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Abstract.  All known finite sharply 4-transitive permutation sets containing the identity are groups, n&mely

S5, Ag and the Mathieu group of degree 11. We prove that a sharply 4-transitive permutation set on 11 elements
containing the identity must necessarily be the Mathieu group of degree 11. The proof uses direct counting
arguments. It is based on a combinatorial property of the involutions in the Mathieu group of degree 11 (which is
established here) and on the uniqueness of the Minkowski planes of order 9 (which had been established before):
the validity of both facts relies on computer calculations. A permutation set is said to be invertible if it contains the
identity and if whenever it contains a permutation it also contains its inverse. In the geometric structure arising from
an invertible permutation set at least one block-symmetry is an automorphism. The above result has the following
consequences. i) A sharply 5-transitive permutation set on 12 elements containing the identity is necessarily the
Mathieu group of degree 12. ii) There exists no sharply 6-transitive permutation set on 13 elemedts. Bor

there exists no invertible sharptistransitive permutation set on a finite set with at ledst 3 elements. iii) A

finite invertible sharplyd-transitive permutation set witth > 4 is necessarily a group, that is either a symmetric
group, an alternating group, the Mathieu group of degree 11 or the Mathieu group of degree 12.

Keywords: sharplyd-transitive permutation set, Mathieu groups of degrees 11 an@B)2geometry arising
from a permutation set, block-symmetry

1. Introduction

A permutation setH on X is a subsetof the symmetric group SyeX). If X is finite
with | X| = t we shall sometimes say thét is a permutation satn t element®r that
t is thedegreeof H. For arbitrary elements,, Xz, ..., % € X we denote byHy,..x the
subset ofH consisting of all permutations fixing each one of the given elemenis.if
are distinct elements ok we denote byH (y — x) the subset oH consisting of all
permutations mappingto x. If g € Sym(X) then Fixg) is the set of all fixed points afj.
The functional notation will be used for permutations, hence the permugtn8ym(X)
maps each elememrtof X to g(x); if f, g € Sym(X) then fg is the permutation mapping
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eachx € X to f(g(x)). If H is a permutation set oX and f € Sym(X) then we write
Hf ={hf:heH}andfH = {fh:h e H}.

The geometric structure arising from a permutationt$@n X is called a(B)-geometry
in the terminology of [2, 3]. Its points are the elements of the cartesian producK; two
points(a, b), (c, d) are said to be parallel& = c orb = d; the blocks of thé&B)-geometry
are simply the permutations i ; point-block incidence is given by set-theoretic inclusion
if we view each permutatioi € Sym(X) as being a special subsetX¥fx X, namely the
subset of all pairgx, f(x)) asx varies inX. The points which are incident with any given
permutation are pairwise non-parallel.

If H is a non-empty permutation set ohandh is any fixed permutation ifi, then the
bijective mappingX x X — X x X, (X, y) = (X, h™1(y)) mapsH to h—1H bijectively,
in particular it maps to the identical permutation, and yields thus an isomorphism of the
corresponding@B)-geometries. Hence it can always be assumed up to ismorphisms that the
permutation set defining any givéB)-geometry contains the identical permutation.

We are interested here in the fin{t®)-geometries arising from sharplsn + 2)-transitive
finite permutation sets. The shagm + 2)-transitivity of the permutation set amounts to
the request that anym + 2) pairwise non-parallel points are simultaneously incident
with a unique block of théB)-geometry. We shall call thegd®)-geometriesMinkowski
m-structuresas in [7]. Other terminologies are ‘Minkowskim + 2)-planes’ in [1] and
“(m+ 2)-reti in senso stretto” in [18]. A characterization of these geometries in terms of
Buekenhout diagrams is also possible [13].

