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Abstract. We consider a distance-regular graph0with diameterd ≥ 3 and eigenvaluesk = θ0 > θ1 > · · · > θd.
We show the intersection numbersa1, b1 satisfy(

θ1 + k

a1 + 1

)(
θd + k

a1 + 1

)
≥ − ka1b1

(a1 + 1)2
.

We say0 is tight whenever0 is not bipartite, and equality holds above. We characterize the tight property in a
number of ways. For example, we show0 is tight if and only if the intersection numbers are given by certain
rational expressions involvingd independent parameters. We show0 is tight if and only ifa1 6= 0, ad = 0, and
0 is 1-homogeneous in the sense of Nomura. We show0 is tight if and only if each local graph is connected
strongly-regular, with nontrivial eigenvalues−1− b1(1+ θ1)

−1 and−1− b1(1+ θd)
−1. Three infinite families

and nine sporadic examples of tight distance-regular graphs are given.
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parameterization

1. Introduction

Let 0= (X, R) denote a distance-regular graph with diameterd ≥ 3, and eigenvalues
k = θ0 > θ1 > · · · > θd (see Section 2 for definitions). We show the intersection numbers
a1, b1 satisfy(

θ1+ k

a1+ 1

)(
θd + k

a1+ 1

)
≥ − ka1b1

(a1+ 1)2
. (1)

We define0 to betightwhenever0 is not bipartite, and equality holds in (1). We characterize
the tight condition in the following ways.

Our first characterization is linear algebraic. For all verticesx ∈ X, let x̂ denote the vector
in RX with a 1 incoordinatex, and 0 in all other coordinates. Suppose for the moment that
a1 6= 0, letx, y denote adjacent vertices inX, and writew =∑ ẑ, where the sum is over all
verticesz ∈ X adjacent to bothx andy. Letθ denote one ofθ1, θ2, . . . , θd, and letE denote
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the corresponding primitive idempotent of the Bose-Mesner algebra. We say the edgexy
is tight with respect toθ wheneverEx̂, Eŷ, Ew are linearly dependent. We show that if
xy is tight with respect toθ , thenθ is one ofθ1, θd. Moreover, we show the following are
equivalent: (i)0 is tight; (ii) a1 6= 0 and all edges of0 are tight with respect to bothθ1, θd;
(iii) a1 6= 0 and there exists an edge of0 which is tight with respect to bothθ1, θd.

Our second characterization of the tight condition involves the intersection numbers.
We show0 is tight if and only if the intersection numbers are given by certain rational
expressions involvingd independent variables.

Our third characterization of the tight condition involves the concept of1-homogeneous
that appears in the work of Nomura [14–16]. See also Curtin [7]. We show the following are
equivalent: (i)0 is tight; (ii) a1 6= 0,ad = 0, and0 is 1-homogeneous; (iii)a1 6= 0,ad = 0,
and0 is 1-homogeneous with respect to at least one edge.

Our fourth characterization of the tight condition involves the local structure and is
reminiscent of some results by Cameron, Goethals and Seidel [5] and Dickie and Terwilliger
[8]. For all x ∈ X, let1(x) denote the vertex subgraph of0 induced on the vertices inX
adjacent tox. For notational convenience, defineb+ :=−1 − b1(1 + θd)

−1 and b− :=
−1− b1(1+ θ1)

−1. We show the following are equivalent: (i)0 is tight; (ii) for all x ∈ X,
1(x) is connected strongly-regular with nontrivial eigenvaluesb+, b−; (iii) there exists
x ∈ X such that1(x) is connected strongly-regular with nontrivial eigenvaluesb+, b−.

We present three infinite families and nine sporadic examples of tight distance-regular
graphs. These are the Johnson graphsJ(2d, d), the halved cubes12 H(2d, 2), the Taylor
graphs [19], four 3-fold antipodal covers of diameter 4 constructed from the sporadic Fisher
groups [3, p. 397], two 3-fold antipodal covers of diameter 4 constructed by Soicher [18],
a 2-fold and a 4-fold antipodal cover of diameter 4 constructed by Meixner [13], and the
Patterson graph [3, Thm. 13.7.1], which is primitive, distance-transitive and of diameter 4.

2. Preliminaries

In this section, we review some definitions and basic concepts. See the books of Bannai and
Ito [1] or Brouwer, Cohen, and Neumaier [3] for more background information.

Let 0 = (X, R) denote a finite, undirected, connected graph, without loops or multi-
ple edges, with vertex setX, edge setR, path-length distance function∂, and diameter
d := max{∂(x, y) | x, y∈ X}. For all x ∈ X and for all integersi , we set0i (x) :={y ∈
X | ∂(x, y) = i }.We abbreviate0(x) := 01(x). By thevalencyof a vertexx ∈ X, we mean
the cardinality of0(x). Let k denote a nonnegative integer. Then0 is said to beregular,
with valency k, whenever each vertex inX has valencyk. 0 is said to bedistance-regular
whenever for all integersh, i, j (0 ≤ h, i, j ≤ d), and for allx, y ∈ X with ∂(x, y) = h,
the number

ph
i j := |0i (x) ∩ 0 j (y)|

is independent ofx andy. The constantsph
i j are known as theintersection numbersof0. For

notational convenience, setci := pi
1i−1 (1 ≤ i ≤ d), ai := pi

1i (0 ≤ i ≤ d), bi := pi
1i+1

(0 ≤ i ≤ d − 1), ki := p0
i i (0 ≤ i ≤ d), and definec0 = 0, bd = 0. We notea0 = 0 and
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c1 = 1. From now on,0 = (X, R) will denote a distance-regular graph of diameterd ≥ 3.
Observe0 is regular with valencyk = k1 = b0, and that

k = ci + ai + bi (0≤ i ≤ d). (2)

We now recall the Bose-Mesner algebra. Let MatX(R) denote theR-algebra consisting of
all matrices with entries inR whose rows and columns are indexed byX. For each integer
i (0≤ i ≤ d), let Ai denote the matrix in MatX(R) with x, y entry

(Ai )xy =
{

1, if ∂(x, y) = i,

0, if ∂(x, y) 6= i
(x, y ∈ X).

Ai is known as theith distance matrixof 0. Observe

A0 = I , (3)

A0+ A1+ · · · + Ad = J (J = all 1’s matrix), (4)

At
i = Ai (0≤ i ≤ d), (5)

Ai Aj =
d∑

h=0

ph
i j Ah (0≤ i, j ≤ d). (6)

We abbreviateA := A1, and refer to this as theadjacency matrixof 0. Let M denote the
subalgebra of MatX(R) generated byA. We refer toM as theBose-Mesner algebraof 0.
Using (3)–(6), one can readily showA0, A1, . . . , Ad form a basis forM . By [1, pp. 59, 64],
the algebraM has a second basisE0, E1, . . . , Ed such that

E0 = |X|−1J, (7)

E0+ E1+ · · · + Ed = I , (8)

Et
i = Ei (0≤ i ≤ d), (9)

Ei Ej = δi j Ei (0≤ i, j ≤ d). (10)

The E0, E1, . . . , Ed are known as theprimitive idempotentsof 0. We refer toE0 as the
trivial idempotent.

Let θ0, θ1, . . . , θd denote the real numbers satisfyingA = ∑d
i=0 θi Ei . ObserveAEi =

Ei A = θi Ei for 0 ≤ i ≤ d, and thatθ0, θ1, . . . , θd are distinct sinceA generatesM . It
follows from (7) thatθ0 = k, and it is known−k ≤ θi ≤ k for 0 ≤ i ≤ d [1, p. 197]. We
refer toθi as theeigenvalueof 0 associated withEi , and callθ0 the trivial eigenvalue. For
each integeri (0 ≤ i ≤ d), let mi denote the rank ofEi . We refer tomi as themultiplicity
of Ei (or θi ). We observem0 = 1.

We now recall the cosines. Letθ denote an eigenvalue of0, and letE denote the associated
primitive idempotent. Letσ0, σ1, . . . , σd denote the real numbers satisfying

E = |X|−1m
d∑

i=0

σi Ai , (11)
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wherem denotes the multiplicity ofθ . Taking the trace in (11), we findσ0 = 1. We often
abbreviateσ = σ1. We refer toσi as theith cosineof 0 with respect toθ (or E), and call
σ0, σ1, . . . , σd thecosine sequenceof 0 associated withθ (or E). We interpret the cosines
as follows. LetRX denote the vector space consisting of all column vectors with entries inR
whose coordinates are indexed byX. We observe MatX(R)acts onRX by left multiplication.
We endowRX with the Euclidean inner product satisfying

〈u, v〉 = utv (u, v ∈ RX), (12)

wheret denotes transposition. For eachx ∈ X, let x̂ denote the element inRX with a 1 in
coordinatex, and 0 in all other coordinates. We note{x̂ | x ∈ X} is an orthonormal basis
for RX.

Lemma 2.1 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3. Let
E denote a primitive idempotent of0, and letσ0, σ1, . . . , σd denote the associated cosine
sequence. Then for all integers i(0 ≤ i ≤ d), and for all x, y ∈ X such that∂(x, y) = i,
the following(i)–(iii ) hold.
(i) 〈Ex̂, Eŷ〉 = m|X|−1σi , where m denotes the multiplicity of E.
(ii) The cosine of the angle between the vectors Ex̂ andEŷ equalsσi .
(iii ) −1≤ σi ≤ 1.

Proof: Line (i) is a routine application of (10), (11), (12). Line (ii) is immediate from (i),
and (iii) is immediate from (ii). 2

Lemma 2.2 [3, Sect. 4.1.B] Let0 denote a distance-regular graph with diameter d≥ 3.
Then for any complex numbersθ, σ0, σ1, . . . , σd, the following are equivalent.

(i) θ is an eigenvalue of0, andσ0, σ1, . . . , σd is the associated cosine sequence.
(ii) σ0 = 1, and

ciσi−1+ aiσi + biσi+1 = θσi (0≤ i ≤ d), (13)

whereσ−1 andσd+1 are indeterminates.
(iii) σ0 = 1, kσ = θ, and

ci (σi−1− σi )− bi (σi − σi+1) = k(σ − 1)σi (1≤ i ≤ d), (14)

whereσd+1 is an indeterminate.

For later use we record a number of consequences of Lemma 2.2.

Lemma 2.3 Let0 denote a distance-regular graph with diameter d≥ 3. Letθ denote an
eigenvalue of0, and letσ0, σ1, . . . , σd denote the associated cosine sequence. Then(i)–(vi)
hold below.

(i) kb1σ2 = θ2− a1θ − k.
(ii) kb1(σ − σ2) = (k− θ)(1+ θ).
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(iii) kb1(1− σ2) = (k− θ)(θ + k− a1).

(iv) k2b1(σ
2− σ2) = (k− θ)(k+ θ(a1+ 1)).

