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Abstract. We consider adistance-regular graptith diameted > 3 and eigenvaluds= 6y > 61 > --- > 64.
We show the intersection numbexg b; satisfy
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We sayT is tight whenever” is not bipartite, and equality holds above. We characterize the tight property in a
number of ways. For example, we sh@Wis tight if and only if the intersection numbers are given by certain
rational expressions involving independent parameters. We shbvis tight if and only ifa; # 0,aq = 0, and

I is 1-homogeneous in the sense of Nomura. We shaw tight if and only if each local graph is connected
strongly-regular, with nontrivial eigenvaluesl — b (1 + 61)~Land—1 — by(1+ 6¢)~ L. Three infinite families

and nine sporadic examples of tight distance-regular graphs are given.
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1. Introduction

Let I' = (X, R) denote a distance-regular graph with diameter 3, and eigenvalues
k=6p> 6, > - > 6y (see Section 2 for definitions). We show the intersection numbers
ai, by satisfy

k k kaib,
(% (7 > - 1
<1+a1+1>(d+a1+1>_ (a1 + 1)2 (1)

We defind" to betightwhenevet is not bipartite, and equality holds in (1). We characterize
the tight condition in the following ways.

Our first characterization is linear algebraic. For all verticesX, letX denote the vector
in RX with a 1 incoordinatex, and 0 in all other coordinates. Suppose for the moment that
a # 0, letx, y denote adjacent vertices ¥ and writew = ) z, where the sum is over all
verticesz € X adjacent to botl andy. Let6 denote one ofy, 6,, . . ., 84, and letE denote
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the corresponding primitive idempotent of the Bose-Mesner algebra. We say th&edge
is tight with respect t@ wheneverEXx, EY, Ew are linearly dependent. We show that if
Xy is tight with respect t@, thené is one of6y, 64. Moreover, we show the following are
equivalent: (i) is tight; (ii) a; # 0 and all edges df are tight with respect to both, 64;

(iii) a; # 0 and there exists an edgelofwvhich is tight with respect to bott, 64.

Our second characterization of the tight condition involves the intersection numbers.
We showT is tight if and only if the intersection numbers are given by certain rational
expressions involvind independent variables.

Our third characterization of the tight condition involves the concefitbdmogeneous
that appears in the work of Nomura [14—16]. See also Curtin [7]. We show the following are
equivalent: (i) is tight; (i) a; # 0, ag = 0, andI" is 1-homogeneous; (iig; # 0, ag = 0,
andrI" is 1-homogeneous with respect to at least one edge.

Our fourth characterization of the tight condition involves the local structure and is
reminiscent of some results by Cameron, Goethals and Seidel [5] and Dickie and Terwilliger
[8]. For all x € X, let A(x) denote the vertex subgraph Bfinduced on the vertices iX
adjacent tox. For notational convenience, defibe ;= —1 — by(1 + 69)* andb™ :=
—1—by(1+ 61)~. We show the following are equivalent: {i)is tight; (ii) for all x € X,

A(x) is connected strongly-regular with nontrivial eigenvalbes b~; (iii) there exists
X € X such thatA (x) is connected strongly-regular with nontrivial eigenvalbésb™.

We present three infinite families and nine sporadic examples of tight distance-regular
graphs. These are the Johnson graptizd, d), the halved cube%H (2d, 2), the Taylor
graphs [19], four 3-fold antipodal covers of diameter 4 constructed from the sporadic Fisher
groups [3, p. 397], two 3-fold antipodal covers of diameter 4 constructed by Soicher [18],
a 2-fold and a 4-fold antipodal cover of diameter 4 constructed by Meixner [13], and the
Patterson graph [3, Thm. 13.7.1], which is primitive, distance-transitive and of diameter 4.

2. Preliminaries

In this section, we review some definitions and basic concepts. See the books of Bannai and
Ito [1] or Brouwer, Cohen, and Neumaier [3] for more background information.