Consider thg B)-geometry defined by an arbitrary permutationdeon X. If f € H
is any given block then theymmetrywith respect tof is the mappingk x X — X x X,
(x,y) — (f7X(y), f(x)), see [2] or [3]. The image of a blodk € H is the permutation
fh~1f.Hence although the symmetry with respect tis always an involutory permutation
of the point-set fixing the block pointwise, it may well be the case that it is not an
automorphism of th€B)-geometry, in the sense that the image of some other block is not
necessarily a block. If there exists a blo€ke H such that its symmetry is actually an
automorphism, then thé)-geometry can be described by the permutatiofGset f ~1H
and the block whose symmetry is an automorphism may be taken to be the identity. The
mapping induced on the blocks is th@s— G, g~ g~

Adopting the terminology of [15] we shall say that the permutatioGsen X isinvertible
if G contains the identity and if whenever a permutatidies in G then so does its inverse
g~L. A permutatiorgroupis clearly invertible and yields @)-geometry with the additional
property that the symmetry with respectgachblock is an automorphism.

A Minkowski O-structure of orden is an affine plane of ordem and arises from a
sharply 2-transitive permutation set nrelements; a Minkowski 1-structure of ordeis a
Minkowski plane of orden and arises from a sharply 3-transitive permutation set -6l
elements: there are infinitely many valuesdér which such structures are known to exist.

A finite Minkowski 2-structure of orden arises from a sharply 4-transitive permutation
set onX with | X| = n + 2. Very few examples are known and they all arise from groups,
namelyS,, S5, Ag and the Mathieu group of degree 11: these are in fact the only sharply
4-transitive permutation groups (the finiteness assumption is not even required here, see
[6, Thm. 5.8.1]).
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Assume| X| > 7 and letG be a sharply 4-transitive permutation setX¥montaining the
identity and having the property that each permutagioa G exchanging two elements
and fixing three further elements &f is necessarily an involution. It was proved in [16]
that under these assumptions we must Haije= 11. It was also remarked that the above
property is certainly satisfied @, besides containing the identity, is such that G always
impliesg™! € G, that isG is an invertible permutation set.

Is G then necessarily a group, whence the Mathieu group of degree 11? Some patrtial
answers have been given in [4, 17]: both papers focus attention on the involuti@ns in
In Section 2 we answer the question affirmatively under the mere assumptida toa-
tains the identity, see Proposition 7: we also make essential use of some properties of the
involutions inG.

This result is the starting point for the subsequent sections. A similar property is namely
proved in Section 3: a sharply 5-transitive permutation set on 12 elements containing the
identity is necessarily the Mathieu group of degree 12, see Proposition 9.

Higher degrees are handled in Section 4, in which we prove the non-existence of a sharply
6-transitive permutation set on 13 elements, see Proposition 10.

This result contradicts property (4) established by J.H. ConwayMgyin Section 2
of [5]: the fact alone thaM3 is the union of 13 translates ®f;,, one for each position
of the hole, even with the correct cardinality 112-11-10-9- 8, does not imply 6-fold
transitivity if M13 is only known to be a permutaticet

An inductive argument yields then the non-existence of an invertible shautpinsitive
permutation set of degree at ledst 3 ford > 6.

As afinal consequence we have a classification of the finite invertible sttatysitive
permutation sets fait > 4: each such permutation set turns out to be a group, hence either
a symmetric group, an alternating group, the Mathieu group of degree 11 or the Mathieu
group of degree 12, see Proposition 12.

We can reformulate this property as follows. Roe 2 a finite Minkowskim-structure in
which some block-symmetry is an automorphism must necessarily arise from a ghatply
2)-transitive permutatiogroup(and so in turreveryblock-symmetry is an automorphism).

The corresponding property does not hold for finite affine plames: (0): non-nearfield
planes admitting involutory perspectivities do exist. Whether it holds for finite Minkowski
planes (h = 1) is still an open question as far as we know. If it is assumeddhety
block-symmetry of a finite affine plane or of a finite Minkowski plane is an automorphism,
then the underlying sharply 2-transitive or sharply 3-transitive permutation set must be a
group respectively: that follows essentially from the results in [10] and [14].

