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Abstract. All known finite sharply 4-transitive permutation sets containing the identity are groups, namelyS4,
S5, A6 and the Mathieu group of degree 11. We prove that a sharply 4-transitive permutation set on 11 elements
containing the identity must necessarily be the Mathieu group of degree 11. The proof uses direct counting
arguments. It is based on a combinatorial property of the involutions in the Mathieu group of degree 11 (which is
established here) and on the uniqueness of the Minkowski planes of order 9 (which had been established before):
the validity of both facts relies on computer calculations. A permutation set is said to be invertible if it contains the
identity and if whenever it contains a permutation it also contains its inverse. In the geometric structure arising from
an invertible permutation set at least one block-symmetry is an automorphism. The above result has the following
consequences. i) A sharply 5-transitive permutation set on 12 elements containing the identity is necessarily the
Mathieu group of degree 12. ii) There exists no sharply 6-transitive permutation set on 13 elements. Ford ≥ 6
there exists no invertible sharplyd-transitive permutation set on a finite set with at leastd + 3 elements. iii) A
finite invertible sharplyd-transitive permutation set withd ≥ 4 is necessarily a group, that is either a symmetric
group, an alternating group, the Mathieu group of degree 11 or the Mathieu group of degree 12.

Keywords: sharplyd-transitive permutation set, Mathieu groups of degrees 11 and 12,(B)-geometry arising
from a permutation set, block-symmetry

1. Introduction

A permutation setH on X is a subsetof the symmetric group Sym(X). If X is finite
with |X| = t we shall sometimes say thatH is a permutation seton t elementsor that
t is thedegreeof H . For arbitrary elementsx1, x2, . . . , xr ∈ X we denote byHx1··· xr the
subset ofH consisting of all permutations fixing each one of the given elements. Ifx, y
are distinct elements ofX we denote byH(y 7→ x) the subset ofH consisting of all
permutations mappingy to x. If g ∈ Sym(X) then Fix(g) is the set of all fixed points ofg.
The functional notation will be used for permutations, hence the permutationg ∈ Sym(X)
maps each elementx of X to g(x); if f, g ∈ Sym(X) then f g is the permutation mapping

Research supported by G.N.S.A.G.A. of the Italian C.N.R. (project “Calcolo Simbolico”) and by the Italian
Ministry M.U.R.S.T.



242 BONISOLI AND QUATTROCCHI

eachx ∈ X to f (g(x)). If H is a permutation set onX and f ∈ Sym(X) then we write
H f = {h f : h ∈ H} and f H = { f h : h ∈ H}.

The geometric structure arising from a permutation setH on X is called a(B)-geometry
in the terminology of [2, 3]. Its points are the elements of the cartesian productX× X; two
points(a, b), (c, d) are said to be parallel ifa = c or b = d; the blocks of the(B)-geometry
are simply the permutations inH ; point-block incidence is given by set-theoretic inclusion
if we view each permutationf ∈ Sym(X) as being a special subset ofX × X, namely the
subset of all pairs(x, f (x)) asx varies inX. The points which are incident with any given
permutation are pairwise non-parallel.

If H is a non-empty permutation set onX andh is any fixed permutation inH , then the
bijective mappingX × X → X × X, (x, y) 7→ (x, h−1(y)) mapsH to h−1H bijectively,
in particular it mapsh to the identical permutation, and yields thus an isomorphism of the
corresponding(B)-geometries. Hence it can always be assumed up to ismorphisms that the
permutation set defining any given(B)-geometry contains the identical permutation.

We are interested here in the finite(B)-geometries arising from sharply(m+ 2)-transitive
finite permutation sets. The sharp(m+ 2)-transitivity of the permutation set amounts to
the request that any(m + 2) pairwise non-parallel points are simultaneously incident
with a unique block of the(B)-geometry. We shall call these(B)-geometriesMinkowski
m-structuresas in [7]. Other terminologies are ‘Minkowski(m+ 2)-planes’ in [1] and
“(m+ 2)-reti in senso stretto” in [18]. A characterization of these geometries in terms of
Buekenhout diagrams is also possible [13].