LetI" = (X, R) denote a finite, undirected, connected graph, without loops or multi-
ple edges, with vertex se{, edge sefR, path-length distance function and diameter
d := max{ad(x,y)|X,ye X}. For all xe X and for all integers, we setl’j(x) :={y €
X1a(x,y) =i}. We abbreviat& (x) := I'y(x). By thevalencyof a vertexx € X, we mean
the cardinality ofl"(x). Let k denote a nonnegative integer. Therns said to beegular,
with valency kwhenever each vertex M has valencyk. I' is said to balistance-regular
whenever for all integers, i, j (0 < h,i, j < d), and for allx, y € X with 3(x, y) = h,
the number

ph = T () N Tyl
isindependent of andy. The constant;aihj are known as thimtersection numbersf I'". For

notational convenience, sgt:= pj;_, (1 <i <d), g = p}; O <i <d),b = p} 4
O<i<d-1,k = pﬁ (0 <i < d), and defineeg = 0, by = 0. We noteag = 0 and
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¢, = 1. From now on]" = (X, R) will denote a distance-regular graph of diameter 3.
Observe is regular with valenck = k; = bg, and that

k=c+a+b (©O<i<d). (2

We now recall the Bose-Mesner algebra. Let M&) denote theR-algebra consisting of
all matrices with entries ifR whose rows and columns are indexedXyFor each integer
i (0<i <d),letA denote the matrix in Mat(R) with X, y entry

A _ 1, ifax,y) =i, « X
(l)xy—{o’ if 90X, y) i X,y € X).

A; is known as théth distance matribof I". Observe

Ao =1, ®3)
Ao+ A+ F Ag=J (J = all 1’s matrix), (4)
Al = A 0<i<d), 5)
d
AA =Y plA, O<i,j=d. ©®)
h=0

We abbreviateA := A4, and refer to this as thedjacency matriof I'. Let M denote the
subalgebra of Mat(R) generated byA. We refer toM as theBose-Mesner algebraf I'.
Using (3)—(6), one can readily shoty, Ay, ..., Aq form a basis foM. By [1, pp. 59, 64],
the algebraM has a second basi, Eg, ..., Eq such that

Eo = [X|71J, @)

El=E (0<i<d), 9)

EE =6&E (©O<i, j=<d. (10)

The Eg, Eg, ..., Eq are known as therimitive idempotentsf I'. We refer toEq as the

trivial idempotent.

Let 6g, 01, ..., 6y denote the real numbers satisfyidg= Zid:o 0, Ej. ObserveAE, =
EiA =6 E for0 <i < d, and thathy, 64, ..., 64 are distinct sinceA generatedM. It
follows from (7) thatfy = k, and itis known—k < 6 < kforO0 <i <d|[1, p. 197]. We
refer tog; as theeigenvalueof I associated witte;, and callgy thetrivial eigenvalue. For
each integer (0 <i < d), letm; denote the rank oE;. We refer tom; as themultiplicity
of E; (or6;). We observeng = 1.

We now recall the cosines. Létlenote an eigenvalue bf and letE denote the associated
primitive idempotent. Lety, o1, . . ., oqg denote the real numbers satisfying

d
E=|X|*1mzaiAi, (11)
i=0
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wherem denotes the multiplicity of. Taking the trace in (11), we fingh = 1. We often
abbreviatey = 0;. We refer too; as theith cosineof I with respect t@ (or E), and call
0o, 01, . . . , o4 thecosine sequenasf I associated witld (or E). We interpret the cosines
as follows. LefR* denote the vector space consisting of all column vectors with entries in
whose coordinates are indexed¥yWe observe Mat(R) acts orR* by left multiplication.
We endowR* with the Euclidean inner product satisfying

(u,v) =ulv  (u,v e R®), (12)

wheret denotes transposition. For eacte X, let X denote the element iRX with a 1 in
coordinatex, and 0 in all other coordinates. We ndte| x € X} is an orthonormal basis
for RX.

Lemma 2.1 Letl’ = (X, R) denote a distance-regular graph with diameter-d3. Let
E denote a primitive idempotent bf and letoy, o1, . . ., o4 denote the associated cosine
sequence. Then for all integerg0 < i < d), and for all x, y € X such thab(x, y) =i,
the following(i)—(iii) hold.