Observe that ifX is an arbitrary infinite set and is an arbitrary positive integer, then
there always exists an invertible shargdiyransitive permutation set o, which in general
is not a group, see [8, 12].

We finally remark that, besides requiring the computer checks described in Sections 2,
3, 4, our proofs rely essentially on the uniqueness of the Minkowski planes of order nine
[19], which in turn ultimately rests on the uniqueness of the projective planes of order nine
[11], another computer result.
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2. The Mathieu group of degree 11

Throughout this section we assume t@ais a sharply 4-transitive permutation setXn=
{1,2,3,4,5,6,7,8,9, 10, 11} containing the identical permutation. We ha#x(gf—1)|

< 3forany two distinct permutationfs gin G. In particular each non-identical permutation
in G has at most three fixed points.

We denote byM the Mathieu group of degree 11 in its sharply 4-transitive permutation
representation. The Mathieu group is uniquely determined up to permutation isomorphism
[6, 85.8], in other words the sharply 4-transitive subgroupS,form a single conjugacy
class: we may take fdvl any specific version of the Mathieu group of degree 11. We denote
by | the set of all involutions irM.

Let J be a subset o, with the following properties:

al) |J| = 165;

a2) each permutation id is an involution with three fixed points;
a3d) I, € J;

a4) |Fix(ts)| < 3 for any two distinct, s € J.

Proposition 1 There are precisely two subsets aqf Satisfying the above properties
namely the set | of all involutions in M and a subsé&such that(l *) is conjugate to M in

Si1.

Proof: Thefactthatl satisfies properties al), a2), a3), a4) follows easily from the property
thatM is a sharply 4-transitive permutation group of degree 11, [6, 8§5.8].

The rest of the assertion has been verified by computer through a MAGMA program.
Full code is available by e-mail from the first author. We summarize here the relevant
steps.

Let T denote the set of all involutions if;; with precisely three fixed points. The
centralizer inS;; of an involution inT is easily seen to have order B4-16 and so the
cardinality of T is 17325.

Setl’=1\1; and definel”={h e T\I :|Fix(hj)| <3 forall j € 1;}. We have|l”| =
120 and the subgroup & ; generated by* = 1” U |1 is a conjugateM* of M in S;.

Formagraplr onthe setofverticeg(I') = |’ U |”: two distinctinvolutions, be I’ U 7
are declared to be adjacent if and onlyFifx(ab)| > 3. That meana, b cannot sit together
in a sharply 4-transitive permutation set.

Sincel’ is a subset oM and M is sharply 4-transitive, we see that no two vertices
in 1’ are adjacent and s is an independent subset of size 120nSimilarly, 1”7 is
another independent subset of size 12@inIn particularT" is a bipartite graph with
bipartition{l’, I”}. Now a candidate subsétwith the required properties must be of the
form J = I; U J’ whereJ’ is an independent subset of size 12@in

The graphl” is regular (of degree 16) and so the complemght V (I')\J’ is also an
independent subset of size 1201nClearly{J’, J"} is a bipartition ofT".

As the grapH is connected, it admits precisely one bipartition, which mgansl”} =
{I’, 1”} and the assertion follows. O



INVERTIBLE FINITE PERMUTATION SETS 245

Proposition 2 There exist two Minkowski planes of ordeuap to isomorphism. Precisely
one of themnamely the non-miquelian onis extendable to a MinkowsRtstructure of
order9.

Proof: The first assertion is Theorem B in [19]. The second assertion is Proposition 3 in
[4]. O

The stabilizerGx defines a Minkowski plane of order 9 which can be extended to a
Minkowski 2-structure. Since the non-miquelian Minkowski plane of order 9 can be obtained
from a group it satisfies the rectangle axiom, see [2, Thm. 4] or [3, Ill 84.3]. The Minkowski
plane defined bys, satisfies thus the rectangle axiom and si@Ggecontains the identical
permutation we have in turn th&y is a sharply 3-transitive group, [2, Thm. 4] or [3, Il
§4.3].

