ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Shifting Operations and Graded Betti Numbers

Annetta Aramova , Jürgen Herzog and Takayuki Hibi

DOI: 10.1023/A:1011238406374

Abstract

The behaviour of graded Betti numbers under exterior and symmetric algebraic shifting is studied. It is shown that the extremal Betti numbers are stable under these operations. Moreover, the possible sequences of super extremal Betti numbers for a graded ideal with given Hilbert function are characterized. Finally it is shown that over a field of characteristic 0, the graded Betti numbers of a squarefree monomial ideal are bounded by those of the corresponding squarefree lexsegment ideal.

Pages: 207–222

Keywords: algebraic shifting; shifted complexes; generic initial ideals; extremal Betti numbers

Full Text: PDF

References

1. I. Anderson, Combinatorics of Finite Sets, Oxford Science Publications, 1987.
2. A. Aramova and J. Herzog, “Almost regular sequences and Betti numbers,” Amer. J. Math. 122 (2000), 689-719.
3. A. Aramova, J. Herzog, and T. Hibi, “Squarefree lexsegment ideals,” Math. Z. 228 (1998), 353-378.
4. A. Aramova, J. Herzog, and T. Hibi, “Ideals with stable Betti numbers,” Adv. Math. 152 (2000), 72-77.
5. A. Aramova, J. Herzog, and T. Hibi, “Gotzmann theorems for exterior algebras combinatorics,” J. Alg. 191 (1997), 174-211.
6. D. Bayer, H. Charalambous, and S. Popescu, “Extremal Betti numbers and Applications to Monomial Ideals,” J. Alg. 221 (1999), 497-512.
7. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised edition, Cambridge,
1996. ARAMOVA, HERZOG AND HIBI
8. A. Bj\ddot orner and G. Kalai, “An extended Euler-Poincaré theorem,” Acta Math. 161 (1988), 279-303.
9. D. Eisenbud, Commutative Algebra, with a View Towards Algebraic Geometry, Graduate Texts Math., Springer, 1995.
10. S. Eliahou and M. Kervaire, “Minimal resolutions of some monomial ideals,” J. Alg. 129 (1990), 1-25.
11. M. Green, “Generic initial ideals,” in Proc. CRM-96, Six Lectures on Commutative Algebra, Barcelona, Spain, Vol. 166, pp. 119-186, Birkh\ddot auser, 1998.
12. T. Hibi, Algebraic Combinatorics on Convex Polytopes, CarslawPublications, Glebe, N.S.W., Australia, 1992.
13. J. Herzog and N. Terai, “Stable properties of algebraic shifting,” Results Math. 35 (1999), 260-265.
14. M. Hochster, “Cohen-Macaulay rings, combinatorics, and simplicial complexes,” in Proc. Ring Theory II, Lect. Notes in Pure and Appl Math., Vol. 26, pp. 171-223, Deeker, New York, 1977.
15. G. Kalai, “Algebraic shifting,” Unpublished manuscript, 1993.
16. G. Kalai, “The diameter of graphs of convex polytopes and f -vector theory,” in Proc. Applied Geometry and Discrete Mathematics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 4, pp. 387-411, Amer. Math. Soc., 1991.
17. R.P. Stanley, Combinatorics and Commutative Algebra, Birkh\ddot auser, 1983.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition