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Abstract. Acodeis called isodual if it is equivalent to its dual code, and a lattice is called isodual if it is isometric
to its dual lattice. In this note, we investigate isodual codes Bygr These codes give rise to isodual lattices; in
particular, we construct a 22-dimensional isodual lattice with minimum norm 3 and kissing number 2464.
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1. Introduction

A code is called isodual if it is equivalent to its dual code, and a lattice is called isodual if
it is isometric to its dual lattice. Conway and Sloane [5] introduced the concept of isodual
lattices, which is a generalization of unimodular lattices. A lot of known dense lattices
are isodual [5], such as the rescaled Barnes-Wall lattice and the Coxeter-Todd lattice. In
the coding theory context, isodual codes play a similar role with respect to the extensively
studied family of self-dual codes (cf. [10]). In this note, we investigate a remarkable class
of isodual codes ovefy,, namely double circulant codes, and use them to construct isodual
lattices. In particular, we construct a 22-dimensional isodual lattice of minimum norm 3.

In Section 2, we study the properties of isodual codes and present double circulant codes.
We investigate the symmetrized weight enumerators of isodual codeg myar particular,
for smallk, we give a basis for the space of invariants to which the symmetrized weight
enumerators belong. In Section 3, we describe how isodual lattices can be constructed from
isodual codes ovefo. In Section 4, we construct double circulant codes &gpeandZg
with the highest minimum Euclidean weight among all double circulant codes of length up
to 24. These examples show that there are isodual codes which have a higher minimum
Euclidean weight than any self-dual code of the same length. We then consider the lattices
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obtained from these codes. The most interesting are the 22-dimensional isodual lattices
with minimum norm 3 and kissing number 2464 constructed from the double circulant
codes ovefZ, of length 22 and minimum Euclidean weight 12. In Section 5, we show
that there are up to equivalence exactly six of these double circulant codeZ.oveéve

show that an extremal binary Type Il code of length 24 can be constructed from each of
these codes, pointing out a close connection between the 22-dimensional isodual lattices
and the Leech lattice. Finally, in Section 6 we show that these lattices are all isometric to
a single latticel », constructed from the binary self-dual [2P1, 6] code. In particular its
automorphism group is proven to be isomorphi¢td}**.M,,.2, and it is characterized by

the following properties: it is the unique up to isometry isodual 22-dimensional lattice of
minimum norm 3 and containing an integral sublattice of index 2.

2. Isodual codes
2.1. Codes

A linear codeC of lengthn over Zy is a Zx-submodule ofZ}, whereZy is the ring
of integers modulo R We shall take for a representative set of the element&,pf
either{0,1,2,...,2k—1} or {0, &1, 42, £3, ..., =(k— 1), k}, using whichever set is
convenient. An element of is called a codeword o€. A generator matrixof C is
a matrix whose rows genera® The Hamming weighivty(x) of a vectorx in Zj, is
just the number of non-zero components. Eelidean weightvtz(x) of a vectorx =
(X1, X2, - - -, Xn) OVErZy is Y i, min{x?, (2k — x)?} whereZy = {0,1,2, ..., 2k — 1}.
The minimum Hamming and Euclidean weighdg,anddg, of C are the smallest Hamming
and Euclidean weights among all non-zero codewords, aespectively. Define the inner
product ofx andy in Z5, by X - y i= X1y1 + - - + XnYn. Thedual code C- of C is then
Cl:={xeZ|x-y=0forally e C}.

In view of some applications, there is no need to distinguish between codeword compo-
nents which differ in sign, i.e4+1 and—1. Hence, two codes are said to éguivalentf
one can be obtained from the other by permuting and changing signs on the coordinates.
is calledisodualif C is equivalent tacC+, C is calledself-dualif C = C+, andC is called
self-orthogonalf C ¢ C*. Clearly a self-dual code is isodual. We definesgenmetrized
weight enumeratofswe) ofC by

SWe: (X0, X1, - - ., Xg) 1= Z XgOOXIO Lyt (O (@)
ceC
whereng(c), n1(c), ..., Nk_1(C), nk(c) are the numbers of, &1, ..., £(k— 1), k compo-

nents ofc, respectively. Equivalent codes have identical symmetrized weight enumerators.
The Hamming weight enumerataf C is defined ashc (X, y) 1= Y ¢ X" WH(© yWi(©)

An isodual code and its dual code have several identical weight enumerators (e.g., sym-
metrized weight enumerators, Hamming weight enumerators and biweight enumerators).
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2.2. Constructions

Lemma 2.1 If 2k is a squarethen an isodual code ovéfy exists for all lengths. 12k
is not a squarethen an isodual code exists for length n if and only if n is even.

Proof: If 2k is a square (saw?) then a code with generator matiix) is isodual. For a
codeC of lengthn overZy, itis known thaiC||C+| = (2k)". If C is an isodual code then
IC| = |Ct| = (2k)™2. Thusn must be even if Ris not a square. Moreover a code with
generator matrix1, B) is isodual whereg € Zy. O

Lemma 2.2 Suppose that C and D are isodual codes of lengths n and m with minimum
Euclidean weights gl and d., respectively. Then the direct suma&D := {(c,d)|c €
C, d € D} isanisodual code of length-a m with minimum Euclidean weightin{dg, d}.

Proof: Leto ando’ be equivalent maps such th@af = Ct andD° = D*. Then

C° @ D? =Ct @ D*'. ltis easy to see thaC @ D)+ = C*+ @ D'. Thereforg(C @ D)

is equivalent taC @ D)+. The minimum Euclidean weight follows from the construction.
O

From the above lemma, when searching for codes with high minimum Euclidean weight,
it is sufficient to consider only codes which are not the direct sum of codes.