There are only two types of sharply 3-transitive groups of degree 10 [9, XI §2.6], they
are namelyPGL(2, 9) and the group denoted iy (3?) in [9]. Proposition 2 shows thaiy
cannot bePGL(2, 9) otherwise the corresponding Minkowski plane would be miquelian.
HenceG, is isomorphic toM (3%) and admits thus a transitive extension which is precisely
the Mathieu group. In other words we have that for each X the stabilizerGy is a
conjugate ofMl, in Sy1. After possibly replacings by a suitable conjugateGh in S;,
we may assum&; = M.

Let J denote the set of involutions iIB. Since an involution on eleven elements must
necessarily have some fixed point, we have th& the union of the setd, asx varies
in X. In particularJ is non-empty and since each involution@®y has precisely two fixed
points onX\{x} we see that every involution i& has precisely three fixed points &h

The stabilizer of two points i, is a quaternion group of order 8. To any given three
elements, y, z € X there exists thus a unique involution dnfixing x, y andz. Distinct
choices oi, y, zyield distinct involutions inJ, as each non-identical permutatiorGrhas
at most three fixed points, whence

11
|J|:( >:165
3

Itis now clear thatl satisfies properties al), a2), a3) and a4) above. Proposition 1 shows that
we only have two choices fal, namelyJ = | or J = | *: again, after possibly replacirg
andM by suitable conjugatesGf~1, f Mf -1 with f e S;3, we may limit our discussion
to the former case.
So far the groupM and the se@ share the stabilizer of the element 1 and the involutions.

Proposition 3 We have G = My for each xe X.

Proof: The assertionistrue ¥ = 1. Assumex # 1. As a 3-transitive permutation group
on X\{x}, the groupMy acts primitively onX\{x}; in particular the stabilizeM, is a
maximal subgroup oMy and so, sinceé, contains at least one involution not fixing 1, we
have(Myy, Iyx) = My.
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Since bothM; andl are inG, we have thaG containsM4, andly. We already remarked
thatGy is a group, whencdy, = (Myy, Ix) < Gy; the equality|Gx| = |M| yields now
Gy = My. O

Let F denote the subset & consisting of all permutations i@ with at least one fixed
point. We haveF = Uycx Gy = Uxex My.

Proposition 4 We havgF N G(y — x)| = 444for any two distinct elements ¥ € X.

Proof: We haveF N G(y — X) = |J sx G(y — X)z. The cardinality of the right-
Z¢ (X, y)
hand-side can be computed using the prinyciple of inclusion-exclusion as

Y IGY Xl = Y IG(Y Xl + Y 1G> Xz

zeX z,ueX zZ,u,weX
z¢{X, y} z, Ui{&x, y} zl,{u., w¢{}>T., 3§
Z#U Z, U, w}=

The sharp 4-transitivity o6 on X yields|G(y — X),| =72,|G(Yy + X)zu| =8, |G(y —
X)zuw| =1, whencgF NG(y > x)| =9-72— () - 8+ (3 - 1 = 444. O

Proposition 5 We have Gy +— x) = M(y — x) for all pairs x, y of distinct elements
in X.

Proof: Letg be an arbitrary permutation iR N G(y — X). The permutation séb(y
X)g~! contains the identity, fixeg and acts sharply 3-transitively %\ {x}. Since the
Minkowski plane of order 9 arising from&(y — x)g~! can be obtained as a derived
structure of a Minkowski 2-structure, namely the Minkowski 2-structure arising from the
sharply 4-transitive permutation séig~t, we see thaG(y — x)g~! is a group. More
precisely, sinc&(y — x)g~! fixesx, it is a conjugate iry; of My fixing X, i.e. G(y —
x)g~! = hMyh~! for some permutatioh € S;; with h(x) = x. We have thu§(y — x)

= hM,h~'g and consequentlgM,h—1g = hM,h~k for any twog, ke F N G(y > X).
Sinceg andk also lie in the Mathieu group we also haveM (y — X) = Myg = Myk.
We obtaingk~! € My nhMh~! and so the intersectiol, N hM,h~! contains all 444
distinct permutationgk—* obtained wheg is fixed andk varies over the 444 permutations in
F NG(y — x).As bothM, andhM,h~! are groups of order 720 we see tMt = hM,h~*

is the unique possibility and the assertion follows. O

Proposition 6 We have G= M.