Consider the(B)-geometry defined by an arbitrary permutation setH on X. If f ∈ H
is any given block then thesymmetrywith respect tof is the mappingX × X → X × X,
(x, y) → ( f −1(y), f (x)), see [2] or [3]. The image of a blockh ∈ H is the permutation
f h−1 f . Hence although the symmetry with respect tof is always an involutory permutation
of the point-set fixing the blockf pointwise, it may well be the case that it is not an
automorphism of the(B)-geometry, in the sense that the image of some other block is not
necessarily a block. If there exists a blockf ∈ H such that its symmetry is actually an
automorphism, then the(B)-geometry can be described by the permutation setG = f −1H
and the block whose symmetry is an automorphism may be taken to be the identity. The
mapping induced on the blocks is thusG→ G, g 7→ g−1.

Adopting the terminology of [15] we shall say that the permutation setG onX is invertible
if G contains the identity and if whenever a permutationg lies inG then so does its inverse
g−1. A permutationgroupis clearly invertible and yields a(B)-geometry with the additional
property that the symmetry with respect toeachblock is an automorphism.

A Minkowski 0-structure of ordern is an affine plane of ordern and arises from a
sharply 2-transitive permutation set onn elements; a Minkowski 1-structure of ordern is a
Minkowski plane of ordern and arises from a sharply 3-transitive permutation set onn+ 1
elements: there are infinitely many values ofn for which such structures are known to exist.

A finite Minkowski 2-structure of ordern arises from a sharply 4-transitive permutation
set onX with |X| = n+ 2. Very few examples are known and they all arise from groups,
namelyS4, S5, A6 and the Mathieu group of degree 11: these are in fact the only sharply
4-transitive permutation groups (the finiteness assumption is not even required here, see
[6, Thm. 5.8.1]).
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Assume|X| ≥ 7 and letG be a sharply 4-transitive permutation set onX containing the
identity and having the property that each permutationj ∈ G exchanging two elements
and fixing three further elements ofX is necessarily an involution. It was proved in [16]
that under these assumptions we must have|X| = 11. It was also remarked that the above
property is certainly satisfied ifG, besides containing the identity, is such thatg ∈ G always
impliesg−1 ∈ G, that isG is an invertible permutation set.

Is G then necessarily a group, whence the Mathieu group of degree 11? Some partial
answers have been given in [4, 17]: both papers focus attention on the involutions inG.
In Section 2 we answer the question affirmatively under the mere assumption thatG con-
tains the identity, see Proposition 7: we also make essential use of some properties of the
involutions inG.

This result is the starting point for the subsequent sections. A similar property is namely
proved in Section 3: a sharply 5-transitive permutation set on 12 elements containing the
identity is necessarily the Mathieu group of degree 12, see Proposition 9.

Higher degrees are handled in Section 4, in which we prove the non-existence of a sharply
6-transitive permutation set on 13 elements, see Proposition 10.

This result contradicts property (4) established by J.H. Conway forM13 in Section 2
of [5]: the fact alone thatM13 is the union of 13 translates ofM12, one for each position
of the hole, even with the correct cardinality 13· 12· 11· 10· 9 · 8, does not imply 6-fold
transitivity if M13 is only known to be a permutationset.

An inductive argument yields then the non-existence of an invertible sharplyd-transitive
permutation set of degree at leastd + 3 for d ≥ 6.

As a final consequence we have a classification of the finite invertible sharplyd-transitive
permutation sets ford ≥ 4: each such permutation set turns out to be a group, hence either
a symmetric group, an alternating group, the Mathieu group of degree 11 or the Mathieu
group of degree 12, see Proposition 12.

We can reformulate this property as follows. Form≥ 2 a finite Minkowskim-structure in
which some block-symmetry is an automorphism must necessarily arise from a sharply(m+
2)-transitive permutationgroup(and so in turneveryblock-symmetry is an automorphism).

The corresponding property does not hold for finite affine planes (m= 0): non-nearfield
planes admitting involutory perspectivities do exist. Whether it holds for finite Minkowski
planes (m = 1) is still an open question as far as we know. If it is assumed thatevery
block-symmetry of a finite affine plane or of a finite Minkowski plane is an automorphism,
then the underlying sharply 2-transitive or sharply 3-transitive permutation set must be a
group respectively: that follows essentially from the results in [10] and [14].

Observe that ifX is an arbitrary infinite set andd is an arbitrary positive integer, then
there always exists an invertible sharplyd-transitive permutation set onX, which in general
is not a group, see [8, 12].