(i) (EX, EY) = m|X|~%o;, where m denotes the multiplicity of. E

(i) The cosine of the angle between the vectatsaBd Ey equalso;.
(i) —1<o0 <1.

Proof: Line (i) is a routine application of (10), (11), (12). Line (ii) is immediate from (i),
and (iii) is immediate from (ii). O

Lemma 2.2 [3, Sect. 4.1.B] LetI" denote a distance-regular graph with diameterds.

Then for any complex numbetsog, o1, . . ., a4, the following are equivalent.
(i) 6 is an eigenvalue df, anday, o1, ..., 04 is the associated cosine sequence.
(i) oo =1, and
Cioi1+ a0 +boy=00 (0<i<d), (13)

wheres_; andogy,; are indeterminates.
(i) 0o =1, ko =0, and

Gi(oi—1—o0i) —bi(oi —0i11) =k(o — Do (1 <i <d), (14)
whereoqy, 1 is an indeterminate.
For later use we record a number of consequences of Lemma 2.2.

Lemma 2.3 LetI" denote a distance-regular graph with diameterd3. Letd denote an
eigenvalue of", and letoy, 01, . . ., 04 denote the associated cosine sequence. i)
hold below.

(i) kbyoo =62 — a6 — k.

(i) kbi(o —02) = (K—6)(1+0).
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(i) kby(1—0p) = (k— 0)(@ + k — ay).

(iv) k?bi(c? —02) = (K —0)(K+6(a + 1)).
(V) C4(0g-1— 0qd) = k(o — Dyoy.

(Vi) ag(og—1 — 0q4) = K(og-1 — 00g).

Proof: To get (i), sei = 1in (13), and solve fos,. Lines (ii)—(iv) are routinely verified
using (i) above anétc = 6. To get (v), set = d, by = 0 in Lemma 2.2 (iii). To get (vi),
setcg = k — aq in (v) above, and simplify the result. O

In this article, the second largest and minimal eigenvalue of a distance-regular graph turn
out to be of particular interest. In the next several lemmas, we give some basic information
on these eigenvalues.

Lemma2.4[9,Lem. 13.2.1] LetI" denote a distance-regular graph with diameterds,
and eigenvalue > 6; > --- > 64. Letd denote one afy, 04 and letog, o1, . . ., g denote
the cosine sequence fér

(i) Suppos® = 0;. Thenog > 01 > -+ > 0y.

(i) Suppos® = 64. Then(—1)'o; >0 (0 <i <d).

Recall a distance-regular graphis bipartite whenever the intersection numbers satisfy
a =0for0<i <d, whered denotes the diameter.

Lemma 2.5 Letl' = (X, R) denote a distance-regular graph with diameter-d3. Let

04 denote the minimal eigenvalueldf and letoy, o1, . . ., 04 denote the associated cosine
sequence. Then the following are equivaléint” is bipartite (ii) 6g = —k; (iii) o1 = —1;
(iv) o2 = 1. Moreover supposdi)—(iv) hold. Thers; = (—1) for0<i <d.

Proof: The equivalence of (i), (ii) follows from [3, Prop. 3.2.3]. The equivalence of (i),
(iii) is immediate fromko; = 64. The remaining implications follow from [3, Prop. 4.4.7].
O

Lemma 2.6 LetI" denote a distance-regular graph with diameterd3 and eigenvalues
6o > 01 > --- > 6y4. Then(i)—(iii) hold below.

i 0<6, <k.

(i) g —k<6yg < -1
(iii) Supposd is not bipartite. Then a— k < 64.

Proof: (i) The eigenvalu@; is positive by [3, Cor. 3.5.4], and we have ségn< k.

(i) Let o1, 02 denote the first and second cosineséarThens,; < 1 by Lemma 2.1 (jii),
s0a; — k < 6y in view of Lemma 2.3 (iii). Alsar; < o2 by Lemma 2.4 (i), s@y < —11in
view of Lemma 2.3 (ii).