(v) cd(σd−1− σd) = k(σ − 1)σd.
(vi) ad(σd−1− σd) = k(σd−1− σσd).

Proof: To get (i), seti = 1 in (13), and solve forσ2. Lines (ii)–(iv) are routinely verified
using (i) above andkσ = θ . To get (v), seti = d, bd = 0 in Lemma 2.2 (iii). To get (vi),
setcd = k− ad in (v) above, and simplify the result. 2

In this article, the second largest and minimal eigenvalue of a distance-regular graph turn
out to be of particular interest. In the next several lemmas, we give some basic information
on these eigenvalues.

Lemma 2.4 [9, Lem. 13.2.1] Let0 denote a distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Letθ denote one ofθ1, θd and letσ0, σ1, . . . , σd denote
the cosine sequence forθ .
(i) Supposeθ = θ1. Thenσ0 > σ1 > · · · > σd.
(ii) Supposeθ = θd. Then(−1)iσi > 0 (0≤ i ≤ d).

Recall a distance-regular graph0 is bipartite whenever the intersection numbers satisfy
ai = 0 for 0≤ i ≤ d, whered denotes the diameter.

Lemma 2.5 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3. Let
θd denote the minimal eigenvalue of0, and letσ0, σ1, . . . , σd denote the associated cosine
sequence. Then the following are equivalent: (i) 0 is bipartite; (ii) θd = −k; (iii) σ1 = −1;
(iv) σ2 = 1. Moreover, suppose(i)–(iv) hold. Thenσi = (−1)i for 0≤ i ≤ d.

Proof: The equivalence of (i), (ii) follows from [3, Prop. 3.2.3]. The equivalence of (ii),
(iii) is immediate fromkσ1 = θd. The remaining implications follow from [3, Prop. 4.4.7].

2

Lemma 2.6 Let0 denote a distance-regular graph with diameter d≥ 3 and eigenvalues
θ0 > θ1 > · · · > θd. Then(i)–(iii) hold below.

(i) 0 < θ1 < k.
(ii) a1− k ≤ θd < −1.

(iii) Suppose0 is not bipartite. Then a1− k < θd.

Proof: (i) The eigenvalueθ1 is positive by [3, Cor. 3.5.4], and we have seenθ1 < k.
(ii) Let σ1, σ2 denote the first and second cosines forθd. Thenσ2 ≤ 1 by Lemma 2.1 (iii),
soa1− k ≤ θd in view of Lemma 2.3 (iii). Alsoσ1 < σ2 by Lemma 2.4 (ii), soθd < −1 in
view of Lemma 2.3 (ii).
(iii) Supposeθd = a1 − k. Applying Lemma 2.3 (iii), we findσ2 = 1, whereσ2 denotes
the second cosine forθd. Now0 is bipartite by Lemma 2.5, contradicting our assumptions.
Henceθd > a1− k, as desired. 2

We mention a few results on the intersection numbers.
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Lemma 2.7 Let0 = (X, R) denote a nonbipartite distance-regular graph with diameter
d ≥ 3, let x, y denote adjacent vertices in X, and let E denote a nontrivial primitive
idempotent of0. Then the vectors Êx and Eŷ are linearly independent.

Proof: Let σ denote the first cosine associated toE. Thenσ 6= 1, sinceE is nontrivial,
andσ 6= −1, since0 is not bipartite. Applying Lemma 2.1 (ii), we seeEx̂ and Eŷ are
linearly independent. 2

Lemma 2.8 [3, Prop. 5.5.1] Let0 denote a distance-regular graph with diameter d≥ 3
and a1 6= 0. Then ai 6= 0 (1≤ i ≤ d − 1).

Lemma 2.9 [3, Lem. 4.1.7] Let0 denote a distance-regular graph with diameter d≥ 3.
Then the intersection numbers satisfy

p1
ii =

b1b2 . . .bi−1

c1c2 . . . ci
ai , p1

i−1,i =
b1b2 . . .bi−1

c1c2 . . . ci−1
(1≤ i ≤ d).

For the remainder of this section, we describe a point of view we will adopt throughout the
paper.

Definition 2.10 Let 0 = (X, R) denote a distance-regular graph with diameterd ≥ 3,
and fix adjacent verticesx, y ∈ X. For all integersi and j we defineD j

i = D j
i (x, y) by

D j
i = 0i (x) ∩ 0 j (y). (15)

We observe|D j
i | = p1

i j for 0 ≤ i, j ≤ d, andD j
i = ∅ otherwise. We visualize theD j

i as
follows (figure 1).

Figure 1. Distance distribution corresponding to an edge. Observe:Di−1
i ∪ Di

i ∪ Di+1
i = 0i (x) for i = 1, . . . ,d.

The number beside edges connecting cellsD j
i indicate how many neighbours a vertex from the closer cell has in

the other cell, see Lemma 2.11.
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Lemma 2.11 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3. Fix
adjacent vertices x, y ∈ X, and pick any integer i(1 ≤ i ≤ d). Then with reference to
Definition2.10,the following(i) and(ii) hold.
(i) Each z∈ Di

i−1 (resp. Di−1
i ) is adjacent to

(a) precisely ci−1 vertices in Di−1
i−2 (resp. Di−2

i−1),
(b) precisely ci − ci−1− |0(z) ∩ Di−1

i−1| vertices in Di−1
i (resp. Di

i−1),
(c) precisely ai−1− |0(z) ∩ Di−1

i−1| vertices in Di
i−1 (resp. Di−1

i ),
(d) precisely bi vertices in Di+1

i (resp. Di
i+1),

(e) precisely ai − ai−1+ |0(z) ∩ Di−1
i−1| vertices in Di

i .
(ii) Each z∈ Di

i is adjacent to
(a) precisely ci − |0(z) ∩ Di−1

i−1| vertices in Di
i−1,

(b) precisely ci − |0(z) ∩ Di−1
i−1| vertices in Di−1

i ,
(c) precisely bi − |0(z) ∩ Di+1

i+1| vertices in Di+1
i ,

(d) precisely bi − |0(z) ∩ Di+1
i+1| vertices in Di

i+1,
(e) precisely ai − bi − ci + |0(z) ∩ Di−1

i−1| + |0(z) ∩ Di+1
i+1| vertices in Di

i .

Proof: Routine. 2

3. Edges that are tight with respect to an eigenvalue

Let 0= (X, R) denote a graph, and letÄ denote a nonempty subset ofX. By thevertex
subgraphof0 induced onÄ, we mean the graph with vertex setÄ, and edge set{xy | x, y ∈
Ä, xy ∈ R}.

Definition 3.1 Let 0 = (X, R) denote a distance-regular graph with diameterd ≥ 3 and
intersection numbera1 6= 0. For each edgexy ∈ R, we define the scalarf = f (x, y) by

f := a−1
1

∣∣{(z, w) ∈ X2
∣∣ z, w ∈ D1

1, ∂(z, w) = 2
}∣∣, (16)

whereD1
1 = D1

1(x, y) is from (15). We observef is the average valency of the complement
of the vertex subgraph induced onD1

1.

We begin with some elementary facts aboutf .

Lemma 3.2 Let 0= (X, R) denote a distance-regular graph with diameter d≥ 3 and
a1 6= 0. Let x, y denote adjacent vertices in X. Then with reference to(15), (16), lines
(i)–(iv) hold below.

(i) The number of edges in R connecting a vertex in D1
1 with a vertex in D2

1 is equal to
a1 f .

(ii) The number of edges in the vertex subgraph induced on D1
1 is equal to a1(a1−1− f )/2.

(iii) The number of edges in the vertex subgraph induced on D2
1 is equal to a1(b1− f )/2.

(iv) 0 ≤ f, f ≤ a1− 1, f ≤ b1.
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Proof: Routine. 2

The following lemma provides another bound forf .

Lemma 3.3 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
a1 6= 0. Let x, y denote adjacent vertices in X, and write f= f (x, y). Then for each
nontrivial eigenvalueθ of 0,

(k+ θ)(1+ θ) f ≤ b1(k+ θ(a1+ 1)). (17)

Proof: Letσ0, . . . , σd denote the cosine sequence ofθ and letE denote the corresponding
primitive idempotent. Set

w :=
∑
z∈D1

1

ẑ,

whereD1
1 = D1

1(x, y) is from (15). LetG denote the Gram matrix for the vectorsEx̂, Eŷ,
Ew; that is

G :=

 ‖Ex̂‖2 〈Ex̂, Eŷ〉 〈Ex̂, Ew〉
〈Eŷ, Ex̂〉 ‖Eŷ‖2 〈Eŷ, Ew〉
〈Ew, Ex̂〉 〈Ew, Eŷ〉 ‖Ew‖2

 .
On one hand, the matrixG is positive semi-definite, so it has nonnegative determinant. On
the other hand, by Lemma 2.1,

det(G) = m3|X|−3det

 σ0 σ1 a1σ1

σ1 σ0 a1σ1

a1σ1 a1σ1 a1(σ0+ (a1− f − 1)σ1+ f σ2)


= m3a1|X|−3(σ − 1)((σ − σ2)(1+ σ) f − (1− σ)(a1σ + 1+ σ)),

wherem denotes the multiplicity ofθ . Sincea1 > 0 andσ < 1, we find

(σ − σ2)(1+ σ) f ≤ (1− σ)(a1σ + 1+ σ). (18)

Eliminatingσ, σ2 in (18) usingθ = kσ and Lemma 2.3(ii), and simplifying the result using
θ < k, we routinely obtain (17). 2

Corollary 3.4 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
a1 6= 0. Let x, y denote adjacent vertices in X, and letθ denote a nontrivial eigenvalue of
0. Then with reference to Definition2.10, the following are equivalent.

(i) Equality is attained in(17).
(ii) Ex̂, Eŷ,

∑
z∈D1

1
Eẑ are linearly dependent.
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(iii)
∑

z∈D1
1

Eẑ= a1θ
k+θ (Ex̂ + Eŷ).

We say the edgexy is tight with respect toθ whenever (i)–(iii) hold above.

Proof: (i)⇔(ii) Let the matrixG be as in the proof of Lemma 3.3. Then we find (i) holds
if and only if G is singular, if and only if (ii) holds.
(ii)⇒(iii) 0 is not bipartite sincea1 6= 0, so Ex̂, and Eŷ are linearly independent by
Lemma 2. It follows∑

z∈D1
1

Eẑ= αEx̂ + βEŷ (19)

for someα, β ∈ R. Taking the inner product of (19) with each ofEx̂, Eŷ using Lemma
2.1, we readily obtainα = β = a1θ(k+ θ)−1.
(iii)⇒(ii) Clear. 2

Let0= (X, R)denote a distance-regular graph with diameterd≥ 3,a1 6= 0, and eigenvalues
θ0 > θ1 > · · · > θd. Pick adjacent verticesx, y ∈ X, and write f = f (x, y). Referring
to (17), we now consider which ofθ1, θ2, . . . , θd gives the best bounds forf . Let θ denote
one ofθ1, θ2, . . . , θd. Assumeθ 6= −1; otherwise (17) gives no information aboutf . If
θ > −1 (resp.θ < −1), line (17) gives an upper (resp. lower) bound forf . Consider the
partial fraction decompostion

b1
k+ θ(a1+ 1)

(k+ θ)(1+ θ) =
b1

k− 1

(
ka1

k+ θ +
b1

1+ θ
)
.