We finally remark that, besides requiring the computer checks described in Sections 2,
3, 4, our proofs rely essentially on the uniqueness of the Minkowski planes of order nine
[19], which in turn ultimately rests on the uniqueness of the projective planes of order nine
[11], another computer result.
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2. The Mathieu group of degree 11

Throughout this section we assume thatG is a sharply 4-transitive permutation set onX =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} containing the identical permutation. We have|Fix(g f−1)|
≤ 3 for any two distinct permutationsf, g in G. In particular each non-identical permutation
in G has at most three fixed points.

We denote byM the Mathieu group of degree 11 in its sharply 4-transitive permutation
representation. The Mathieu group is uniquely determined up to permutation isomorphism
[6, §5.8], in other words the sharply 4-transitive subgroups ofS11 form a single conjugacy
class: we may take forM any specific version of the Mathieu group of degree 11. We denote
by I the set of all involutions inM .

Let J be a subset ofS11 with the following properties:

a1) |J| = 165;
a2) each permutation inJ is an involution with three fixed points;
a3) I1 ⊆ J;
a4) |Fix(ts)| ≤ 3 for any two distinctt, s ∈ J.

Proposition 1 There are precisely two subsets of S11 satisfying the above properties,
namely the set I of all involutions in M and a subset I∗ such that〈I ∗〉 is conjugate to M in
S11.

Proof: The fact thatI satisfies properties a1), a2), a3), a4) follows easily from the property
that M is a sharply 4-transitive permutation group of degree 11, [6, §5.8].

The rest of the assertion has been verified by computer through a MAGMA program.
Full code is available by e-mail from the first author. We summarize here the relevant
steps.

Let T denote the set of all involutions inS11 with precisely three fixed points. The
centralizer inS11 of an involution inT is easily seen to have order 6· 24· 16 and so the
cardinality ofT is 17325.

Set I ′ = I \I1 and defineI ′′ = {h ∈ T\I : |Fix(hj)| ≤3 for all j ∈ I1}. We have|I ′′| =
120 and the subgroup ofS11 generated byI ∗ = I ′′ ∪ I1 is a conjugateM∗ of M in S11.

Form a graph0 on the set of verticesV(0) = I ′ ∪ I ′′: two distinct involutionsa, b∈ I ′ ∪ I ′′

are declared to be adjacent if and only if|Fix(ab)| > 3. That meansa, b cannot sit together
in a sharply 4-transitive permutation set.

Since I ′ is a subset ofM and M is sharply 4-transitive, we see that no two vertices
in I ′ are adjacent and soI ′ is an independent subset of size 120 in0. Similarly, I ′′ is
another independent subset of size 120 in0. In particular0 is a bipartite graph with
bipartition {I ′, I ′′}. Now a candidate subsetJ with the required properties must be of the
form J = I1 ∪ J ′ whereJ ′ is an independent subset of size 120 in0.

The graph0 is regular (of degree 16) and so the complementJ ′′ = V(0)\J ′ is also an
independent subset of size 120 in0. Clearly{J ′, J ′′} is a bipartition of0.

As the graph0 is connected, it admits precisely one bipartition, which means{J ′, J ′′} =
{I ′, I ′′} and the assertion follows. 2
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Proposition 2 There exist two Minkowski planes of order9 up to isomorphism. Precisely
one of them, namely the non-miquelian one, is extendable to a Minkowski2-structure of
order9.

Proof: The first assertion is Theorem B in [19]. The second assertion is Proposition 3 in
[4]. 2

The stabilizerGx defines a Minkowski plane of order 9 which can be extended to a
Minkowski 2-structure. Since the non-miquelian Minkowski plane of order 9 can be obtained
from a group it satisfies the rectangle axiom, see [2, Thm. 4] or [3, III §4.3]. The Minkowski
plane defined byGx satisfies thus the rectangle axiom and sinceGx contains the identical
permutation we have in turn thatGx is a sharply 3-transitive group, [2, Thm. 4] or [3, III
§4.3].

There are only two types of sharply 3-transitive groups of degree 10 [9, XI §2.6], they
are namelyPGL(2, 9) and the group denoted byM(32) in [9]. Proposition 2 shows thatGx

cannot bePGL(2, 9) otherwise the corresponding Minkowski plane would be miquelian.
HenceGx is isomorphic toM(32) and admits thus a transitive extension which is precisely
the Mathieu group. In other words we have that for eachx ∈ X the stabilizerGx is a
conjugate ofMx in S11. After possibly replacingG by a suitable conjugatehGh−1 in S11,
we may assumeG1 = M1.