(iii) Supposefy = a; — k. Applying Lemma 2.3 (iii), we findb, = 1, whereo, denotes
the second cosine f@g. Now I is bipartite by Lemma 2.5, contradicting our assumptions.
Hencedy > a; — Kk, as desired. O

We mention a few results on the intersection numbers.
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Lemma 2.7 Letl’ = (X, R) denote a nonbipartite distance-regular graph with diameter
d > 3, let X, y denote adjacent vertices in,and let E denote a nontrivial primitive
idempotent of*. Then the vectors £and Ey are linearly independent.

Proof: Leto denote the first cosine associated@oThenos # 1, sinceE is nontrivial,
ando # —1, sincel is not bipartite. Applying Lemma 2.1 (ii), we s¢&X and EY are
linearly independent. O

Lemma 2.8 [3, Prop. 5.5.1] LetI" denote a distance-regular graph with diameterd3
andg #0.Thena#0(1l<i=<d-1).

Lemma 2.9 [3, Lem. 4.1.7] LetI' denote a distance-regular graph with diameterd3.
Then the intersection numbers satisfy

. bbby _ bibs...biy

Pi = & P C1Cr...C_1

-- 1<i<d.
t CiCy...G (I=i=9

For the remainder of this section, we describe a point of view we will adopt throughout the
paper.

Definition 2.10 LetI" = (X, R) denote a distance-regular graph with diameter 3,
and fix adjacent vertices, y € X. For all integers and j we defineD;} = D/ (x, y) by

D/ =Ti(x)NTj(y). (15)

We observe}Dij| = pilj for0O<i,j <d, and Dij = () otherwise. We visualize thBij as
follows (figure 1).

Figure 1 Distance distribution corresponding to an edge. Obs@,i/‘el. U Dii U Dii+1 =Trix)fori=1,...,d.
The number beside edges connecting cBHs’ndicate how many neighbours a vertex from the closer cell has in
the other cell, see Lemma 2.11.
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Lemma 2.11 LetI’ = (X, R) denote a distance-regular graph with diametepd3. Fix
adjacent vertices xy € X, and pick any integer {1 < i < d). Then with reference to
Definition2.10,the following(i) and (i) hold.

(i) Each ze DLl (resp. D‘l) is adjacent to

(a) precisely  ¢1 vertices in D_2 (resp. §-2),
(b) precisely ¢€—c_1—|['(2N D!~} verticesin D* (resp. §_,),
(c) precisely @1 —|'(z)N D] vertices in D_, (resp. § %),
(d) precisely b vertices in [fp+1 (resp. [}'H),

(e) precisely a—a_1+ "2 N Df:ﬂ vertices in D.
(i) Each ze Dj is adjacent to

(a) precisely  ¢—|T'(z) N D 71| vertices in D_,,
(b) precisely  ¢— |I'(z) N D!~} vertices in D2,
(c) precisely  b—|I'(2) N D/f3| vertices in D2,
(d) precisely  b—|T'(2) N D/ 11| vertices in D, ;,
(e) precisely a—b —c + |2 ND/Z1|+ [N D1 verticesin D.
Proof: Routine. )

3. Edges that are tight with respect to an eigenvalue

LetI' = (X, R) denote a graph, and € denote a nonempty subset Xf By the vertex
subgraphof I' induced on$2, we mean the graph with vertex setand edge s¢ky|x, y €
Q, xye R}

Definition 3.1 LetI" = (X, R) denote a distance-regular graph with diameter 3 and
intersection numbeay # 0. For each edgry € R, we define the scalalr = f (x, y) by

fi=a'{(z w) e X?

z,w e Df, 3z w) =2}], (16)
whereD1 = D1(x, y) is from (15). We observé is the average valency of the complement
of the vertex subgraph induced @7.

We begin with some elementary facts abdut

Lemma 3.2 LetI' = (X, R) denote a distance-regular graph with diameter-d3 and
a; # 0. Let x, y denote adjacent vertices in X. Then with referencél), (16), lines
()—(iv) hold below.

(i) The number of edges in R connecting a vertex irwnh a vertex in E} is equal to

a1 f.