Lemma 2.3 LetC be acode ovefy with generator matrixl, A) where | is the identity
matrix. If there are(0, 1, —1)-monomial matrices P and Q such that A P AQ then C
is isodual where A denotes the transpose of A.

Proof: The matrix(—AT, 1) is a generator matrix of the dual co@g-. SinceAT =
P AQ, C and the code with generator mattix —AT) are equivalent. O

If Ais symmetric or skew-symmetric (thati&] = Aor AT = — A) thenA satisfies the
assumption of the above lemma.

Double circulant codes are a remarkable class of isodual codpsreAdouble circulant
code of length & has a generator matrix of the forth, R) whereR is ann by n circulant
matrix. A code with a generator matrix of the form

o B - B
14

[ R
Y

: @)

whereR’ is an(n — 1) by (n— 1) circulant matrix, is called &ordered double circulant
code of length 8. These two families of codes are collectively caltbouble circulant
codes.
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Lemma 2.4 A double circulant code is isodual.

Proof: Follows from Lemma 2.3. O

2.3. Symmetrized weight enumerators

We now investigate the symmetrized weight enumerators of isodual codeZ gvewe
obtain invariants to which the symmetrized weight enumerators belongs. First define the
following matrix:

1 2 ) o1
1 7+ %1 12+ n2-2 s K
1 24 n2@D s 2@k 2k
M o i 1 773_,_713(2k—1) n6+n3(2k—2) n3k ’
V2k
1 ghggh@cd g2k ke Lk

wheren is a primitive X-th root of unity. This matrix corresponds to the MacWilliams
identities for codes oveZy [1]. In other words,

SWe: L (Xo, X1, . .., Xk) = MxSWe: (X, X1, ..., Xk).

Thus the symmetrized weight enumerator of an isodual code is invariant under transforma-
tion by My. By Lemma 2.1, if X is not a square then the symmetrized weight enumerator

is also invariant under transformation by the diagonal matrix= diag(—1, -1, ..., —1)
derived from the restriction on the length. Therefore we have the following:

Proposition 2.5 The symmetrized weight enumerator of an isodual code Byglis
invariant under the group generated by,Mwhich has orde2. Moreover if2k is not a
square then the symmetrized weight enumerator of an isodual cod&.gver invariant
under the group generated by,Mand N, which has orde#.

Magma can easily be used to compute a basis for the invariant ring of small matrix groups.
As examples, we give a basis for the invariant rings corresponding to the symmetrized weight
enumerators of isodual codes o&randZe.

Corollary 2.6 If C is an isodual code ovéf,, then the symmetrized weight enumerator
swe:(a, b, ¢) of C is an element of the ring

Cla+c,b—c,a?+4bc—c?],
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with Molien series

1

— 14+ 2. +M%+e 3+t
A=) + 20+ 422+ 623 + Nt +

Remark The set of symmetrized weight enumerators of all isodual latticesZueannot
generate the above ring since there is a unique isodual lattice of length 1.

Corollary 2.7 If C is an isodual code ovéfgs, then the symmetrized weight enumerator
swe:(a, b, ¢, d) of C is an element of the ring

Clés 1, P6.2, 96,3, ¥6.4] B 965C[061, P62, P6.3. P6.4] B D66C[06 1. P62, P63, P6,4]
® ¢6,7C[ 6.1, ¢6,2, P6,3, P6,4]

with Molien series

14+ 202424

— 2 4 6 8

where

$6.1 = @ + 4bd + 8¢* — 12cd 4 5d2,

¢62 = ab—cd,

$6.3 = ac— bd — 4c? + 6¢d — 202,

$6.4 = ad + b? — 4bd — 3¢? + 8cd — 3d?,

¢s5 = ad — 2bd + 2cd — dz,

¢6.6 = bc— bd — 3¢® + 5cd — 2d?,

$6.7 = abcd— abd® — 3ac?d + Sacd® — 2ad® — 2b%cd 4 2b°d? + 8bcAd
—13bcd? + 5bd® — 6¢3d + 13c?d? — 9cd® + 2d*.

3. Construction of isodual lattices

In this section we recall some basic notions on lattices and the basic construction of lattices
from codes. For details, we refer to [1] and [3].

An n-dimensional lattice\ in R" is the set of integral linear combinationsrofinearly
independent vectorsy, ..., v,. An n by n matrix whose rows generatg is called a
generator matrbG of A. The determinant of\ is the determinant of the Gram matrix
GG' of a generator matriG of A. Theduallattice A* of A is given byA* := {x € R" |
[x,a] € Zforalla € A} where [, a] is the standard inner product gfanda. The norm
of x is [, X]. A lattice A isintegralif A € A*. An integral lattice withA = A* is called
unimodular The minimum norm ofA is the smallest norm among all nonzero vectors of
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A. The theta serie®, (q) of A is the formal power series

OA@ =) a9 =" Nug™,
m=0

XeA

whereNy, is the number of vectors of norm. The kissing number is the second coefficient
of the theta series.

A lattice is said to beasodualif it is isometric to its dual lattice. This is a natural
generalization of unimodular lattices, introduced in [5] where isodual lattices in small
dimensions are studied.

In [9], H.-G. Quebbemann introduced the notionnabdular lattice of level.l Such a
lattice L is characterized by the following property: bdttand+/IL* are even lattices, and
are isometric. Famous examples are the Coxeter-Todd l#tticef level 3 and dimension
12, and the Barnes-Wall lattic® W, of level 2 and dimension 16. The rescaled lattice
| ~1/4L is then isodual.