Since the mapF : R\{−k,−1} → R, defined by

x 7→ ka1

k+ x
+ b1

1+ x

is strictly decreasing on the intervals(−k,−1) and(−1,∞), we find in view of Lemma
2.6 that the least upper bound forf is obtained atθ = θ1, and the greatest lower bound is
obtained atθ = θd.

Theorem 3.5 Let 0= (X, R) denote a distance-regular graph with diameter d≥ 3,
a1 6= 0, and eigenvaluesθ0 > θ1 > · · · > θd. For all edges xy∈ R,

b1
k+ θd(a1+ 1)

(k+ θd)(1+ θd)
≤ f (x, y)≤ b1

k+ θ1(a1+ 1)

(k+ θ1)(1+ θ1)
. (20)

Proof: This is immediate from (17) and Lemma 2.6. 2

Corollary 3.6 Let 0 = (X, R) denote a distance-regular graph with diameter d≥ 3,
a1 6= 0, and eigenvaluesθ0 > θ1 > · · · > θd. For all edges xy∈ R,
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(i) xy is tight with respect toθ1 if and only if equality holds in the right inequality of(20),
(ii) xy is tight with respect toθd if and only if equality holds in the left inequality of(20),

(iii) xy is not tight with respect toθi for 2≤ i ≤ d − 1.

Proof: (i), (ii) Immediate from (17) and Corollary 3.4.
(iii) First supposeθi = −1. We do not have equality forθ = θi in (17), since the left side
equals 0, and the right side equalsb2

1. In particular,xy is not tight with respect toθi . Next
supposeθi 6= −1. Then we do not have equality forθ = θi in (17) in view of the above
mentioned fact, that the functionF is strictly decreasing on the intervals(−k,−1) and
(−1,∞). 2

4. Tight edges and combinatorial regularity

Theorem 4.1 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
intersection number a1 6= 0. Letθ denote a nontrivial eigenvalue of0,and letσ0, σ1, . . . , σd

denote its cosine sequence. Let x, y denote adjacent vertices in X. Then with reference to
Definition2.10, the following are equivalent.
(i) xy is tight with respect toθ.

(ii) For 1≤ i ≤ d; bothσi−1 6= σi , and for all z∈ Di
i−1∣∣0i−1(z) ∩ D1

1

∣∣ = a1

1+ σ
σσi−1− σi

σi−1− σi
, (21)

∣∣0i (z) ∩ D1
1

∣∣ = a1

1+ σ
σi−1− σσi

σi−1− σi
. (22)

Proof: (i)⇒(ii) Let the integeri be given. Observe by Corollary 3.6 thatθ is either the
second largest eigenvalueθ1 or the least eigenvalueθd, soσi−1 6= σi in view of Lemma 2.4.
Pick anyz ∈ Di

i−1. ObserveD1
1 containsa1 vertices, and each is at distancei − 1 or i from

z, so ∣∣0i−1(z) ∩ D1
1

∣∣+ ∣∣0i (z) ∩ D1
1

∣∣ = a1. (23)

Let E denote the primitive idempotent associated toθ . By Corollary 3.4(iii), and sincexy
is tight with respect toθ ,∑

w∈D1
1

Eŵ = a1σ

1+ σ (Ex̂ + Eŷ). (24)

Taking the inner product of (24) withEẑ using Lemma 2.1, we obtain

σi−1

∣∣0i−1(z) ∩ D1
1

∣∣+ σi

∣∣0i (z) ∩ D1
1

∣∣ = a1σ

1+ σ (σi−1+ σi ). (25)

Solving the system (23), (25), we routinely obtain (21), (22).
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(ii)⇒(i) We show equality holds in (17). Counting the edges betweenD1
1 and D2

1 using
(21) (with i = 2), we find in view of Lemma 3.2(i) that

f (x, y) = b1
σ 2− σ2

(1+ σ)(σ − σ2)
. (26)

Eliminatingσ, σ2 in (26) usingθ = kσ and Lemma 2.3(ii), (iv), we readily find equality
holds in (17). Nowxy is tight with respect toθ by Corollary 3.4. 2

Theorem 4.2 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
a1 6= 0. Letθ denote a nontrivial eigenvalue of0, and letσ0, σ1, . . . , σd denote its cosine
sequence. Let x, y denote adjacent vertices in X. Then with reference to Definition2.10,
the following are equivalent.
(i) xy is tight with respect toθ,

(ii) For 1≤ i ≤ d − 1; bothσi 6= σi+1, and for all z∈ Di
i∣∣0i+1(z) ∩ D1

1

∣∣ = ∣∣0i−1(z) ∩ D1
1

∣∣σi−1− σi

σi − σi+1
+ a1

1− σ
1+ σ

σi

σi − σi+1
, (27)

∣∣0i (z) ∩ D1
1

∣∣ = −∣∣0i−1(z) ∩ D1
1

∣∣σi−1− σi+1

σi − σi+1
+ a1

2σ

1+ σ
−a1

1− σ
1+ σ

σi+1

σi − σi+1
. (28)

Suppose(i)–(ii) above, and that ad 6= 0. Then for all z∈ Dd
d∣∣0d−1(z) ∩ D1

1

∣∣ = −a1
1− σ
1+ σ

σd

σd−1− σd
, (29)

∣∣0d(z) ∩ D1
1

∣∣ = a1+ a1
1− σ
1+ σ

σd

σd−1− σd
. (30)

Proof: (i)⇒(ii) Let the integeri be given. Observe by Corollary 3.6 thatθ is either the
second largest eigenvalueθ1 or the least eigenvalueθd, soσi 6= σi+1 by Lemma 2.4. Pick
anyz ∈ Di

i . Proceeding as in the proof of Theorem 4.1(i)⇒(ii), we find∣∣0i−1(z) ∩ D1
1

∣∣+ ∣∣0i (z) ∩ D1
1

∣∣+ ∣∣0i+1(z) ∩ D1
1

∣∣ = a1, (31)

σi−1

∣∣0i−1(z) ∩ D1
1

∣∣+ σi

∣∣0i (z) ∩ D1
1

∣∣+ σi+1

∣∣0i+1(z) ∩ D1
1

∣∣ = 2σσi a1

1+ σ . (32)

Solving (31), (32) for|0i (z) ∩ D1
1|, |0i+1(z) ∩ D1

1|, we routinely obtain (27) and (28).

(ii)⇒(i) Settingi = 1 in (27), and evaluating the result using (16), we find

f (x, y) = 1− σ
σ − σ2

+ a1
1− σ
1+ σ

σ

σ − σ2
. (33)
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Eliminatingσ, σ2 in (33) usingθ = kσ and Lemma 2.3 (ii), we find equality holds in (17).
Now xy is tight with respect toθ by Corollary 3.4.
Now suppose (i)–(ii) hold above, and thatad 6= 0. Pick anyz ∈ Dd

d . Proceeding as in the
proof of Theorem 4.1(i)⇒(ii), we find∣∣0d−1(z) ∩ D1

1

∣∣+ ∣∣0d(z) ∩ D1
1

∣∣ = a1, (34)

σd−1

∣∣0d−1(z) ∩ D1
1

∣∣+ σd

∣∣0d(z) ∩ D1
1

∣∣ = 2σdσa1

1+ σ . (35)

Observeσd−1 6= σd by (ii) above, so the linear system (34), (35) has unique solution (29),
(30). 2

5. The tightness of an edge

Definition 5.1 Let 0= (X, R) denote a distance-regular graph with diameterd ≥ 3,
intersection numbera1 6= 0, and eigenvaluesθ0 > θ1 > · · · > θd. For each edgexy ∈ R,
let t = t (x, y) denote the number of nontrivial eigenvalues of0 with respect to whichxy
is tight. We callt thetightnessof the edgexy. In view of Corollary 3.6 we have:

(i) t = 2 if xy is tight with respect to bothθ1 andθd;
(ii) t = 1 if xy is tight with respect to exactly one ofθ1 andθd;

(iii) t = 0 if xy is not tight with respect toθ1 or θd.

Theorem 5.2 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3 and
a1 6= 0. For all edges xy∈ R, the tightness t= t (x, y) is given by

t = 3d + 1− dim(MH), (36)

where M denotes the Bose-Mesner algebra of0, where

H = Span

x̂, ŷ,
∑

z∈D1
1(x,y)

ẑ

 , (37)

and where MH meansSpan{mh|m∈M, h∈ H}.

Proof: SinceE0, E1, . . . , Ed is a basis forM , and in view of (10),

MH =
d∑

i=0

Ei H (direct sum),

and it follows

dimMH =
d∑

i=0

dim Ei H.
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Note that dimE0H = 1. For 1≤ i ≤ d, we find by Lemma 2.7 and Corollary 3.4(ii)
that dimEi H = 2 if xy is tight with respect toθi , and dimEi H = 3 otherwise. The result
follows. 2

6. Tight graphs and the fundamental bound

In this section, we obtain an inequality involving the second largest and minimal eigenvalue
of a distance-regular graph. To obtain it, we need the following lemma.

Lemma 6.1 Let 0 denote a nonbipartite distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Then

k+ θ1(a1+ 1)

(k+ θ1)(1+ θ1)
− k+ θd(a1+ 1)

(k+ θd)(1+ θd)
(38)

= 9
(a1+ 1)(θd − θ1)

(1+ θ1)(1+ θd)(k+ θ1)(k+ θd)
, (39)

where

9 =
(
θ1+ k

a1+ 1

)(
θd+ k

a1+ 1

)
+ ka1b1

(a1+ 1)2
. (40)

Proof: Put (38) over a common denominator, and simplify. 2

We now present our inequality. We give two versions.

Theorem 6.2 Let0 denote a distance-regular graph with diameter d≥ 3,and eigenvalues
θ0 > θ1 > · · · > θd. Then(i), (ii) hold below.
(i) Suppose0 is not bipartite. Then

k+ θd(a1+ 1)

(k+ θd)(1+ θd)
≤ k+ θ1(a1+ 1)

(k+ θ1)(1+ θ1)
. (41)

(ii)

(
θ1+ k

a1+ 1

)(
θd + k

a1+ 1

)
≥ − ka1b1

(a1+ 1)2
. (42)

We refer to(42) as theFundamental Bound.