Proof: An immediate consequence of the above discussion and of the relations

G=Gu|lJGyr—x|. M=MU[|[JMy—x|. 0
yex yeX
yAX y£X

The above properties can be summarized in the following result.



INVERTIBLE FINITE PERMUTATION SETS 247

Proposition 7 AssumégX| = 11and let G be a sharply-transitive permutation set on
X containing the identity. Then G is a graugpcopy of the Mathieu group of degréé.

3. The Mathieu group of degree 12

Throughout this section we assume tiétis a sharply 5-transitive permutation set on
X — {1,2,3,4,5,6,7,8,9,10, 11, 12} containing the identical permutation. We have
IFix(gf~1)| < 4 for any two distinct permutation§ gin G. In particular each non-identical
permutation inG has at most four fixed points.

We denote bWI the Mathieu group of degree 12 in its sharply 5-transitive permutation
representation. The Mathieu group is uniquely determined up to permutation isomorphism
[6, 85.8], in other words the sharply 5-transitive subgroupS;eform a single conjugacy
class: we may take fdvl any specific version of the Mathieu group of degree 12. We denote
by I the set of all involutions iM with four fixed points.

Let J be a subset of;, with the following properties:

b1) |J| = 495;

b2) each permutation id is an involution with four fixed points;
b3) I, C J;

b4) |Fix(ts)| < 4 for any two distinct, se J.

Proposition 8 There is precisely one subset af Satisfying the above propertiggamely
the setl itself.

Proof: Thefactthaf satisfies properties b1), b2), b3), b4) follows easily from the property
thatM is a sharply 5-transitive permutation group of degree 12, [6, §5.8].

Let T denote the set of all involutions B, with precisely four fixed points. The central-
izer in Sy, of an involution inT is easily seen to have order 2#- 16 and so the cardinality
of T is 51975, whencéf \ | = 51480.

Definel” = {h e T\I':|Fix(hj)| < 4forall j € I1}. A second MAGMA program has
verified thatl” is empty: full code is available by e-mail from the first author. O

The stabilizeiG, of an elemenk e X is a sharply 4-transitive permutation set¥n {x}
containing the identical permutation. By Proposition 7 the stabitizeis a L group, a copy of
the Mathieu group of degree 11. In particular, for erehX the StabI|IZEGX is a conjugate
of My in Si». After possibly replacings by a suitable conjugateGh=1 in S;,, we may
assumes; = M.

Let J denote the subset & consisting of the involutions with four fixed points. We have
thatJ is the union of the setd, asx varies inX. In particularJ is non-empty.

The stabilizer of three points i6, is a quaternion group of order 8. To any given four
elementx, y, z, u € X there exists thus a unique involutiondrfixing x, y, zandu. Distinct
choices of{x, y, z, u} yield distinct involutions inj, as each non-identical permutation in
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G has at most four fixed points, whence

. (12
|J|=< >=495
4

It is now clear that] satisfies properties b1), b2), b3) and b4) above. Proposition 8 shows
that we only have one choice fdr, namelyJ = I.

We can now replac&, G, M, F, | by X, G, M, F, I respectively and introduce the
obvious necessary changes in the arguments of Sectlon 2. In analogy with Proposition 3 we
haveG, = M, for eachx € X, while the analogue of Proposition 4 ylelﬁé N G(y >
x)| = 4710 for any two distinct elementsy € X. If we argue as in Proposition 5 we obtain
G(y — X) = M(y  x) for all pairsx, y of distinct elements iX, while the analogue of
Proposition 6 finally shows th& = M holds. These properties can be summarized in the
following result.