Let J denote the set of involutions inG. Since an involution on eleven elements must
necessarily have some fixed point, we have thatJ is the union of the setsJx asx varies
in X. In particularJ is non-empty and since each involution inGx has precisely two fixed
points onX\{x} we see that every involution inJ has precisely three fixed points onX.

The stabilizer of two points inGx is a quaternion group of order 8. To any given three
elementsx, y, z ∈ X there exists thus a unique involution inJ fixing x, y andz. Distinct
choices ofx, y, z yield distinct involutions inJ, as each non-identical permutation inG has
at most three fixed points, whence

|J| =
(

11

3

)
= 165.

It is now clear thatJ satisfies properties a1), a2), a3) and a4) above. Proposition 1 shows that
we only have two choices forJ, namelyJ = I or J = I ∗: again, after possibly replacingG
andM by suitable conjugatesf G f−1, f M f −1 with f ∈ S11, we may limit our discussion
to the former case.

So far the groupM and the setG share the stabilizer of the element 1 and the involutions.

Proposition 3 We have Gx = Mx for each x∈ X.

Proof: The assertion is true ifx = 1. Assumex 6= 1. As a 3-transitive permutation group
on X\{x}, the groupMx acts primitively onX\{x}; in particular the stabilizerM1x is a
maximal subgroup ofMx and so, sinceIx contains at least one involution not fixing 1, we
have〈M1x, Ix〉 = Mx.
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Since bothM1 andI are inG, we have thatGx containsM1x andIx. We already remarked
that Gx is a group, whenceMx = 〈M1x, Ix〉 ≤ Gx; the equality|Gx| = |Mx| yields now
Gx = Mx. 2

Let F denote the subset ofG consisting of all permutations inG with at least one fixed
point. We haveF = ∪x∈XGx = ∪x∈X Mx.

Proposition 4 We have|F ∩ G(y 7→ x)| = 444for any two distinct elements x, y ∈ X.

Proof: We haveF ∩ G(y 7→ x) = ⋃
z∈X

z/∈{x, y}
G(y 7→ x)z. The cardinality of the right-

hand-side can be computed using the principle of inclusion-exclusion as∑
z∈X

z/∈{x, y}

|G(y 7→ x)z| −
∑

z, u∈X
z, u/∈{x, y}

z6=u

|G(y 7→ x)zu| +
∑

z, u, w∈X
z, u, w/∈{x, y}
|{z, u, w}|=3

|G(y 7→ x)zuw|.

The sharp 4-transitivity ofG on X yields |G(y 7→ x)z| =72, |G(y 7→ x)zu| =8, |G(y 7→
x)zuw| =1, whence|F ∩ G(y 7→ x)| = 9 · 72− (92) · 8+ (93) · 1= 444. 2

Proposition 5 We have G(y 7→ x) = M(y 7→ x) for all pairs x, y of distinct elements
in X.

Proof: Let g be an arbitrary permutation inF ∩G(y 7→ x). The permutation setG(y 7→
x)g−1 contains the identity, fixesx and acts sharply 3-transitively onX\{x}. Since the
Minkowski plane of order 9 arising fromG(y 7→ x)g−1 can be obtained as a derived
structure of a Minkowski 2-structure, namely the Minkowski 2-structure arising from the
sharply 4-transitive permutation setGg−1, we see thatG(y 7→ x)g−1 is a group. More
precisely, sinceG(y 7→ x)g−1 fixesx, it is a conjugate inS11 of Mx fixing x, i.e. G(y 7→
x)g−1 = hMxh−1 for some permutationh ∈ S11 with h(x) = x. We have thusG(y 7→ x)
= hMxh−1g and consequentlyhMxh−1g = hMxh−1k for any twog, k∈ F ∩G(y 7→ x).
Sinceg andk also lie in the Mathieu groupM we also haveM(y 7→ x) = Mxg = Mxk.
We obtaingk−1 ∈ Mx ∩ hMxh−1 and so the intersectionMx ∩ hMxh−1 contains all 444
distinct permutationsgk−1 obtained wheng is fixed andk varies over the 444 permutations in
F ∩G(y 7→ x). As bothMx andhMxh−1 are groups of order 720 we see thatMx = hMxh−1

is the unique possibility and the assertion follows. 2

Proposition 6 We have G=M.