Here we use a generalized “Construction A” to construct isodual lattices from our isodual
codes. Construction A was first defined for binary codes [3] (see also [1] for the case of
Zyx-codes).

First define the reduction modul&? : Z" — ZJ, by

o(Xy, ..., X)) =X (mod X),..., X, (mod X)).

We set
1
Vv 2k

Lemma 3.1 If C is an isodual code ovefy with minimum Euclidean weight=cthen
Ax (C) is an isodual lattice with minimum normin{dg/2k, 2k}.

Ax(C) = {xeZ"| p(x) € C}.

Proof: It is not difficult to show thatAy (C+) = Ax(C)* for a codeC over Zy. A
code-equivalent map fro® to C* induces an isometry map fromy (C) to Ay (CL).
Thus Ay (C) is isodual. The assertion about the minimum norm follows from [1]. O

4. Double circulant codes and their lattices

In this section, we investigate the highest minimum norm of isodual lattices construc-
ted from double circulant codes of length up to 24 dégiandZg. For example, consider

the double circulant codB,4 s of length 6 overZ, with 210 as the first row oR. This

code has minimum Euclidean weight 6. Thus the isodual laig®, s) constructed from

D4 by Construction A has minimum norrg]. The highest minimum norm among all
known six-dimensional isodual lattices is+—l\/% (=1.5773...) [5].

In Table 1, we present the first row & or R’ for double circulant codes ovét, with
the highest minimum Euclidean weight among all double circulant codes for each length
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Table 1 Double circulant codes ovéty.

Code Lengtm First row de
D410 10 22100

D412 12 221000

D414 14 2210000

D416 16 231210Qe, B, y) = (1,2, 2) 9
D418 18 211200000 9
D420 20 2112000000 10
Dy.22 22 31321121000 12
D424 24 31321121000Qx, B, ¥) = (1, 2, 2) (self-dual) 16

up to 24. This was done by constructing all double circulant codes for these lengths. If the
code is bordered, the values @f, 8, y) are also given. Codes are given only for length
10 < 2n < 24 because densest isodual lattices in dimensions up to 4 and 8 have been given
in [5]. The fourth column of the table gives the minimum Euclidean weilghdf the code.

Itis known in [10] that the highest minimum Euclidean weight among all self-dual codes
of lengths 10 and 16 ovét, are 4 and 8, respectivelyd, 10 is an isodual code of length 10
with minimum Euclidean weight 8 anid, 15 is an isodual code of length 16 with minimum
Euclidean weight 9. Thus we have the following:

Proposition 4.1 There exist isodual codes ové&t, which have a higher minimum
Euclidean weight than any self-dual code of the same length.

Double circulant codes ovéfg are given in Table 2. The first row & or R’ for codes
with the highest minimum Euclidean weight are given for each length up to 24. If the code
is bordered, the values @f, 8, y) are also given. The fourth column of this table gives the
minimum Euclidean weighde of the code.

Table 2 Double circulant codes ovéfts.

Code Lengtm First row de

Ds.10 10 42100 10
D6.12 12 513010 12
D6.14 14 3321000 12
D6.16 16 41431000 14
De.18 18 134010000 14
Ds.20 20 3013101000 16
D622 22 35530010000 16

De.24 24 24313412010, 8, y) = (3, 2, 2) (self-dual) 18
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Table 3 The minimum norm for isodual lattices from double circulant codes.

Dimension & uw(2n) Code LK (2n) 1y (2n)
10 2 D410 2 1
12 2 Ds,12 V16/3 2
14 2 Da4,14, Dg 14 V16/3 2
16 z De,16 V8 2
18 z De,18 V16/3 2
20 z Ds,20 8//7 2
22 3 Da 22 J16/3 2
24 4 Da.24 4 4

We next use these double circulant codes to construct dense isodual lattices by Construc-
tion A. Let (D2 2n) be the minimum norm of the isodual lattiégy (D2 2n) constructed
from the double circulant codBy 2n. Let w(2n) := max{u(Dx.2n) | k = 2, 3}, that is,

1 (2n) is the maximal number among the minimum norms of the latthegéDx 2n) Where
k = 2, 3 for each dimensionr2

In Table 3, we listu(2n) for 10 < 2n < 24. The third column in this table gives
the double circulant code which provideg2n), while the fourth and fifth columns list the
highest minimum normg (2n) anduy (2n) among known isodual lattices and unimodular
lattices, from [11, 5, 3], respectively. Note that information on the highest minimum
norm among isodual lattices in dimensions 17 to 22 is lacking in [5]. In this range of
dimensions, the best known isodual lattices are modular lattices of llevéfl such a
lattice has minimum normx, then the corresponding isodual lattice has minimum norm
w/~/1. We refer to the survey [11] for information on lattices with paramet@rst, ;1) =
(12,3, 4), (14, 3, 4), (16, 2, 4), (18,3, 4) and(20, 7, 8).

From Table 3, note the following:

Proposition 4.2 There is a22-dimensional isodual lattice with minimum noBn

It appears that\4(D4.2) is the first example of an isodual lattice with minimum norm
3 in dimension 22. Isodual lattices in dimensions 23 and 24 with minimum norm 3 are
known, namely the shorter Leech lattice and the odd Leech lattice. A3y »,) is the
smallest known isodual lattice with minimum norm 3.