Proof: (i) First assumea1= 0. Then the left side of (41) equals(1+ θd)
−1, and is therefore

negative. The right side of (41) equals(1+ θ1)
−1, and is therefore positive. Next assume

a1 6= 0. Then (41) is immediate from (20).
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(ii) First assume0 is bipartite. Thenθd = −k anda1 = 0, so both sides of (42) equal 0.
Next assume0 is not bipartite. Then (42) is immediate from (i) above, Lemma 6.1, and
Lemma 2.6. 2

We now consider when equality is attained in Theorem 6.2. To avoid trivialities, we consider
only the nonbipartite case.

Corollary 6.3 Let0 denote a nonbipartite distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Then the following are equivalent.

(i) Equality holds in(41).
(ii) Equality holds in(42).

(iii) a1 6= 0 and every edge of0 is tight with respect to bothθ1 andθd.
(iv) a1 6= 0 and there exists an edge of0 which is tight with respect to bothθ1 andθd.

Proof: (i)⇔(ii) Immediate from Lemma 6.1.
(i),(ii)⇒(iii) Supposea1 = 0. We assume (42) holds with equality, so(θ1+k)(θd+k) = 0,
forcing θd = −k. Now0 is bipartite by Lemma 2.5, contradicting the assumption. Hence
a1 6= 0. Letxy denote an edge of0. Observe the expressions on the left and right in (20) are
equal, so they both equalf (x, y). Now xy is tight with respect to bothθ1, θd by Corollary
3.6(i),(ii).
(iii)⇒(iv) Clear.
(iv)⇒(i) Suppose the edgexy is tight with respect to bothθ1, θd. By Corollary 3.6(i),(ii),
the scalarf (x, y) equals both the expression on the left and the expression on the right in
(20), so these expressions are equal. 2

Definition 6.4 Let 0= (X, R) denote a distance-regular graph with diameterd ≥ 3. We
say0 is tight whenever0 is not bipartite and the equivalent conditions (i)–(iv) hold in
Corollary 6.3.

We wish to emphasize the following fact.

Proposition 6.5 Let0 denote a tight distance-regular graph with diameter d≥ 3. Then
ai 6= 0 (1≤ i ≤ d − 1).

Proof: Observea1 6= 0 by Corollary 6.3(iii) and Definition 6.4. Nowa2, . . . ,ad−1 are
nonzero by Lemma 2.8. 2

We finish this section with some inequalities involving the eigenvalues of tight graphs.

Lemma 6.6 Let0 = (X, R) denote a tight distance-regular graph with diameter d≥ 3
and eigenvaluesθ0 > θ1 > · · · > θd. Then(i)–(iv) hold below.

(i) θd <
−k

a1+1.
(ii) Letρ, ρ2 denote the first and second cosines forθd, respectively. Thenρ2 < ρ2.

(iii) Letσ, σ2 denote the first and second cosines forθ1, respectively. Thenσ 2 > σ2.
(iv) For each edge xy of0, the scalar f= f (x, y) satisfies0< f < b1.
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Proof: (i) Observe (42) holds with equality since0 is tight, anda1 6= 0 by Proposition 6.5,
so (

θ1+ k

a1+ 1

)(
θd+ k

a1+ 1

)
< 0.

Sinceθ1 > θd, the first factor is positive, and the second is negative. The result follows.
(ii) By Lemma 2.3(iv),

k2b1(ρ
2− ρ2) = (k− θd)(k+ θd(a1+ 1)). (43)

The right side of (43) is negative in view of (i) above, soρ2 < ρ2.
(iii) By Lemma 2.3(iv),

k2b1(σ
2− σ2) = (k− θ1)(k+ θ1(a1+ 1)). (44)

The right side of (44) is positive in view of Lemma 2.6(i), soσ 2>σ2.
(iv) Observe f equals the expression on the right in (20). This expression is positive and
less thanb1, sinceθ1 is positive. 2

7. Two characterizations of tight graphs

Theorem 7.1 Let0 denote a nonbipartite distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Then for all real numbersα, β, the following are
equivalent.

(i) 0 is tight, andα, β is a permutation ofθ1, θd.
(ii) θd ≤ α, β ≤ θ1, and(

α+ k

a1+ 1

)(
β + k

a1+ 1

)
= − ka1b1

(a1+ 1)2
. (45)

Proof: (i)⇒(ii) Immediate since (42) holds with equality.
(ii)⇒(i) Interchangingα andβ if necessary, we may assumeα ≥ β. Since the right side
of (45) is nonpositive, we have

0≤ α+ k

a1+ 1
≤ θ1+ k

a1+ 1
,

0≥ β + k

a1+ 1
≥ θd+ k

a1+ 1
.

By (45), the above inequalities, and (42), we have

− ka1b1

(a1+ 1)2
=
(
α+ k

a1+ 1

)(
β + k

a1+ 1

)
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≥
(
θ1+ k

a1+ 1

)(
θd+ k

a1+ 1

)
(46)

≥ − ka1b1

(a1+ 1)2
. (47)

Apparently we have equality in (46), (47). In particular (42) holds with equality, so0 is tight.
We mentioned equality holds in (46). Neither side is 0, sincea1 6= 0 by Proposition 6.5,
and it followsα = θ1, β = θd. 2

Theorem 7.2 Let0 = (X, R) denote a nonbipartite distance-regular graph with diam-
eter d≥ 3, and eigenvaluesθ0>θ1> · · · >θd. Let θ and θ ′ denote distinct eigenvalues
of0,with respective cosine sequencesσ0, σ1, . . . , σd andρ0, ρ1, . . . , ρd. The following are
equivalent.

(i) 0 is tight, andθ, θ ′ is a permutation ofθ1, θd.
(ii) For 1≤ i ≤ d,

σσi−1− σi

(1+ σ)(σi−1− σi )
= ρρi−1− ρi

(1+ ρ)(ρi−1− ρi )
, (48)

and the denominators in(48) are nonzero.

(iii)
σ 2− σ2

(1+ σ)(σ − σ2)
= ρ2− ρ2

(1+ ρ)(ρ− ρ2)
, (49)

and the denominators in(49) are nonzero.
(iv) θ andθ ′ are both nontrivial, and

(σ2ρ2− σρ)(ρ − σ) = (σρ2− σ2ρ)(σρ − 1). (50)

Proof: (i)⇒(ii) Recall a1 6= 0 by Proposition 6.5. Pick adjacent verticesx, y ∈ X, and
let D1

1 = D1
1(x, y) be as in Definition 2.10. By Corollary 6.3(iii), the edgexy is tight with

respect to bothθ , θ ′; applying (21), we find both sides of (48) equala−1
1 |0i−1(z) ∩ D1

1|,
wherez denotes any vertex inDi

i−1(x, y). In particular, the two sides of (48) are equal. The
denominators in (48) are nonzero by Lemma 2.4 and Lemma 2.5.
(ii)⇒(iii) Set i = 2 in (ii).
(iii)⇒(iv) θ is nontrivial; otherwiseσ = σ2 = 1, and a denominator in (49) is zero.
Similarly θ ′ is nontrivial. To get (50), put (49) over a common denominator and simplify
the result.
(iv)⇒(i) Eliminating σ, σ2, ρ, ρ2 in (50) usingθ = kσ , θ ′ = kρ, and Lemma 2.3(i), we
routinely find (45) holds forα = θ andβ = θ ′. Applying Theorem 7.1, we find0 is tight,
and thatθ , θ ′ is a permutation ofθ1, θd. 2
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8. The auxiliary parameter

Let0 denote a tight distance-regular graph with diameterd ≥ 3. We are going to show the
intersection numbers of0 are given by certain rational expressions involvingd independent
parameters. We begin by introducing one of these parameters.

Definition 8.1 Let0 denote a tight distance-regular graph with diameterd≥ 3, and eigen-
valuesθ0 > θ1 > · · · > θd. Let θ denote one ofθ1, θd. By theauxiliary parameterof 0
associated withθ , we mean the scalar

ε = k2− θθ ′
k(θ − θ ′) , (51)

whereθ ′ denotes the complement ofθ in {θ1, θd}. We observe the auxiliary parameter for
θd is the opposite of the auxiliary parameter forθ1.

Lemma 8.2 Let 0 denote a tight distance-regular graph with diameter d≥ 3, and
eigenvaluesθ0 > θ1 > · · · > θd. Letθ denote one ofθ1, θd, and letε denote the auxiliary
parameter forθ . Then(i)–(iv) hold below.

(i) ε > 0 if θ = θ1, andε < 0 if θ = θd.
(ii) 1 < |ε|.
(iii) |ε| < kθ−1

1 .
(iv) |ε| < −kθ−1

d .

Proof: First assumeθ = θ1. By (51),

ε − 1= (k+ θd)(k− θ1)(θ1− θd)
−1k−1 > 0,

soε > 1. Recallθ1 > 0 andθd < 0. By this and (51),

kθ−1
1 − ε = θd(k− θ1)(k+ θ1)(θd − θ1)

−1k−1θ−1
1 > 0,

soε < kθ−1
1 . Similarily

kθ−1
d + ε = θ1(k− θd)(k+ θd)(θ1− θd)

−1k−1θ−1
d < 0,

soε < −kθ−1
d . We now have the result forθ = θ1. The result forθ = θd follows in view

of the last line of Definition 8.1. 2

Theorem 8.3 Let0 denote a nonbipartite distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0>θ1> · · · >θd. Letθ andθ ′ denote any eigenvalues of0, with respec-
tive cosine sequencesσ0, σ1, . . . , σd andρ0, ρ1, . . . , ρd. Letε denote any complex scalar.
Then the following are equivalent.