Proof: An immediate consequence of the above discussion and of the relations

G = Gx ∪

⋃
y∈X
y6=x

G(y 7→ x)

 , M = Mx ∪

⋃
y∈X
y6=x

M(y 7→ x)

 . 2

The above properties can be summarized in the following result.
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Proposition 7 Assume|X| = 11 and let G be a sharply4-transitive permutation set on
X containing the identity. Then G is a group, a copy of the Mathieu group of degree11.

3. The Mathieu group of degree 12

Throughout this section we assume thatĜ is a sharply 5-transitive permutation set on
X̂ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} containing the identical permutation. We have
|Fix(g f−1)| ≤4 for any two distinct permutationsf, g in Ĝ. In particular each non-identical
permutation inĜ has at most four fixed points.

We denote byM̂ the Mathieu group of degree 12 in its sharply 5-transitive permutation
representation. The Mathieu group is uniquely determined up to permutation isomorphism
[6, §5.8], in other words the sharply 5-transitive subgroups ofS12 form a single conjugacy
class: we may take for̂M any specific version of the Mathieu group of degree 12. We denote
by Î the set of all involutions inM̂ with four fixed points.

Let Ĵ be a subset ofS12 with the following properties:

b1) | Ĵ| = 495;
b2) each permutation in̂J is an involution with four fixed points;
b3) Î1 ⊆ Ĵ;
b4) |Fix(ts)| ≤ 4 for any two distinctt, s∈ Ĵ.

Proposition 8 There is precisely one subset of S12 satisfying the above properties, namely
the setÎ itself.

Proof: The fact that̂I satisfies properties b1), b2), b3), b4) follows easily from the property
that M̂ is a sharply 5-transitive permutation group of degree 12, [6, §5.8].

Let T̂ denote the set of all involutions inS12 with precisely four fixed points. The central-
izer in S12 of an involution inT̂ is easily seen to have order 24·24·16 and so the cardinality
of T̂ is 51975, whence|T̂\ Î | = 51480.

Define Î ′′ = {h ∈ T̂\ Î : |Fix(hj)| ≤ 4 for all j ∈ Î1}. A second MAGMA program has
verified thatÎ ′′ is empty: full code is available by e-mail from the first author. 2

The stabilizerĜx of an elementx ∈ X̂ is a sharply 4-transitive permutation set onX̂ \ {x}
containing the identical permutation. By Proposition 7 the stabilizerĜx is a group, a copy of
the Mathieu group of degree 11. In particular, for eachx ∈ X̂ the stabilizerĜx is a conjugate
of M̂x in S12. After possibly replacingĜ by a suitable conjugatehĜh−1 in S12, we may
assumeĜ1 = M̂1.

Let Ĵ denote the subset of̂G consisting of the involutions with four fixed points. We have
that Ĵ is the union of the setŝJx asx varies inX̂. In particularĴ is non-empty.

The stabilizer of three points in̂Gx is a quaternion group of order 8. To any given four
elementsx, y, z, u∈ X̂ there exists thus a unique involution in̂J fixing x, y, zandu. Distinct
choices of{x, y, z, u} yield distinct involutions inĴ, as each non-identical permutation in



248 BONISOLI AND QUATTROCCHI

Ĝ has at most four fixed points, whence

| Ĵ| =
(

12

4

)
= 495.

It is now clear thatĴ satisfies properties b1), b2), b3) and b4) above. Proposition 8 shows
that we only have one choice for̂J, namelyĴ = Î .

We can now replaceX, G, M , F , I by X̂, Ĝ, M̂ , F̂ , Î respectively and introduce the
obvious necessary changes in the arguments of Section 2. In analogy with Proposition 3 we
haveĜx = M̂x for eachx ∈ X̂, while the analogue of Proposition 4 yields|F̂ ∩ Ĝ(y 7→
x)| = 4710 for any two distinct elementsx, y ∈ X̂. If we argue as in Proposition 5 we obtain
Ĝ(y 7→ x) = M̂(y 7→ x) for all pairsx, y of distinct elements in̂X, while the analogue of
Proposition 6 finally shows that̂G = M̂ holds. These properties can be summarized in the
following result.

