 6 0

ÄSJ= |{τ ∈ W/WJ | w0τ = τ }|. Then

WJ(−1) = ÄSJ.

Proof: Tan [6] has already computedWJ(−1), and we display some of the results in
Table 1. All that is needed is to computeÄSJ and compare results.

Let si be the unique simple reflection inS− J, andαi the corresponding simple root. Let
r be the rank of(W, S), and for j = 1, 2, . . . , r , let Hj denote the hyperplane⊥ α j . In other
words,Hj = {µ ∈ V | (µ, α j ) = 0}, whereV is the real Euclidean space upon whichW
acts. Ther−1 hyperplanesHj wherej 6= i intersect in a line. As a result, we may findλ ∈ V
such that(λ, αi ) > 0 and(λ, α j ) = 0 for all j 6= i . For exampleλ = ωi will work when the
reflection group is a Weyl group. EvidentlyWJ = {w ∈ W | wλ = λ}. ThenW/WJ is in
one-to-one correspondence with theW-orbit ofλ. ObserveÄSJ= |{µ ∈ Wλ | w0µ = µ}|.

Ar : EveryWJ whereJ ⊆ Smaximal is the fixer for someωi , a fundamental weight. In
the Ar case, each fundamental weight is minuscule, and by Claim 3,WJ(−1) = ÄSJ.

Br ; Dr , r even;E7; E8; F4; H3; H4; I2(m), m even: In these cases,(0) is the only vector
which can possibly be fixed byw0 = −1. However,Wλ does not contain(0) sinceλ has
nonzero length. HenceÄSJ= 0 in all these cases, matching the result of Tan forWJ(−1).

Dr , r odd: Letε1, ε2, . . . , εr be an orthonormal basis with respect to( , ). Let 1 =
{α1 = ε1−ε2, α2 = ε2−ε3, . . . , αr−1 = εr−1−εr , αr = εr−1+εr } be the simple roots. The
groupW may be thought of as acting on theε’s by signed permutations with an even number
of sign changes. The longest element ofW sends theεi to −εi for i = 1, 2, . . . , r − 1
and fixesεr . Each of the fundamental weightsωi may be expressed in terms of theε’s as
follows:

ω1 = ε1

ω2 = ε1+ ε2

...

ωr−2 = ε1+ ε2+ · · · + εr−2

ωr−1 = 1

2
(ε1+ ε2+ · · · + εr−2+ εr−1− εr )

ωr = 1

2
(ε1+ ε2+ · · · + εr−2+ εr−1+ εr ).
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Table 2. TheE6 case.

λ S− J Wλ = WJ l (wJ
0 ) l (w0)− l (wJ

0 )

ω2 s2 A5 15 21

ω3 s3 A1 × A4 11 25

ω4 s4 A2 × A2 × A1 7 29

ω5 s5 A4 × A1 11 25

Now for a fundamental weightωk, supposeµ ∈ Wωk is fixed by the longest element. Write
µ = c1ε1+· · ·+cr εr . Then−c1ε1−· · ·−cr−1εr−1+cr εr = w0µ = µ = c1ε1+· · ·+cr εr .
Consequentlyc1 = c2 = · · · cr−1 = 0, andµ = cεr for some scalarc. Henceωk can only
beω1. There are precisely two elements inWω1 fixed byw0 namelyεr and−εr . For J ⊆ S
maximal,WJ is the stabilizer for one of the fundamental weightsωk. If k > 1, ÄSJ= 0. If
k = 1, ÄSJ= 2, matching the results of Tan forWJ(−1).

E6: In the case whereWJ is the stabilizer ofω1 or ω6, WJ(−1) = ÄSJ follows from
Claim 3 since both of these fundamental weights are minuscule. ConsiderWJ and letw0

andwJ
0 be the longest element ofW andWJ respectively. Using Claim 1,ÄSJ= |{u ∈ WJ |

w0uwJ
0 = u}|. Now if w0uwJ

0 = u, l (w0uwJ
0 ) = l (u). That is,l (w0)−l (u)−l (wJ

0 ) = l (u),

or l (u) = l (w0)−l (wJ
0 )

2 . In theE6 case,l (w0) = |8|2 = 36. Consider Table 2.
Sincel (w0)−l (wJ

0 ) is odd in these remaining cases, there is nou ∈ WJ with w0uwJ
0 = u.

HenceÄS J = 0 in these cases, matching Tan’s computed value forWJ(−1).
I2(m), m odd: If J = s1, WJ = {1, s2, s1s2, s2s1s2, . . . , (s1s2)

m−1
2 }. The lengths of the

m distinguished representatives are 0, 1, 2, . . . , m− 1. ThusWJ(−1) = 1. Since the map
2 : WJ → WJ sendingu 7→ w0uwJ

0 sends an element of lengthi to an element of length
m− 1− i and sincem is odd, the distinguished representative of lengthm−1

2 will be fixed
and will be the unique one fixed. As a consequence,ÄSJ = 1 = WJ(−1). Similarly for
J = s2. 2

This proposition combined with the previous work in this article, which reduces to the
case(W, S) finite irreducible andJ ⊆ S maximal, establishes Theorem 1. The question
remains at least to this writer whether a case-free proof of it can be found.
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