(i) 0 is tight, θ, θ ′ is a permutation ofθ1, θd, andε is the auxiliary parameter forθ .
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(ii) θ andθ ′ are both nontrivial, and

σiρi − σi−1ρi−1 = ε(σi−1ρi − ρi−1σi ) (52)

for 1≤ i ≤ d.
(iii) θ andθ ′ are both nontrivial, and

σρ − 1= ε(ρ − σ), σ2ρ2− σρ = ε(σρ2− ρσ2). (53)

Proof: (i)⇒(ii) It is clearθ , θ ′ are both nontrivial. To see (52), observeθ, θ ′ are distinct,
so the equivalent statements (i)–(iv) in Theorem 7.2 hold. Putting (48) over a common
denominator and simplifying usingε = (1− σρ)(σ − ρ)−1, we get (52).
(ii)⇒(iii) Set i = 1 andi = 2 in (52).
(iii)⇒(i) We first showθ 6= θ ′. Supposeθ = θ ′. Thenσ = ρ, so the left equation of (53)
becomesσ 2= 1, forcingσ = 1 orσ =−1. Butσ 6= 1 sinceθ is nontrivial, andσ 6=−1 since
0 is not bipartite. We concludeθ 6= θ ′. Now σ 6= ρ; solving the left equation in (53) forε,
and eliminatingε in the right equation of (53) using the result, we obtain (50). Now Theorem
7.2(iv) holds. Applying Theorem 7.2, we find0 is tight, and thatθ , θ ′ is a permutation of
θ1, θd. Solving the left equation in (53) forε, and simplifying the result, we obtain (51). It
follows ε is the auxiliary parameter forθ . 2

9. Feasibility

Let 0 denote a tight distance-regular graph with diameterd≥ 3, and eigenvaluesθ0>

θ1 > · · · > θd. Let θ, θ ′ denote a permutation ofθ1, θd, with respective cosine sequences
σ0, σ1, . . . , σd andρ0, ρ1, . . . , ρd. Let ε denote the auxiliary parameter forθ . Pick any
integeri (1≤ i ≤ d), and observe (52) holds. Rearranging terms in that equation, we find

ρi (σi − εσi−1) = ρi−1(σi−1− εσi ). (54)

We would like to solve (54) forρi , but conceivablyσi − εσi−1= 0. In this section we
investigate this possibility.

Lemma 9.1 Let0 denote a tight distance-regular graph with diameter d≥ 3, and eigen-
valuesθ0 > θ1 > · · · > θd. Letθ, θ ′ denote a permutation ofθ1, θd, with respective cosine
sequencesσ0, σ1, . . . , σd andρ0, ρ1, . . . , ρd. Let ε denote the auxiliary parameter forθ .
Then for each integer i(1 ≤ i ≤ d − 1), the following are equivalent: (i) σi−1= εσi ; (ii)
σi+1= εσi ; (iii) σi−1= σi+1; (iv) ρi = 0. Moreover, suppose(i)–(iv) hold. Thenθ = θd and
θ ′ = θ1.

Proof: Observe Theorem 8.3(i) holds, so (52) holds.
(i)⇒(iv) Replacingσi−1 by εσi in (52), we findσiρi (1− ε2) = 0. Observeε2 6= 1 by
Lemma 8.2(ii). Suppose for the moment thatσi = 0. We assumeσi−1 = εσi , soσi−1 = 0.
Now σi−1 = σi , contradicting Lemma 2.4. Henceσi 6= 0, soρi = 0.
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(iv)⇒(i) Settingρi = 0 in (52), we findρi−1(σi−1−εσi ) = 0.Observeρi−1 6= 0, otherwise
ρi−1 = ρi , contradicting Lemma 2.4. We concludeσi−1 = εσi , as desired.
(ii)⇔(iv) Similar to the proof of (i)⇔(iv).
(i),(ii)⇒(iii) Clear.
(iii)⇒(i) We cannot haveθ = θ1 by Lemma 2.4(i), soθ = θd, θ ′ = θ1. In particularρi−1 6=
ρi+1. Adding (52) ati andi + 1, we obtain

σi+1ρi+1− σi−1ρi−1 = ε(σiρi+1− σi+1ρi + σi−1ρi − σiρi−1).

Replacingσi+1 by σi−1 in the above line, and simplifying, we obtain

(σi−1− εσi )(ρi+1− ρi−1) = 0.

It follows σi−1 = εσi , as desired.
Now suppose (i)–(iv). Then we saw in the proof of (iii)⇒(i) that θ = θd, θ ′ = θ1. 2

Definition 9.2 Let0 = (X, R) denote a tight distance-regular graph with diameterd ≥ 3
and eigenvaluesθ0 > θ1 > · · · > θd. Let σ0, σ1, . . . , σd denote any cosine sequence for0

and letθ denote the corresponding eigenvalue. The sequenceσ0, σ1, . . . , σd (or θ ) is said
to befeasiblewhenever (i) and (ii) hold below.

(i) θ is one ofθ1, θd.
(ii) σi−1 6= σi+1 for 1≤ i ≤ d − 1.

We observe by Lemma 2.4(i) thatθ1 is feasible.

We conclude this section with an extension of Theorem 8.3.

Theorem 9.3 Let0 denote a nonbipartite distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Let θ and θ ′ denote any eigenvalues of0, with
respective cosine sequencesσ0, σ1, . . . , σd andρ0, ρ1, . . . , ρd. Let ε denote any complex
scalar. Then the following are equivalent.
(i) 0 is tight, θ is feasible, ε is the auxiliary parameter forθ, andθ ′ is the complement

of θ in {θ1, θd}.
(ii) θ ′ is not trivial,

ρi =
i∏

j=1

σ j−1− εσ j

σ j − εσ j−1
(0≤ i ≤ d), (55)

and denominators in(55) are all nonzero.

Proof: (i)⇒(ii) Clearly θ ′ is nontrivial. To see (55), observe Theorem 8.3(i) holds, so
(52) holds. Rearranging terms in (52), we obtain

ρi (σi − εσi−1) = ρi−1(σi−1− εσi ) (1≤ i ≤ d). (56)
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Observeσi 6= εσi−1 for 2≤ i ≤ d by Lemma 9.1(ii), andσ 6= ε by Lemma 8.2(ii), so the
coefficient ofρi in (56) is never zero. Solving that equation forρi and applying induction,
we routinely obtain (55).

(ii)⇒(i) We show Theorem 8.3(iii) holds. Observeθ is nontrivial; otherwiseσ = 1,
forcing ρ= 1 by (55), and contradicting our assumption thatθ ′ is nontrivial. One readily
verifies (53) by eliminatingρ, ρ2 using (55). We now have Theorem 8.3(iii). Applying
that theorem, we find0 is tight, θ, θ ′ is a permutation ofθ1, θd, and thatε is the auxiliary
parameter forθ . It remains to showθ is feasible. Suppose not. Then there exists an integer
i (1 ≤ i ≤ d − 1) such thatσi−1 = σi+1. Applying Lemma 9.1, we findσi+1= εσi . But
σi+1 − εσi is a factor in the denominator of (55) (withi replaced byi + 1), and hence is
not 0. We now have a contradiction, soθ is feasible. 2

10. A parametrization

In this section, we obtain the intersection numbers of a tight graph as rational functions of
a feasible cosine sequence and the associated auxiliary parameter. We begin with a result
about arbitrary distance-regular graphs.

Lemma 10.1 Let0 denote a distance-regular graph with diameter d≥ 3,and eigenvalues
θ0>θ1> · · · >θd. Letθ, θ ′ denote a permutation ofθ1, θd,with respective cosine sequences
σ0, σ1, . . . , σd andρ0, ρ1, . . . , ρd. Then

k = (σ − σ2)(1− ρ)− (ρ − ρ2)(1− σ)
(ρ − ρ2)(1− σ)σ − (σ − σ2)(1− ρ)ρ , (57)

bi = k
(σi−1− σi )(1− ρ)ρi − (ρi−1− ρi )(1− σ)σi

(ρi − ρi+1)(σi−1− σi )− (σi − σi+1)(ρi−1− ρi )
(1≤ i ≤ d − 1), (58)

ci = k
(σi − σi+1)(1− ρ)ρi − (ρi − ρi+1)(1− σ)σi

(ρi − ρi+1)(σi−1− σi )− (σi − σi+1)(ρi−1− ρi )
(1≤ i ≤ d − 1), (59)

cd = kσd
σ − 1

σd−1− σd
= kρd

ρ − 1

ρd−1− ρd
, (60)

and the denominators in(57)–(60) are never zero.

Proof: Line (60) is immediate from Lemma 2.3(v), and the denominators in that line are
nonzero by Lemma 2.4. To obtain (58), (59), pick any integeri (1≤ i ≤ d− 1), and recall
by Lemma 2.2(iii) that

ci (σi−1− σi )− bi (σi − σi+1) = k(σ − 1)σi , (61)

ci (ρi−1− ρi )− bi (ρi − ρi+1) = k(ρ − 1)ρi . (62)
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To solve this linear system forci andbi , consider the determinant

Di := det

(
σi−1− σi σi − σi+1

ρi−1− ρi ρi − ρi+1

)
.

Using Lemma 2.4, we routinely findDi 6= 0. Now (61), (62) has the unique solution
(58), (59) by elementary linear algebra. The denominators in (58), (59) both equalDi ; in
particular they are not zero. To get (57), seti = 1 andc1 = 1 in (59), and solve fork. 2

Theorem 10.2 Let0 denote a nonbipartite distance-regular graph with diameter d≥ 3,
and letσ0, σ1, . . . σd, ε, h denote complex scalars. Then the following are equivalent.
(i) 0 is tight, σ0, σ1, . . . σd is a feasible cosine sequence for0, ε is the associated auxiliary

parameter from(51), and

h = (1− σ)(1− σ2)

(σ 2− σ2)(1− εσ ) . (63)

(ii) σ0 = 1, σd−1 = σσd, ε 6= −1,

k = h
σ − ε
σ − 1

, (64)

bi = h
(σi−1− σσi )(σi+1− εσi )

(σi−1− σi+1)(σi+1− σi )
(1≤ i ≤ d − 1), (65)

ci = h
(σi+1− σσi )(σi−1− εσi )

(σi+1− σi−1)(σi−1− σi )
(1≤ i ≤ d − 1), (66)

cd = h
σ − ε
σ − 1

, (67)

and denominators in(64)–(67)are all nonzero.

Proof: Let θ0 > θ1 > · · · > θd denote the eigenvalues of0.
(i)⇒(ii) Observeσ0 = 1 by Lemma 2.2(ii), andε 6= −1 by Lemma 8.2(ii). Letθ denote
the eigenvalue associated withσ0, σ1, . . . , σd, and observe by Definition 9.2 thatθ is one
of θ1, θd. Let θ ′ denote the complement ofθ in {θ1, θd}, and letρ0, ρ1, . . . , ρd denote the
cosine sequence forθ ′. Observe Theorem 9.3(i) holds. Applying that theorem, we obtain
(55). Eliminatingρ0, ρ1, . . . , ρd in (57)–(60) using (55), we routinely obtain (64)–(67), and
thatσd−1 = σσd.
(ii) ⇒(i) One readily checks

ci (σi−1− σi )− bi (σi − σi+1) = k(σ − 1)σi (1≤ i ≤ d),

whereσd+1 is an indeterminant. Applying Lemma 2.2(i),(iii), we findσ0, σ1, . . . , σd is
a cosine sequence for0, with associated eigenvalueθ := kσ . By (64), (65), and since
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k, b1, . . . ,bd−1 are nonzero,

σ j 6= εσ j−1 (1≤ j ≤ d).