Proposition 9 AssumeX| = 12 and letG be a sharplys-transitive permutation set on
X containing the identity. The@ is a group a copy of the Mathieu group of degré&a.

4. Higher degrees

Throughout this section we assume tlihtis a sharply 6-transitive permutation set on

=1{1,2,3,4,5,6,7,8,9, 10, 11, 12 13} containing the identical permutation. We have
|Fix(gf~1)| < 5forany two distinct permutatiorfs gin H. In particular each non-identical
permutation inH has at most five fixed points.

The stabilizeH, of an elemeny € Y is a sharply 5-transitive permutation setYon { y}
containing the identical permutation. By Proposition 9 the stabiligeis a group, a copy
of the Mathieu group of degree 12. In particular, if we denotévbginy specific version of
the Mathieu group of degree 12 acting sharply 5-transitively2rs, ..., 13} and fixing
1, for eachy e Y the stabilizetH, is a conjugate oM in 3_1_3 After p055|bly replacindd
by a suitable conjugateHk ™ in S;3, we may assumel; =

Let L denote the subset &f consisting of the involutions Wlth five fixed points. We have
thatL is the union of the setls, asy varies inY. In particularL is non-empty.

The stabilizer of four points iy is a quaternion group of order 8. To any given five
elementsy, z, u, v, w € Y there exists thus a unique involution linfixing vy, z, u, v and
w. Distinct choices oty, z, u, v, w} yield distinct involutions inL, as each non-identical
permutation inH has at most five fixed points, whence

13
IL| = ( ) — 1287
5

The subset. of S;3 has thus the following properties.

cl) |L| = 1287;
c2) each permutation ih is an involution with five fixed points;
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c3) LN M = L is precisely the set of all involutions iNl fixing 1 and precisely four
further elements ifi2, 3, ..., 13};
c4) |Fix(ts)| < 5 for any two distinct, s € L.

A third MAGMA program has shown that such a $etannot exist: full code is available
by e-mail from the first author. We have thus the following result.

Proposition 10 There exists no sharpBtransitive permutation set ob3 elements.

Proposition 11 Letd be an integerd > 6. There exists no invertible sharply d-transitive
permutation set on a finite set of cardinality at least-.

Proof: Assumed = 6; let G be an invertible sharply 6-transitive permutation set on a
finite setX with |X| > 9. The stabilizeiGyy of two elementx, y € X is an invertible
sharply 4-transitive finite permutation set pR| — 2 > 7 elements. By the result in [16]
we have|X| — 2 = 11, whencg X| = 13, contradicting Proposition 10. The result now
follows easily by induction od since the one-point-stabilizer of a shargiy+ 1)-transitive
invertible permutation set is an invertible permutation set which is sharpiginsitive on
the remaining elements. O

Proposition 12 Let G be an invertible sharply d-transitive permutation set on a finite set
X.Ifd > 6then G is either § Sy,1 or Agy2. Ifd = 5then G is either § &, A7 or the
Mathieu group of degre@2. If d = 4 then G is either § S5, Ag or the Mathieu group of
degreell.

Proof: Assumed > 6. It follows from the previous Proposition thgX| < d + 2. If
IX| = dor|X] =d+1thenG = SymX). If |[X|] = d + 2 thenG = Alt(X) by
Proposition 6 in [17].

Assumed = 5. If | X| > 8 then the stabilizeG, of an elemenk € X is an invertible
sharply 4-transitive permutation set p&| — 1 > 7 elements. By the result in [16] we have
|X| —1= 11, whencéX| = 12 and Proposition 13 yields th@tis a copy of the Mathieu
group of degree 12. IfX| = 7 thenG = Alt(X) by Proposition 6 in [17]. fX| =6 or 5
thenG = Sym(X).

Assumed = 4. If | X| > 7 then we havéX| = 11 by the result in [16] and Proposition 7
yields thatG is a copy of the Mathieu group of degree 11|Xff = 6 thenG = Alt(X) by
Proposition 6 in [17]. I X| = 5 or 4 thenG = Sym(X). |
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