The theta serie®a,c)(q) of the lattice constructed from a cod over Z, can be
obtained from the symmetrized weight enumeratorgiaeb, c) of C by replacinga, b
andc, respectively, byy, ., 74, Yy can 1 74 and Y as, @74 The symmetrized
weight enumerator swg,, and the theta serigda, p, ,,) () 0f As(D4 22) are given below.

SWep, ,, = a?? 4 1232'%" + 5632'b"° 4 2464°b™° + 616a™h%c
+ 14784%!1c 4 1232@°b'%c 4 14784°b'%c + 24641%p"c?
+ 4004a1%b®c? + 5544@%p1%c? + 118272°b1°c? + 3696G*b'oc?
+14784b%c% + 22176@%b c® + 14784@&"b'%C?
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+4928&3%b*%3 + 2956& b’ c* + 406561%%c* + 25872 h%c?
+19712@&°b'5c* + 3696@%b'°c* + 8316 hec°
+ 62092&5b'c® 4 310464°b°c® + 14784bec®
+11088@&°b7c® + 12474888 + 25872@*b'2c® + 39424b'5c?
+ 2464'°c® 4 176a5c” + 14080@ bsc’ + 44352@&°*bic’
+14784@°%b e’ 4 330a4c® + 14080@"b"c® + 12320@°h8c8
+ 5544@2b'%c8 4 8316@°bEc° + 7392@%b!ic® + 1232@b!%c®
+6652&°b’ct? + 4158@*h8ct + 12301%c10 4 6723 Mt
+ 14784308 + 1344 et + 616a%%*? + 9856°b"c*?
+ 3696°b%c'2 + 616abBc!® + 352ab’ct4 + 44p8ct
+176a’c!® + 77a5c1®,

O au(Dasn () = 1+ 24643° + 45056)"%* + 431644* + 39424@°
+3198976°¥* 4 2444288° 4 11470277 + 63393792374
+43584860° + 141182976° + 629342208394 4 404963328*°
+105246832 + 40669798474 + 25123362882
+ 5583148038 + - - -

Define theEuclidean weight enumeratdic (s) of a codeC as E(s) i= Y .. S"E©.
To save space, we only list the first few terms in the Euclidean weight enumeraigs of
and Dg 20. Note thatAg(Dg 18) and A4(D4 22) have higher minimum norms thark (18)
anduk (22), respectively.

Epes(S) = 1+ 288 + 792" 4 13388 4 36180 4 738%%% 4 13134
+ 230942 + 3718828 + 61116° + 84636 + 126846>*
+174719% 1 21438638 + 287478%° 4+ 354702
4394758 + 468578 + 536778 4 548208>°
+ 603456°2 + 620793°* + 607104°° + 626058°°
+581064%° + 5494145 51946254 4 456912°%°
+ 40851358 + 35717470+ 29351872 + - - -,

O ag(Do1p (@) = 1428897 + 810g%3 + 13569° + 4031173 4 8298y /3

+ 15762 + 3087®*%° + 54216)*/° + 95604;° + 160218*%/°
+ 266112173 4 41479415 + 627786 + 9806041%%° + - - -

As described in Section 2, the supplemented quadratic residue@&dgover Z, of
length 17 has minimum Euclidean weight 8. Thus this code gives an isodual lattice with
minimum norm 2 in dimension 17.
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5. Classification of double circulant codes of length 22 and some 3-designs

In this section, we classify the double circulant codes of length 22By&rith minimum
Euclidean weight 12. We also show that some of these codes contain 3-designs with
parameter$22, 7, 4), (22, 8, 12), (22,9, 84) and(22, 10, 156).

The following lemma is useful in classifying double circulant codes.

Lemma5.1 Ifthe matrix(l, A) generates anisodual code C ov&k, then the matrices
(I, =A), (I, ATy and(l, —AT) generate isodual codes which are equivalent to C.

Proof: SinceC is isodual, the matriced, A) and(l, —AT) generate equivalent codes.
Obviously(l, A) and(l, —A) also generate equivalent codes. O

By exhaustive search, we have found all distinct double circulant codes of length 22
over Z4 with minimum Euclidean weight 12. This was done by considering all 11 by 11
(resp. 10 by 10) circulant matrices ov&y for pure (resp. bordered) double circulant codes.
Lemma 5.1 establishes the equivalence of a large number of these codes. To save space,
Table 4 lists only those codes which must be checked further for equivalence to complete
the classification. The symmetrized weight enumerators (column SWE) are also identified
in the table, and these are listed at the end of this section. Not€{has the same as
D4, 20.

Let RandR’ be two square matrices of the same order. If ther¢@re —1)-monomial
matricesP and Q such thatR = PRQ, then(l, R) and (I, R) generate equiva-
lent codes ovefZy. For the codes in Table 4, IR ; be R in the generator matrix
of C;j. Permutation matrice®; and Q; can be found such thaR, j = Pj Ry j+1Qj
forj = 1,2,3,4,6,7,8,9,11,12 13 and 14. Thus the cod&; (i = 1,2,3,4,5)
are equivalent, the codes;; (i = 6,7,8,9,10) are equivalent, and the cod€x ;

(i = 11,12 13 14,15 are equivalent. Similarly, it can be shown that the coGes
(i =1,2,3,4,5) are equivalent and the cod€s; (i =1, 2, 3, 4, 5) are equivalent. Note
thatC, 1 is the unigue double circulant code with syyga, b, c).