Set

ρi :=
i∏

j=1

σ j−1− εσ j

σ j − εσ j−1
(0≤ i ≤ d). (68)

One readily checksρ0 = 1, and that

ci (ρi−1− ρi )− bi (ρi − ρi+1) = k(ρ − 1)ρi (1≤ i ≤ d),

whereρd+1 is an indeterminant. Applying Lemma 2.2(i),(iii), we findρ0, ρ1, . . . , ρd is a
cosine sequence for0, with associated eigenvalueθ ′ := kρ. We claimθ ′ is not trivial.
Supposeθ ′ is trivial. Thenρ = 1. Settingi = 1 andρ = 1 in (68) we findσ − ε = 1− εσ ,
forcing (1− σ)(1+ ε) = 0. Observeσ 6= 1 since the denominator in (67) is not zero, and
we assumeε 6= −1, so we have a contradiction. We have now shownθ ′ is nontrivial, so
Theorem 9.3(ii) holds. Applying that theorem, we find0 is tight,θ is feasible, and thatε is
the auxiliary parameter ofθ . To see (63), seti = 1 andc1 = 1 in (66), and solve forh. 2

Proposition 10.3 With the notation of Theorem10.2, suppose(i), (ii) hold, and letθ0 >

θ1 > · · · > θd denote the eigenvalues of0. If ε > 0, then

θ1 = σ(σ − ε)(1− σ2)

(1− εσ )(σ2− σ 2)
, θd = 1− σ2

σ2− σ 2
. (69)

If ε < 0, then

θ1 = 1− σ2

σ2− σ 2
, θd = σ(σ − ε)(1− σ2)

(1− εσ )(σ2− σ 2)
. (70)

We remark that the denominators in(69), (70) are nonzero.

Proof: Letθ denote the eigenvalue of0 associated withσ0, σ1, . . . , σd. By Lemma 2.2(iii)
and (64), we obtain

θ = kσ

= σ(σ − ε)(1− σ2)

(1− εσ )(σ2− σ 2)
. (71)

Observeθ ∈ {θ1, θd} sinceσ0, σ1, . . . , σd is feasible. Letθ ′ denote the complement ofθ in
{θ1, θd}, and letρ denote the first cosine associated withθ ′. Observe condition (i) holds in
Theorem 9.3, so (55) holds. Settingi = 1 in that equation, we find

ρ = 1− εσ
σ − ε . (72)
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By Lemma 2.2(iii), (64), and (72), we obtain

θ ′ = kρ

= 1− σ2

σ2− σ 2
. (73)

To finish the proof, we observe by Lemma 8.2(i) thatθ = θ1, θ ′ = θd if ε > 0, andθ = θd,
θ ′ = θ1 if ε < 0. 2

Theorem 10.4 Let 0 denote a tight distance-regular graph with diameter d≥ 3, and
eigenvaluesθ0 > θ1 > · · · > θd. Then(i) and(ii) hold below.
(i) ad = 0.

(ii) Letσ0, σ1, . . . , σd denote the cosine sequence forθ1 or θd, and letε denote the asso-
ciated auxiliary parameter from(51).

Then

ai = g
(σi+1− σσi )(σi−1− σσi )

(σi+1− σi )(σi−1− σi )
(1≤ i ≤ d − 1), (74)

where

g = (ε − 1)(1− σ2)

(σ 2− σ2)(1− εσ ) . (75)

Proof: (i) Comparing (64), (67), we seek = cd, and it followsad = 0.
(ii) First assumeσ0, σ1, . . . , σd is the cosine sequence forθ1, and recall this sequence
is feasible. Leth be as in (63). Then Theorem 10.2(i) holds, so Theorem 10.2(ii) holds.
Evaluating the right side ofai = k−bi −ci using (64)–(66), and simplifying the result using
(63), we obtain (74), (75). To finish the proof, letρ0, ρ1, . . . , ρd denote the cosine sequence
for θd, and recall by Definition 8.1 that the associated auxiliary parameter isε′ = −ε. We
show

ai = (ε′ − 1)(1− ρ2)

(ρ2− ρ2)(1− ε′ρ)
(ρi+1− ρρi )(ρi−1− ρρi )

(ρi+1− ρi )(ρi−1− ρi )
. (76)

By Theorem 7.2(ii) (withi replaced byi + 1),

1

1+ σ
σi+1− σσi

σi+1− σi
= 1

1+ ρ
ρi+1− ρρi

ρi+1− ρi
. (77)

Subtracting 1 from both sides of Theorem 7.2(ii), and simplifying, we obtain

1

1+ σ
σi−1− σσi

σi−1− σi
= 1

1+ ρ
ρi−1− ρρi

ρi−1− ρi
. (78)
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By (53),

(ε − 1)(1− σ2)(1+ σ)2
(σ 2− σ2)(1− εσ ) = (ε′ − 1)(1− ρ2)(1+ ρ)2

(ρ2− ρ2)(1− ε′ρ) . (79)

Multiplying together (77)–(79) and simplifying, we obtain (76), as desired. 2

We end this section with some inequalities.

Lemma 10.5 Let0 denote a tight distance-regular graph with diameter d≥ 3, and eigen-
valuesθ0 > θ1 > · · · > θd. Let θ denote one ofθ1, θd, and letσ0, σ1, . . . , σd denote the
cosine sequence forθ . Supposeθ = θ1. Then
(i) σi−1 > σσi (1≤ i ≤ d − 1),
(ii) σσi−1 > σi (2≤ i ≤ d).

Supposeθ = θd. Then

(iii) (−1)i (σσi − σi−1) > 0 (1≤ i ≤ d − 1),
(iv) (−1)i (σi − σσi−1) > 0 (2≤ i ≤ d).

Proof: (i) We first showσi−1− σσi is nonnegative. Recalla1 6= 0 by Proposition 6.5, so
Theorem 4.1 applies. Letx, y denote adjacent vertices inX, and recall by Corollary 6.3 that
the edgexy is tight with respect toθ . Now Theorem 4.1(i) holds, so (22) holds. Observe
the left side of (22) is nonnegative, so the right side is nonnegative. In that expression on
the right, the factors 1+ σ andσi−1 − σi are positive, so the remaining factorσi−1 − σσi

is nonnegative, as desired. To finish the proof, observeσi−1− σσi is a factor on the right in
(74), so it is not zero in view of Proposition 6.5.
(ii)–(iv) Similar to the proof of (i) above. 2

11. The 1-homogeneous property

In this section, we show the concept of tight is closely related to the concept of 1-homo-
geneous that appears in the work of Nomura [14–16].

Theorem 11.1 Let 0 = (X, R) denote a tight distance-regular graph with diameter
d ≥ 3, and eigenvaluesθ0 > θ1 > · · · > θd. Letσ0, σ1, . . . , σd denote the cosine sequence
associated withθ1 or θd. Fix adjacent vertices x, y∈ X. Then with the notation of Definition
2.10we have the following: For all integers i(1≤ i ≤ d− 1), and for all vertices z∈ Di

i ,

∣∣0i−1(z) ∩ D1
1

∣∣ = ci
(σ 2− σ2)(σi − σi+1)

(σ − σ2)(σσi − σi+1)
, (80)

∣∣0i+1(z) ∩ D1
1

∣∣ = bi
(σ 2− σ2)(σi−1− σi )

(σ − σ2)(σi−1− σσi )
. (81)
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Proof: First assumeσ0, σ1, . . . , σd is the cosine sequence forθ1, and letρ0, ρ1, . . . , ρd

denote the cosine sequence forθd. The edgexy is tight with respect to bothθ1, θd, so by
Theorem 4.2(ii),

∣∣0i+1(z) ∩ D1
1

∣∣ = ∣∣0i−1(z) ∩ D1
1

∣∣σi−1− σi

σi − σi+1
+ a1

1− σ
1+ σ

σi

σi − σi+1
, (82)

∣∣0i+1(z) ∩ D1
1

∣∣ = ∣∣0i−1(z) ∩ D1
1

∣∣ρi−1− ρi

ρi − ρi+1
+ a1

1− ρ
1+ ρ

ρi

ρi − ρi+1
. (83)

Eliminatingρ0, ρ1, . . . , ρd in (83) using (55), we obtain

∣∣0i+1(z) ∩ D1
1

∣∣ = ∣∣0i−1(z) ∩ D1
1

∣∣σi−1− σi

σi − σi+1

σi+1− εσi

σi−1− εσi

+a1
(1− σ)(σi+1− εσi )

(1+ σ)(1− ε)(σi − σi+1)
, (84)

whereε denotes the auxiliary parameter associated withθ1. Solving (82), (84) for|0i+1(z)
∩ D1

1| and|0i−1(z)∩ D1
1|, and evaluating the result using (63), (65), (66), (74), we get (80),

(81), as desired. To finish the proof observe by Theorem 7.2(ii), (iii) that

(σ 2− σ2)(σi − σi+1)

(σ − σ2)(σσi − σi+1)
= (ρ2− ρ2)(ρi − ρi+1)

(ρ − ρ2)(ρρi − ρi+1)
, (85)

(σ 2− σ2)(σi−1− σi )

(σ − σ2)(σi−1− σσi )
= (ρ2− ρ2)(ρi−1− ρi )

(ρ − ρ2)(ρi−1− ρρi )
. (86)

2

Theorem 11.2 Let0= (X, R)denote a tight distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Letσ0, σ1, . . . , σd denote the cosine sequence forθ1

or θd. Fix adjacent vertices x, y ∈ X. Then with the notation of Definition2.10we have the
following (i), (ii).
(i) For all integers i (1≤ i ≤ d − 1), and for all z∈ Di

i ,

∣∣0(z) ∩ Di−1
i−1

∣∣ = ci
(σi − σi+1)(σσi−1− σi )

(σi−1− σi )(σσi − σi+1)
, (87)

∣∣0(z) ∩ Di+1
i+1

∣∣ = bi
(σi−1− σi )(σi − σσi+1)

(σi − σi+1)(σi−1− σσi )
. (88)

(ii) For all integers i (2≤ i ≤ d), and for all z∈ Di
i−1 ∪ Di−1

i ,

∣∣0(z) ∩ Di−1
i−1

∣∣ = ai−1
(1− σ)(σ 2

i−1− σi−2σi
)

(σi−1− σi )(σi−2− σσi−1)
. (89)
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Proof: (i) To prove (87), we assumei ≥ 2; otherwise both sides are zero. Letαi denote
the expression on the right in (80). LetN denote the number of ordered pairsuv such that

u ∈ 0i−1(z) ∩ D1
1, v ∈ 0(z) ∩ Di−1

i−1, ∂(u, v) = i − 2.

We computeN in two ways. On one hand, by (80), there are preciselyαi choices foru, and
givenu, there are preciselyci−1 choices forv, so

N = αi ci−1. (90)

On the other hand, there are precisely|0(z) ∩ Di−1
i−1| choices forv, and givenv, there are

preciselyαi−1 choices foru, so

N = ∣∣0(z) ∩ Di−1
i−1

∣∣αi−1. (91)

Observe by Lemma 2.4, Lemma 6.6, and (80) thatαi−1 6= 0; combining this with (90), (91),
we find∣∣0(z) ∩ Di−1

i−1

∣∣ = ci−1αiα
−1
i−1.