Proposition 9 Assume|X̂| = 12 and letĜ be a sharply5-transitive permutation set on
X̂ containing the identity. Then̂G is a group, a copy of the Mathieu group of degree12.

4. Higher degrees

Throughout this section we assume thatH is a sharply 6-transitive permutation set on
Y = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} containing the identical permutation. We have
|Fix(g f−1)| ≤ 5 for any two distinct permutationsf, g in H . In particular each non-identical
permutation inH has at most five fixed points.

The stabilizerHy of an elementy ∈ Y is a sharply 5-transitive permutation set onY \ {y}
containing the identical permutation. By Proposition 9 the stabilizerHy is a group, a copy
of the Mathieu group of degree 12. In particular, if we denote byM̂ any specific version of
the Mathieu group of degree 12 acting sharply 5-transitively on{2, 3, . . . ,13} and fixing
1, for eachy ∈ Y the stabilizerHy is a conjugate ofM̂ in S13. After possibly replacingH
by a suitable conjugatekHk−1 in S13, we may assumeH1 = M̂ .

Let L denote the subset ofH consisting of the involutions with five fixed points. We have
thatL is the union of the setsL y asy varies inY. In particularL is non-empty.

The stabilizer of four points inHy is a quaternion group of order 8. To any given five
elementsy, z, u, v, w ∈ Y there exists thus a unique involution inL fixing y, z, u, v and
w. Distinct choices of{y, z, u, v, w} yield distinct involutions inL, as each non-identical
permutation inH has at most five fixed points, whence

|L| =
(

13

5

)
= 1287.

The subsetL of S13 has thus the following properties.

c1) |L| = 1287;
c2) each permutation inL is an involution with five fixed points;
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c3) L ∩ M̂ = L1 is precisely the set of all involutions in̂M fixing 1 and precisely four
further elements in{2, 3, . . . ,13};

c4) |Fix(ts)| ≤ 5 for any two distinctt, s ∈ L.

A third MAGMA program has shown that such a setL cannot exist: full code is available
by e-mail from the first author. We have thus the following result.

Proposition 10 There exists no sharply6-transitive permutation set on13elements.

Proposition 11 Let d be an integer, d ≥ 6. There exists no invertible sharply d-transitive
permutation set on a finite set of cardinality at least d+ 3.

Proof: Assumed = 6; let G be an invertible sharply 6-transitive permutation set on a
finite setX with |X| ≥ 9. The stabilizerGxy of two elementsx, y ∈ X is an invertible
sharply 4-transitive finite permutation set on|X| − 2 ≥ 7 elements. By the result in [16]
we have|X| − 2 = 11, whence|X| = 13, contradicting Proposition 10. The result now
follows easily by induction ond since the one-point-stabilizer of a sharply(d+ 1)-transitive
invertible permutation set is an invertible permutation set which is sharplyd-transitive on
the remaining elements. 2

Proposition 12 Let G be an invertible sharply d-transitive permutation set on a finite set
X. If d ≥ 6 then G is either Sd, Sd+1 or Ad+2. If d = 5 then G is either S5, S6, A7 or the
Mathieu group of degree12. If d = 4 then G is either S4, S5, A6 or the Mathieu group of
degree11.

Proof: Assumed ≥ 6. It follows from the previous Proposition that|X| ≤ d + 2. If
|X| = d or |X| = d + 1 thenG = Sym(X). If |X| = d + 2 thenG = Alt(X) by
Proposition 6 in [17].

Assumed = 5. If |X| ≥ 8 then the stabilizerGx of an elementx ∈ X is an invertible
sharply 4-transitive permutation set on|X| − 1≥ 7 elements. By the result in [16] we have
|X| − 1= 11, whence|X| = 12 and Proposition 13 yields thatG is a copy of the Mathieu
group of degree 12. If|X| = 7 thenG = Alt(X) by Proposition 6 in [17]. If|X| = 6 or 5
thenG = Sym(X).

Assumed = 4. If |X| ≥ 7 then we have|X| = 11 by the result in [16] and Proposition 7
yields thatG is a copy of the Mathieu group of degree 11. If|X| = 6 thenG = Alt(X) by
Proposition 6 in [17]. If|X| = 5 or 4 thenG = Sym(X). 2
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