Itis now shown thaC; 1, C; 6 andCy 11 are inequivalent by the methods used in [7, 6].
Let C be a code of lengthr2 Let M, := (mj;) be theA; by 2n matrix with rows composed
of the codewords of Hamming weighin C, whereA; denotes the number of codewords of
Hamming weight in C. For anintegek (1 < k < 2n), letn¢(js, ..., jk) be the number of
r (1 <r < A such thatmj, ---mj, # OoverZforl < j; <--- < jx < 2n. We
consider the set

S = {n(j1, ..., jx) | for anyk distinct columnsjy, ..., jk}.

Let M (k) andm, (k) be the maximal and minimal numbers$ respectively. Since two
equivalent codes oveft, have the same values f8y, these numbers are invariant under the
equivalence of codes. Table 5 gives some valudggk) andm; (k) for codesCs 1, C16
andCl,ll.
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Table 4 Double circulant codes of length 22.

233

Code First row ofR SWE

Ci1 31321121000 SWE, ,,(a, b, ©)
Ci2 21330112100 SWE, ,,(a, b, ©)
Cia 20311231010 SWE, ,,(a, b, ©)
Cia 32021310110 SWE, ,,(a, b, ©)
Cis 31032201110 SWE, ,, (@, b, ©)
Cie 23312110100 SWE, ,, (@, b, ©)
Ci7 23211031100 SWE, ,, (@, b, ©)
Cig 23011211300 SWE, ,, (@, b, ©)
Cio 22131031010 SWE, ,, (@, b, ©)
Ci10 20121303110 SWE, ,, (@, b, ©)
Ciu 13212223110 SWE, ,, (@, b, ©)
Ci12 22333231210 SWe;, ,,(@, b, ©)
Ci13 31231122210 SWE, ,,(a, b, ©)
Cr14 22123121310 SWE, ,,(a, b, ©)
Ci15 21233211120 SW, ,,(a, b, ©)
Co1 31333321111 swsg, (a, b, ©)
Co2 33113332111 swg, (@, b, ¢
Co3 31313133211 swg, (@, b, ¢
Coa 31133133211 swg, (@, b, ¢
Cos 33131231311 swg, (@, b, ¢
Cs1 33331231111 swg, (a. b, )
Cs2 31313332111 swg, (a. b, )
Css 32133313111 swg, (a, b, )
Csa 33131133211 swg, (a. b, )
Css 32133131311 swg, (a, b, c)
Can 33313213111 swg, (a, b, c)

Now letc; 1, Gi 2, . .., G a be the codewords of Hamming weighin C. Let

di(j) ==#HWth(Cik, —Cil) = j | 1 < ki <k < A}.

The numbers, (j) are also invariant under the equivalence of codes for anyglj. Table 6
gives some values @ (j) for codesC; 1 andCy 6.

From Tables 5 and 6C; 1, C16 and Cy 11 are inequivalent, and this completes the
classification.

Proposition 5.2 There are exactly six inequivalent double circulant codes of le@gth
overZg with minimum Euclidean weight2.
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Table 5 Inequivalence values f@; 1 andCy 11.
Code Mg(3) mg(3) Mo(4) Mg (4) M10(3) mMyo(3) Mio(4) Mio(4)
C11 168 168 60 44 312 312 124 108
Ci6 168 168 60 44 312 312 124 108
Cin 168 168 60 42 312 312 126 108
Table 6 Inequivalence values f&; 1 andCy 6.
Code
Cia Cie

dg(0) 0 0

dg(1) 0 0

dg(2) 0 0

dg(3) 0 0

do(4) 0 0

do(5) 0 0

dg(6) 0 0

do(7) 8624 8624

do(8) 7700 7700

dg(9) 143616 144672

do(10) 219824 219384

do(12) 657712 655952

dg(12) 837760 837320

dg(13) 761376 762432

do(14) 1215896 1217480

do(15) 509168 508640

do(16) 292688 292072

do(17) 85888 86064

do(18) 1408 1320

dg(19) 0 0

dg(20) 0 0

do(21) 0 0

de(22) 0 0

Remark We denote the six inequivalent double circulant coBes, C16, C1.11, Ca1,
., C3,andCS,, respectively.

C3,1 andC4,1 by C%Z’ ..

A t-(v, k, A) designD is a set ofv points with a collection ok-subsets called blocks,
such that any-points are contained in exactlyblocks. The incidence matrix d is the
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matrix M = (m;) with m; = 1 if the j-th point is contained in thieth block andm;; = 0
otherwise. A design may be identified by its incidence matrix.

Corollary5.3 The supports of Hamming weigfts8, 9and10in Cy 1, C1 s and G 11 form
3-designs with paramete(82, 7, 4), (22, 8, 12), (22,9, 84) and(22, 10, 156), respectively.

Proof: LetC be one ofCy 1, C16 andCy11. The residue cod€® and the torsion code
C®@ of Care{c (mod 2 | c € C}and{c/2 | c = 0 (mod 2, ¢ € C}, respectively. It is
easy to see tha@@® = C@ andC® is the binary isodual [2211, 7] code B which has
the Mathieu groupM,; as its automorphism group. From sy(a, b, ¢), the codewords of
Hamming weights 7 and 8 are @?. It is known that the codewords of Hamming weights
7 and 8 inB form a 322, 7, 4) design and a 322, 8, 12) design, respectively. Thus the
supports of Hamming weights 7 and 8@nform a 3(22, 7, 4) design and a 322, 8, 12)
design, respectively.