Eliminatingαi−1, αi in the above line using (80), we obtain (87), as desired. Concerning
(88), first assumei = d − 1. We show both sides of (88) are zero. To see the left side is
zero, recallad = 0 by Theorem 10.4, forcingp1

dd = 0 by Lemma 2.9, soDd
d = ∅ by the

last line in Definition 2.10. The right side of (88) is zero since the factorσd−1− σσd in the
numerator is zero by Lemma 2.3(vi). We now show (88) fori ≤ d − 2. Letβi denote the
expression on the right in (81). LetN ′ denote the number of ordered pairsuv such that

u ∈ 0i+1(z) ∩ D1
1, v ∈ 0(z) ∩ Di+1

i+1, ∂(u, v) = i + 2.

We computeN ′ in two ways. On one hand, by (81), there are preciselyβi choices foru,
and givenu, there are preciselybi+1 choices forv, so

N ′ = βi bi+1. (92)

On the other hand, there are precisely|0(z) ∩ Di+1
i+1| choices forv, and givenv, there are

preciselyβi+1 choices foru, so

N ′ = ∣∣0(z) ∩ Di+1
i+1

∣∣βi+1. (93)

Observe by Lemma 2.4, Lemma 6.6, and (81) thatβi+1 6= 0; combining this with (92), (93),
we find∣∣0(z) ∩ Di+1

i+1

∣∣ = bi+1βiβ
−1
i+1.

Eliminatingβi , βi+1 in the above line using (81), we obtain (88), as desired.
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(ii) Let γi denote the expression on the right in (21), and letδi denote the expression on
the right in (87). LetN ′′ denote the number of ordered pairsuv such that

u ∈ 0i−1(z) ∩ D1
1, v ∈ 0(z) ∩ Di−1

i−1, ∂(u, v) = i − 2.

We computeN ′′ in two ways. On one hand, by Theorem 4.1(ii), there are preciselyγi

choices foru. Givenu, we find by (87) (withx andi replaced byu andi − 1, respectively)
that there are preciselyci−1− δi−1 choices forv; consequently

N ′′ = γi (ci−1− δi−1). (94)

On the other hand, there are precisely|0(z) ∩ Di−1
i−1| choices forv, and givenv, there are

preciselyαi−1 choices foru, whereαi−1 is from the proof of (i) above. Hence

N ′′ = ∣∣0(z) ∩ Di−1
i−1

∣∣αi−1. (95)

Combining (94), (95),∣∣0(z) ∩ Di−1
i−1

∣∣ = γi (ci−1− δi−1)α
−1
i−1.

Eliminatingαi−1, γi , δi−1 in the above line using (80), (21), (87), respectively, and simpli-
fying the result using Theorem 10.4(ii), we obtain (89), as desired. 2

Definition 11.3 Let0= (X, R) denote a distance-regular graph with diameterd ≥ 3, and
fix adjacent verticesx, y ∈ X.

(i) For all integersi, j we define the vectorwij = wij (x, y) by

wij =
∑
z∈D j

i

ẑ, (96)

whereD j
i = D j

i (x, y) is from (15).
(ii) Let L denote the set of ordered pairs

L = {ij | 0≤ i, j ≤ d, p1
ij 6= 0}. (97)

We observe that for all integersi, j , wij 6= 0 if and only if i j ∈ L.
(iii) We define the vector spaceW = W(x, y) by

W = Span{wij | ij ∈ L}. (98)

Lemma 11.4 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3, and
assume a1 6= 0. Then

(i) L = {i − 1, i | 1≤ i ≤ d} ∪ {i, i − 1 | 1≤ i ≤ d} ∪ {i i | 1≤ i ≤ e},
where e= d − 1 if ad = 0 and e= d if ad 6= 0.
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(ii) |L| =
{

3d if ad 6= 0,

3d − 1 if ad = 0.
(99)

(iii) Let x, y denote adjacent vertices in X, and let W= W(x, y) be as in(98). Then

dimW =
{

3d if ad 6= 0,

3d − 1 if ad = 0.
(100)

Proof: Routine application of Lemma 2.8 and Lemma 2.9. 2

Lemma 11.5 Let0 = (X, R) denote a distance-regular graph with diameter d≥ 3, fix
adjacent vertices x, y ∈ X, and let the vector space W= W(x, y) be as in(98). Then the
following are equivalent.

(i) The vector space W is A-invariant.
(ii) For all integers i, j, r, s (i j ∈ L and rs ∈ L), and for all z ∈ D j

i , the scalar
|0(z)∩ Ds

r | is a constant independent of z.
(iii) The following conditions hold.

(a) For all integers i (1 ≤ i ≤ d), and for all z∈ Di
i , the scalars|0(z) ∩ Di−1

i−1| and
|0(z) ∩ Di+1

i+1| are constants independent of z.
(b) For all integers i(2≤ i ≤ d),and for all z∈ Di

i−1∪Di−1
i , the scalar|0(z)∩Di−1

i−1|
is a constant independent of z.

Proof: (i)⇔(ii) Routine.
(ii)⇒(iii) Clear.
(iii)⇒(ii) Follows directly from Lemma 2.11. 2

Definition 11.6 Let0 = (X, R) denote a distance-regular graph with diameterd ≥ 3. For
each edgexy ∈ R, the graph0 is said to be1-homogeneous with respect to xywhenever
(i)–(iii) hold in Lemma 11.5. The graph0 is said to be1-homogeneouswhenever it is
1-homogeneous with respect to all edges inR.

Theorem 11.7 Let 0 = (X, R) denote a distance-regular graph with diameter d≥ 3.
Then the following are equivalent.

(i) 0 is tight,
(ii) a1 6= 0, ad = 0, and0 is 1-homogeneous,

(iii) a1 6= 0, ad = 0, and0 is 1-homogeneous with respect to at least one edge.

Proof: (i)⇒(ii) Observea1 6= 0 by Proposition 6.5, andad = 0 by Theorem 10.4. Pick
any edgexy∈ R. By Theorem 11.2, we find conditions (iii)(a), (iii)(b) hold in Lemma 11.5, so
0 is 1-homogeneous with respect toxyby Definition 11.6. Apparently0 is 1-homogeneous
with respect to every edge, so0 is 1-homogeneous.
(ii)⇒(iii) Clear.
(iii)⇒(i) Suppose0 is 1-homogeneous with respect to the edgexy ∈ R. We showxy
is tight with respect to bothθ1, θd. To do this, we show the tightnesst = t (x, y) from
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Definition 5.1 equals 2. Consider the vector spaceW = W(x, y) from (98), and the vector
spaceH from (37). ObserveW is A-invariant by Lemma 11.5, andW containsH , so it
containsMH, whereM denotes the Bose-Mesner algebra of0. The spaceW has dimension
3d − 1 by (100), soMH has dimension at most 3d − 1. Applying (36), we findt ≥ 2.
From the discussion at the end of Definition 5.1, we observet = 2, and thatxy is tight with
respect to bothθ1, θd. Now0 is tight in view of Corollary 6.3(iv) and Definition 6.4. 2

12. The local graph

Definition 12.1 Let 0 = (X, R) denote a distance-regular graph with diameterd ≥ 3.
For each vertexx ∈ X, we let1 = 1(x) denote the vertex subgraph of0 induced on0(x).
We refer to1 as thelocal graphassociated withx. We observe1 hask vertices, and is
regular with valencya1. We further observe1 is not a clique.

In this section, we show the local graphs of tight distance-regular graphs are strongly-
regular. We begin by recalling the definition and some basic properties of strongly-regular
graphs.

Definition 12.2 [3, p. 3] A graph1 is said to bestrongly-regularwith parameters
(ν, κ, λ, µ) whenever1 hasν vertices and is regular with valencyκ, adjacent vertices
of 1 have preciselyλ common neighbors, and distinct non-adjacent vertices of1 have
preciselyµ common neighbors.

Lemma 12.3 [3, Thm. 1.3.1] Let 1 denote a connected strongly-regular graph with
parameters(ν, κ, λ, µ), and assume1 is not a clique. Then1 has precisely three distinct
eigenvalues, one of which isκ. Denoting the others by r, s,

ν = (κ − r )(κ − s)

κ + rs
, λ = κ + r + s+ rs, µ = κ + rs. (101)

The multiplicity ofκ as an eigenvalue of1 equals1. The multiplicities with which r, s
appear as eigenvalues of1 are given by

multr = κ(s+ 1)(κ − s)

µ(s− r )
, mults = κ(r + 1)(κ − r )

µ(r − s)
. (102)

Theorem 12.4 Let0= (X, R)denote a tight distance-regular graph with diameter d≥ 3,
and eigenvaluesθ0 > θ1 > · · · > θd. Pickθ ∈ {θ1, θd}, letσ, σ2 denote the first and second
cosines forθ, respectively, and letε denote the associated auxiliary parameter from(51).
Then for any vertex x∈ X, the local graph1 = 1(x) satisfies(i)–(iv) below.

(i) 1 is strongly-regular with parameters(k,a1, λ, µ), where k is the valency of0, and

a1 = − (1− σ2)(1+ σ)(1− ε)
(σ − σ2)(1− εσ ) , (103)
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λ = a1
2σ

1+ σ − a1
1− σ
1+ σ

σ2

σ − σ2
− 1− σ2

σ − σ2
, (104)

µ = a1

1+ σ
σ 2− σ2

σ − σ2
. (105)

(ii) 1 is connected and not a clique.
(iii) The distinct eigenvalues of1 are a1, r, s, where

r = a1σ

1+ σ , s= − 1− σ2

σ − σ2
. (106)

(iv) The multiplicities of r, s are given by

multr = (1+ σ)(σ − ε)
σ2− σ 2

, mults = − (1− ε)(1+ σ)(σ2− εσ )
(σ2− σ 2)(1− εσ ) . (107)

Proof: (i) Clearly1 hask vertices and is regular with valencya1. The formula (103) is
from Theorem 10.4(ii). Pick distinct verticesy, z ∈ 1. We count the number of common
neighbors ofy, z in 1. First supposey, z are adjacent. By (28) (withi = 1) we findy, z
have preciselyλ common neighbors in1, whereλ is given in (104). Next supposey, z are
not adjacent. By (21) (withi = 2), we findy, z have preciselyµ common neighbors in1,
whereµ is given in (105). The result now follows in view of Definition 12.2.
(ii) We saw in Definition 12.1 that1 is not a clique. Observe the scalarµ in (105) is not
zero, sincea1 6= 0 by Proposition 6.5, and sinceσ 2 6= σ2 by Lemma 6.6(ii),(iii). It follows
1 is connected.
(iii) The scalara1 is an eigenvalue of1 by Lemma 12.3. Using (104), (105), we find the
scalarsr, s in (106) satisfy

λ = a1+ r + s+ rs, µ = a1+ rs.