Let x be a codeword irC of Hamming weight 9 (resp. 10). Then it follows from
swe: (a, b, ¢) that X is a codeword of Hamming weight 9 (resp. 10), buti® not. Thus
Table 5 shows that the supports of Hamming weight 9 and 10 farm a 3{(22, 9, 84)
design and a 322, 10, 156) design without repeated blocks, respectively. |

Now we prove that the codésizz (i =1,...,6) are closely related to extremal Type Il
codes of length 24 and that the latticgs(C,,) are closely related to the Leech lattice.
LetCy,beanyofC, (i =1,...,6).

Lemma 5.4 Let Gy, be the generator matrixl, Ry;) of Cyo. Then BQR2TZ =3J -1
where J is the all-ones matrix.

The following matrix

1

generates a self-orthogonal codg; of length 23. Since&C,, does not contain the all-2's
vector(2, 2,2, ..., 2), Cyis self-dual. The symmetrized weight enumerator of the self-
orthogonal codeC,, generated by the first eleven rows@yz can be obtained from the
symmetrized weight enumerator®$,, since the Euclidean weight of the codeword€ig
must be divisible by 4. For any vecteroverZ,, no(X + 2j) = nz(X), n1(X + 2j) = nz(x),
n2(X + 2j) = np(xX) andnz(x + 2j) = ny(x) where 2 is the all-2's vector. Hence the
symmetrized weight enumerator ©§3; can be obtained directly from sgg(a, b, ¢). The
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minimum Euclidean weight o€,z is 12. The following matrix

10

generates a Type |l cod&, of length 24, i.e., a self-dual code with all Euclidean weights
divisible by 8.

Proposition 5.5 C,,4 is a Type |l code of lengtB4 with minimum Euclidean weighit6,
and so is extremal.

Proof: LetC;, be the bordered double circulant code with= Rx> and borderse, 8, v)

= (2,3,1). Itis easy to see th&), is a Type |l code. All extremal Type Il double circulant
codes of length 24 have been classified in [6], and the list in [6] showEihat an extremal
Type Il double circulant code. The proposition follows from the fact hatandC;, are
equivalent. O

Remark For code<},, C3,andC3, of length 22, the supports of Hamming weight 10 in
the corresponding bordered double circulant codes of length 24 fg@4,3-0, 36) designs
[6]. The 3422, 9, 84) and 3¢22, 10, 156) designs found in Corollary 5.3 are the derived and
residual designs, respectively, of th€2B, 10, 84) designs which are the residual designs
of the above 5-designs.

By the above propositionA4(Cz3) (resp.A4(Caq)) is the unique extremal unimodular
lattice in dimension 23 (resp. 24), which is called the shorter Leech lattice (resp. the Leech
lattice). Thus the 22-dimensional isodual lattidegC,,) are related to the Leech lattice.

We shall show in the next section the uniqueness of the isodual lattices constructed from
the double circulant codes},. We end this section by listing the swe’s©f 1, C31 and
Cs1.

swes,, = a?? 4 140&'%"2 + 704@°b'® 4 5632%b%° + 176a"3béc
+ 2252&%!1c + 8448°b'%c + 2816G°b e + 1126407
+ 176a%%c? + 3872212082 + 4364&°%b°c? + 7744 %152
+56322%c? + 352a'%b%c® + 1372&M b8 + 33792@&8hc?
+10700&b*?c® + 11264@3b*%3 + 55a8¢* + 15841 %b*c?
+ 44704°p%c* + 19148&°b'%c* + 7744@%boc?
+ 2816a%b%c® + 84304°b%c® + 94617&5b1c® + 24217&°b'%c°
+2816@b'%c® + 82721%b*c® + 120384°808c® + 19148&*b*%ct
+ 7045t + 1372&Mb%c’ + 141504b8c’ + 67584@ b c’
+10700&%b*c” + 330a1%c® 4 1812&°b*c® + 120384°b8c?
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+4364&%b1%c® + 2252&°b%c® + 84304°b8c® + 11264@2b 1 c°
+ 8448b'%c® + 1812&8b*c'® + 44704081 + 140&12%ct°
+ 1024t ¢!t + 1372&"b%c!t + 1372&%08c! + 204& et
+4622%12 1 8272%0%c? + 3872%b8c'% 4 281@°h%c!?
+ 176ab%c™® + 1584a%b*c™* + 352a%b*c!® + 165a°¢™°
+176a%b*c?® + 11a%¢?®°

swer,, = a*?+ 105%™ + 7040°0'® + 56322%b%° + 528 "3p8c + 22524t c
+ 77448%b'%c + 2816@°b%c + 11264b*% + 88ath*c? + 4576 %h8c?
+ 4470480'%c? + 7744@*p*c? + 5630%°c? + 176a'%b*c?
+130241b8c® + 33792@%b1c® + 109824 b3 + 11264@3%b'oc?
+55a8c* + 1672ap*c* + 425921%8¢* 4 190784°p1%c*
+ 7744@%b'%c* + 3168130 c® + 83952°b8¢® + 94617@°btc®
+237952°b%2c® + 2816@b*ec® + 8536a12b*c® + 121792808c°
+190784*b*c® + 704m*°c® + 13904 b*c” + 142912 b8’
+67584@*b e’ + 1098243b'%c’ + 330a4c® + 178641%b*c®
+121792°08¢® + 44704%b1%c® + 21824%b%c® + 83952°b%c°
+11264@%b*c° + 7744ab'%c° 4 17864%b%c'0 + 42592b%c10
+10560%%c1% 4 1024c!t + 13904 b*ct! + 130243b8c!?
+ 2048 ¢t + 46221°¢1? + 8536°h*ct? + 4576a%b8ct? + 3168°b et
+52&b°ct® + 1672%b*c!* + 176a°%b*c!® + 165a°ct® + 88ab*ct®
+ llaZCZO

swe:,, = a?? 4 704a'%"? 4+ 704@°b™® + 5632%b?° + 880a'3péc
+2252&%!1c 4 7040°%b %c + 2816G°btc + 1126407°c
+528mb8c? + 4576@°b1%c? + 7744G*b*ec? + 563DH%°c?
+1232@08c® + 33792@8h e + 11264@"b'%c3 + 11264@°3b'°c3
+55a%8c* + 176@“b*c* + 4048@1%8c* + 19008@°h*2c?
+ 7744@%b'%c* 4 3520M%p*c® + 8360@°bec° + 94617&°b*'c®
+23372&°b'?c® 4 2816@b*ec® + 880 2b*c® + 12320@808ct
+19008&*b*c® + 704M15c® + 1408@! b’ + 14432@& b8’
+67584@*b e’ + 11264@3b'%c’ + 330a4c8
+1760&°b*c® + 12320@°b8c® + 4576@%b1%c® + 2112 b4c®
+8360@&°h8c® + 11264@%b*c® + 704Mb*c® + 1760@8h*ct®
+4048@*b%c10 4 7040'%c'° + 1024at1c! + 1408& bt
+1232@°%b%c!! + 204 et + 462a1%12 + 880Chc!?
+528m%b8ct? + 352°b*c™® + 880ak®c!® + 176(%b !
+165a°¢6 + 11a2¢?°.
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6. Uniqueness of the six IatticeA4(Ci22)

LetCh, (i = 1,...,6) be the six inequivalent double circulant codes in Proposition 5.2.
In this section, we show that the Iattic@a(Cizz) are all isometric to some lattick,,
constructed below.L,, is constructed from the unique binary self-dual ,[22, 6] code
(also called the shorter Golay code [10]) in a very similar way as the Leech lattice is
constructed from the binary Golay codey, is not unimodular, but has a higher minimum
norm than the unimodular lattices, and its automorphism group is not larger than the group
arising from the automorphism group of the code.

Let C be the unique binary self-dual [221, 6] code, and leU,,:= A(C) be the uni-
modular lattice constructed fro@ by Construction A. Recall that the automorphism group
of the codeC is the groupMz,.2. Now consider the sublattice

2

2
in =0 (mod 4)},

Ny, 1= By(C) = {(Xl, ..., X22) € U
i—1

of index 2 inU,; obtained by Construction B (see [3] for Constructions A andNB}. no
longer contains roots and has minimum norm 3. Set

L2o := Nao + ZX,

wherex = (1/2,...,1/2,5/2) — s, the coordinates af are 0 or 1, and (mod 2 belongs
to the shadow o€ (see [4] for the shadows of binary self-dual codes).

Theorem 6.1 Let Ly, and Uy, be as above. Then we have

(1) Ly is an isodual lattice with minimum nor@, and AutL,y) ~ {+£1}'1.Mx».2is a
subgroup of the automorphism group of the lattice.U

(2) Any22-dimensional isodual lattice of minimum noBtontaining an integral lattice
of determinan# is isometric to L.

Proof: Letg:=(0,...,0,1,0,...,0) for all i, where the 1 stands at coordinate
Clearly, AuiU,y) ={£1}?2.Aut(C) since the only roots olJ,, are +2¢. Let e:=
(L....,1) = Y% &. ThenNyp=(Ux)e := {x € Uz | [x,€] = 0 (mod 22} and
N, = U2z + Ze/2. Sincee/2 has norm 1142, the minimum norm oNN, is 2 and
its norm 2 vectors are the onesli,. Hence AutN,,) induces a permutation of them
and Au(Ny,) ~ {+1}*1.Aut(C) since the sign changes preserviNg are in one-to-one
correspondence with the element<f

We consider lattices of the fori := Ny, + Zw/2, wherew € Ny, is defined modulo
2N,,. We search for latticek such that. andL* both have minimum norm 3.

Lemma 6.2 There is a unique clas® € Ny2/2N,, such that L and E have minimum
norm3.

Proof: Sincet4e =+ 4e; and+8e belong to N,,, the 21 first coordinates ab can be
taken in{0, 1, 2} while wy, € {0, +1, +2, 3, 4}. If one coordinatey; of w is even, since
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[2e, w/2] = w;/2 € Z, 2 € L*, which contradicts the condition that the minimum norm
of L*is 3. Hence we canassume € {£1}forl <i < 21andw;, € {+1, +3}. Moreover,
if woy = +£1, w? = 11 and the minimum norm df is smaller than 3. Hence,, = +3,
and the minimum norm df is 3 if and only ifw is minimal in its classv + 2Ny,. If this is
S0, we notice that since?/4 = 15/42, the minimal vectors df will be the ones oiN,,,
and hence that AgL) c Aut(Ny,). For convenience, we assume now that € {3, 5}.
Hence we can writew = w(u) := e —2Y;_, & + 4&; whereu e F2? is identified with
its set of non-zero coordinates. It is worth noting here that) € Ny, if and only if
2wty (u) = 22 (mod 4 andw(u) = w(uy) (mod 2Ny,) if and only if u = u; (modC) and
Wih (U) = wty(uqp) (mod 4. O

Lemma 6.3 Letw be as above. The clags+ 2Ny, has minimum norm5if and only if
u belongs to the shadow of C.