Comparing this with the two equations on the right in (101), we find the scalarsr, s in (106)
are the remaining eigenvalues of1.
(iv) By (102) and (i) above,

multr = a1(s+ 1)(a1− s)

µ(s− r )
, mults = a1(r + 1)(a1− r )

µ(r − s)
.

Eliminatinga1, µ, r, s in the above equations using (103), (105), (106), we routinely obtain
(107). 2

Definition 12.5 Let 0 denote a distance-regular graph with diameterd ≥ 3, and eigen-
valuesθ0 > θ1 > · · · > θd. We define

b− := −1− b1

1+ θ1
, b+ := −1− b1

1+ θd
.

We recalla1− k ≤ θd < −1< θ1 by Lemma 2.6, sob− < −1, b+ ≥ 0.
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Theorem 12.6 Let 0 = (X, R) denote a distance-regular graph with diameter d≥ 3.
Then the following are equivalent.

(i) 0 is tight.
(ii) For all x ∈ X, the local graph1(x) is connected strongly-regular with eigenvalues

a1, b+, b−.
(iii) There exists x∈ X for which the local graph1(x) is connected strongly-regular with

eigenvalues a1, b+, b−.

Proof: (i)⇒(ii) Pick anyx ∈ X, and let1 = 1(x) denote the local graph. By Theorem
12.4, the graph1 is connected and strongly-regular. The eigenvalues of1 other thana1

are given by (106), where for convenience we take the eigenvalueθ involved to beθ1.
Eliminatingσ , σ2 in (106) usingθ1 = kσ and Lemma 2.3(i), and simplifying the results
using equality in the fundamental bound (42), we routinely findr = b+, s= b−.
(ii)⇒(iii) Clear.
(iii)⇒(i) Since1 = 1(x) is connected, its valencya1 is not zero. In particular0 is not
bipartite. The graph1 is not a clique, so (101) holds for1. Applying the equation on the
left in that line, we obtain

k(a1+ b+b−) = (a1− b+)(a1− b−). (108)

Eliminatingb+, b− in (108) using Definition 12.5, and simplifying the result, we routinely
obtain equality in the fundamental bound (42). Now0 is tight, as desired. 2

13. Examples of tight distance-regular graphs

The following examples (i)–(xii) are tight distance-regular graphs with diameter at least 3.
In each case we give the intersection array, the second largest eigenvalueθ1, and the least
eigenvalueθd, together with their respective cosine sequences{σi }, {ρi }, and the auxiliary
parameterε for θ1. Also, we give the parameters and nontrivial eigenvalues of the local
graphs.

(i) TheJohnson graph J(2d, d) has diameterd and intersection numbersai = 2i (d− i ),
bi = (d − i )2, ci = i 2 for i = 0, . . . ,d, cf. [3, p. 255]. It is distance-transitive, an
antipodal double-cover, andQ-polynomial with respect toθ1.

Each local graph is alattice graph Kd×Kd, with parameters(d2, 2(d−1), d−2, 2)
and nontrivial eigenvaluesr = d − 2, s= −2, cf. [3, p. 256].

(ii) The halved cube1
2 H(2d, 2) has diameterd and intersection numbersai = 4i (d− i ),

bi = (d − i )(2d − 2i − 1), ci = i (2i − 1) for i = 0, . . .d, cf. [3, p. 264]. It is
distance-transitive, an antipodal double-cover, andQ-polynomial with respect toθ1.

Each local graph is a Johnson graphJ(2d, 2), with parameters(d(2d − 1),
4(d − 1), 2(d − 1), 4) and nontrivial eigenvaluesr = 2d − 4, s = −2, cf. [3,
p. 267].

(iii) The Taylor graphsare nonbipartite double-covers of complete graphs, i.e., distance-
regular graphs with intersection array of the form{k, c2, 1; 1, c2, k}, wherec2 < k−1.
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They have diameter 3, and areQ-polynomial with respect to bothθ1, θd. These
eigenvalues are given byθ1 = α, θd = β, where

α + β = k− 2c2− 1, αβ = −k,

andα > β. See Taylor [19], and Seidel and Taylor [17] for more details.
Each local graph is strongly-regular with parameters(k,a1, λ, µ), wherea1 =

k− c2 − 1, λ = (3a1 − k− 1)/2 andµ = a1/2. We note botha1, c2 are even andk
is odd. The nontrivial eigenvalues of the local graph are

r = α − 1

2
, s= β − 1

2
.

(iv) The graph 3.Sym(7) has intersection array{10, 6, 4, 1; 1, 2, 6, 10} and can be ob-
tained from a sporadic Fisher group, cf. [3, pp. 397–400]. It is sometimes called the
Conway-Smith graph. It is distance-transitive, an antipodal 3-fold cover, and is not
Q-polynomial.

Each local graph is aPetersen graph, with parameters(10, 3, 0, 1) and nontrivial
eigenvaluesr = 1, s= −2, see [11], [3, 13.2.B].

(v) The graph 3.O−6 (3) has intersection array{45, 32, 12, 1; 1, 6, 32, 45} and can be
obtained from a sporadic Fisher group, cf. [3, pp. 397–400]. It is distance-transitive,
an antipodal 3-fold cover, and is notQ-polynomial.

Each local graph is ageneralized quadrangle GQ(4, 2), with parameters(45, 12,
3, 3) and nontrivial eigenvaluesr = 3, s= −3. See [3, p. 399].

(vi) The graph 3.O7(3) has intersection array{117, 80, 24, 1; 1, 12, 80, 117} and can be
obtained from a sporadic Fisher group, cf. [3, pp. 397–400]. It is distance-transitive,
an antipodal 3-fold cover, and is notQ-polynomial.

Each local graph is strongly-regular with parameters(117, 36, 15, 9), and nontriv-
ial eigenvaluesr = 9, s= −3. [3, 13.2.D].

(vii) The graph 3.Fi24 has intersection array{31671, 28160, 2160, 1; 1, 1080, 28160,
31671} and can be obtained from a sporadic Fisher group, cf. [3, p. 397]. It is distance-
transitive, an antipodal 3-fold cover, and is notQ-polynomial.

Each local graph is strongly-regular with parameters(31671, 3510, 693, 351) and
nontrivial eigenvaluesr = 351,s= −9. They are related toFi23.

(viii) The Soicher1 graphhas intersection array{56, 45, 16, 1; 1, 8, 45, 56}, cf. [2], [4,
11.41], [18]. It is distance-transitive, an antipodal 3-fold cover, and is notQ-
polynomial.

Each local graph is aGewirtz graphwith parameters(56, 10, 0, 2) and nontrivial
eigenvaluesr = 2, s= −4, [3, p. 372].

(ix) TheSoicher2 graphhas intersection array{416, 315, 64, 1; 1, 32, 315, 416}, cf. [18]
[4, 13.8A]. It is distance-transitive, an antipodal 3-fold cover, and is notQ-polynomial.

Each local graph is strongly-regular with parameters(416, 100, 36, 20) and non-
trivial eigenvaluesr = 20,s= −4.

(x) TheMeixner1 graphhas intersection array{176, 135, 24, 1; 1, 24, 135, 176}, cf. [13]
[4,12.4A]. It is distance-transitive, an antipodal 2-fold cover, and isQ-polynomial.
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Each local graph is strongly-regular with parameters(176, 40, 12, 8)and nontrivial
eigenvaluesr = 8, s= −4.

(xi) TheMeixner2 graphhas intersection array{176, 135, 36, 1; 1, 12, 135, 176}, cf. [13]
[4,12.4A]. It is distance-transitive, an antipodal 4-fold cover, and is notQ-polynomial.

Each local graph is strongly-regular with parameters(176, 40, 12, 8)and nontrivial
eigenvaluesr = 8, s= −4.

(xii) The Patterson graphhas intersection array{280, 243, 144, 10; 1, 8, 90, 280}, and
can be constructed from the Suzuki group, see [3, 13.7]. It is primitive and distance-
transitive, but notQ-polynomial.

Each local graph is a generalized quadrangleGQ(9,3) with parameters(280, 36,
8, 4) and nontrivial eigenvaluesr = 8, s= −4, [3, Thm. 13.7.1].

Name θ1 θd {σi } {ρi } ε

J(2d, d) d(d − 2) −d σi = d − 2i

d
ρi = (−1)i · 1 · 2 · · · i

d(d − 1) · · · (d − i + 1)

d + 2

d

1
2 H(2d, 2) (2d − 1)(d − 2) −d σi = d − 2i

d
ρi = (−1)i · 1 · 3 · · · (2i − 1)

(2d − 1)(2d − 3) · · · (2d − 2i + 1)

d + 1

d − 1

Taylor α β

(
1,
α

k
,
−α
k
,−1

) (
1,
β

k
,
−β
k
,−1

)
k+ 1

α − β

3.Sym(7) 5 −4

(
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1

2
, 0,
−1

4
,
−1

2

) (
1,
−2

5
,

3
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,
−2

5
, 1

)
4

3
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(
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1

3
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−1

6
,
−1

2

) (
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−1

5
,

1
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,
−1

5
, 1

)
2
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1

3
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6
,
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2

) (
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,

2
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,
−1

13
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)
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2
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9
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,
−1

2

) (
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−1
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,

5

17204
,
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, 1

)
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5
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4
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8
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−1

2

) (
1,
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7
,

1

7
,
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7
, 1
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2
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4
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8
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−1

2
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−1
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1
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,
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−1
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1
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, 1
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−1

9

) (
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−1
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,

1

45
,
−1

54
,

5
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8
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Appendix A: 1-homogeneous partitions of the known examples of the AT4 family
and the Patterson Graph

In [21] a tight non bipartite antipodal distance-regular graph with diameter four was
parameterized by the eigen valuesr and−s of the local graphs and the size of its antipodal
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Figure A.1. 1-homogeneous partition of (a) the Conway-Smith graph (b) the Johnson graphJ(8, 4), (c) the
halved cube1

2 H (8, 2), and (d) the 3.O−6 (3).
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Figure A.2. 1-homogeneous partition of (e) the Soicherl graph, (f) the Meixner1 graph, (g) the Meixner2 graph.

Figure A.3. 1-homogeneous partition of (h) the 3.O7(3), (i) the Soicher2 graph.

Figure A.4. 1-homogeneous partition of (j) the 3.Fi−24 graph and (i) the Patterson graph.
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classes. The graph was called anantipodal tight graph of diameter four and with Parameters
(r, s, t) and denoted by AT4(r, s, t).
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