Proof: Asmentioned previously, the minimum norm of the class 2N,, is lowerthan 15

if and only if it contains an element with coordinates, i.e. of the typey’ = e—2) ", _, &
whereu’ € F22. Thenw' € Ny if and only if wiy(u’) = 1 (mod 2, andw’ € w + 2Ny if
andonlyifd ;& — ) ., & + 26 € Nao. This last condition is equivalent to the two
conditions:u’ + u € C and wiy(u’) + wty(u) + 2 = 0 (mod 4. By settingc := U’ + u,

we getc € C and wty(¢c) + 2c - u = 2 (mod 4. Hence, such a codeword does not exist if
and only ifu is in the shadow o€. Note that in this case, 2wtu) = 22 (mod 8, which
ensures thab € Nj,. Now two elements of the shadow are congruent mo@udmd define

a single class moduloNk, from the previous remarks. O

We have proved the two lemmas, and the fact that the minimum noim»ag 3. We
have already seen that Alit,) is a subgroup of AuiN,). Since the class dfl2/2N,; is
the unique one such thatandL* have minimum norm 3, it is preserved by AMb,) and
hence we have equality.

Now we prove that 5, has minimum norm 3. Sinckey; = Npo + Zw/2, (w = w(u),

u in the shadow oC), L3, = (N3,) = (U22),, U (U22 + €/2),,. Elements of norm lower
than 3 in this lattice can only have the fosm=e/2 — ", _, & with u" € C and the same
computation shows thax[ w] = wty(u)/2+ U’ -u+ 1= 1 (mod 2 and hence that does
not belong tal3,.

Let P be a 22-dimensional lattice of determinant 1 such thaind P* have minimum
norm 3, and containing an integral sublattidewith index 2. We shall prove tha® is
isometric toL »,. SinceN is integral, the quotient groul*/N has order 4 and contains a
subgroup of order 2 corresponding to an integral latticeHenceN ¢ U ¢ N* andU
is unimodular. The lattice) contains at most one norm 1 vector and can contain norm 2
vectors only if they are pairwise orthogonal (becausa; ifk; € U, X3 + x, € N which
has minimum norm 3). A look at the classification of 22-dimensional unimodular lattices
(cf. [3, Chapter 16]) shows that the only possibilitys>~ U,,. HenceN ~ N, which is
the only sublattice (up to isometry) of index 2 d§, not containing roots. The previous
discussion shows then thRt~ L ,,.

The lastassertionto proveis thgbisisodual. Sinc&},containdJ,, whichis anintegral
sublattice of index 2, we can take = L3, and conclude that?, >~ L,,. Therefore the
theorem follows. O
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Remark More precisely, the latticdd,, andN,, are exchanged by an automorphisnof
oftype (X, ..., X22) = (€1X1, ..., €22X22) Wheree; = +1, and the-1 defines the support
of an element of the shadow 6f. Such an automorphism also exchanfjesand its dual
lattice. Moreover, the latticél,, is isometric to the orthogonal in the latti€g; (cf. [3])
of any vector of norm 4.

Corollary 6.4 Foralli =1,...,6, A4(C‘22) is isometric to Lo,.

Proof: We only have to prove that these lattices contain integral sublattices of index 2.
These lattices\s(C},) are generated by the rows of matrices of the form

1(1 R
Gi=_ ,
(o 4)

where R are circulant matrices and the first rows are listed in TablR 4= (R j) has
integral coefficients and by Lemma RR' =3J —|.

Letr, ..., rq; be the first eleven rows d& and lets,, ..., 511 be the last eleven rows
of G. We have §,s;] = 4di j, [Ss.r;] = Rj; and fi,rj] = 3/4. Hence, one can verify
that the sublattice of index 2 spanned{by+rj, s, }1<i j<11 IS integral. O

Acknowledgment

The third author would like to thank Manabu Oura for helpful conversations.

References

1. E. Bannai, S.T. Dougherty, M. Harada, and M. Oura, “Type Il codes, even unimodular lattices and invariant
rings,” IEEE Trans. Inform. Theor$5(1999), 257—2609.

2. A. Bonnecaze, A.R. Calderbank, and P.eS6Quaternary quadratic residue codes and unimodular lattices,”
IEEE Trans. Inform. Theor$1 (1995), 366-377.

3. J.H. Conway and N.J.A. Sloarf&phere Packing, Lattices and Groug@sd ed.), Springer-Verlag, New York,
1993.

4. J.H. Conway and N.J.A. Sloane, “A new upper bound on the minimal distance of self-dual d&ds,”
Trans. Inform. Theory36 (1990), 1319-1333.

5. J.H. Conway and N.J.A. Sloane, “On lattices equivalent to their ddaN{imber. Theor$8(1994), 373-382.

6. T.A. Gulliver and M. Harada, “Extremal Type Il double circulant codes dZgrand construction of 5-
(24, 10, 36) designs, Discrete Math194(1999), 129-137.

7. T.A. Gulliver and M. Harada, “Double circulant self-dual codes dgy;,” IEEE Trans. Inform. Theorg4
(1998), 3105-3123.

8. G.T. Kennedy and V. Pless, “On designs and formally self-dual coBes,” Codes and Cryptogt.(1994),
43-55.

9. H.-G. Quebbemann, “Modular lattices in Euclidean spade®yumber. Theor$4 (1995), 190-202.

10. E. Rains and N.J.A. Sloane, “Self-dual codesfandbook of Coding TheorVy. Pless et al. (Ed.), Elsevier,
Amsterdam, 1998.
11. R. Scharlau and R. Schulze-Pillot, “Extremal lattices,Algorithmic Algebra and Number Theoqr.H.

Matzat, G.-M. Greuel, and G. Hiss (Ed.), Springer Verlag, 1999.