(i) The number of edges in the vertex subgraph inducedide &jualtoa(a; —1— f)/2.
(iii) The number of edges in the vertex subgraph induced ois Bqual to a(b; — f)/2.
(ivyo=<f, f<a—1f <bh;.
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Proof: Routine. O
The following lemma provides another bound for

Lemma 3.3 LetI' = (X, R) denote a distance-regular graph with diameter-d3 and
a; # 0. Let x, y denote adjacent vertices in X, and write=f f(x, y). Then for each
nontrivial eigenvalue of I,

k+0)(1+0)f <bi(k+06(a;+1)). (7)

Proof: Letoy, ..., o4 denote the cosine sequence® @nd letE denote the corresponding
primitive idempotent. Set

w::ZZ

1
zeDy

whereD} = Di(x, y) is from (15). LetG denote the Gram matrix for the vectdEg, EY,
Ew; thatis

IEX|II>  (EX, EY) (EX, Ew)
G:=| (Ey,EX) [EJI® (EY, Ew)
(Ew, ERX) (Ew, Ey) [|Ew]|?

On one hand, the matri® is positive semi-definite, so it has nonnegative determinant. On
the other hand, by Lemma 2.1,

oo o1 a o,
detG) = m*|X|3det| o1 oo ai01
a;01 a1 ai(op+ (@ — f — Doy + foy)
=mPay|X| 30 — (0 —o)A+0)f —(1—0) (a0 + 1+ 0)),

wherem denotes the multiplicity of. Sincea; > 0 ando < 1, we find
(0 —o)(l+o0)f <(1—-o0)(@mo +1+0). (18)

Eliminatingo, o2 in (18) using = ko and Lemma 2.3(ii), and simplifying the result using
6 < k, we routinely obtain (17). O

Corollary 3.4 LetI’ = (X, R) denote a distance-regular graph with diameter @ and
a; # 0. Let x, y denote adjacent vertices in X, and detlenote a nontrivial eigenvalue of
I'. Then with reference to Definitidh10, the following are equivalent.

(i) Equality is attained in17).

(i) EX, EY, Zzeoi EZ are linearly dependent.
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(i) Y ,cp1 E2= 2% (ER + EY).
We say the edgry is tight with respect t@ whenever (i)—(iii) hold above.

Proof: (i)« (ii) Letthe matrixG be as in the proof of Lemma 3.3. Then we find (i) holds
if and only if G is singular, if and only if (ii) holds.

(i)=(iii) T is not bipartite sincey # 0, SOEX, and EY are linearly independent by
Lemma 2. It follows

> E2=oEX+ BEY (19)

1
zeDy

for someqa, 8 € R. Taking the inner product of (19) with each B&, Ey using Lemma
2.1, we readily obtai = 8 = a;0(k + 6) 2.
(iif) =(ii) Clear. O

LetI’ = (X, R) denote a distance-regular graph with diaméter3,a; # 0, and eigenvalues
6o > 01 > --- > 64. Pick adjacent vertices, y € X, and writef = f(x, y). Referring
to (17), we now consider which @f, -, . . ., 64 gives the best bounds fdr. Letd denote
one offy, 6,, ..., 04. Assumed # —1; otherwise (17) gives no information abofit If

0 > —1 (respd < —1), line (17) gives an upper (resp. lower) bound forConsider the
partial fraction decompostion

k+0(a1+ 1 . by kag n by
"k+0)A+0) ~ k—1\k+o 1+10)/)
Since the mag- : R\{—k, —1} — R, defined by

kal bl
H—
k+x 1+x

X

is strictly decreasing on the intervalsk, —1) and(—1, co), we find in view of Lemma
2.6 that the least upper bound féris obtained ab = 6,, and the greatest lower bound is
obtained at = 64.

Theorem 3.5 LetI' = (X, R) denote a distance-regular graph with diameter>d 3,
a; # 0, and eigenvaluegy > 01 > --- > 64. For all edges xye R,

k+64(@+ 1) k+61(a1+ 1)
— < fxX,y)<bj—m————. 20
Mk oA o) = Y = AT e (20)
Proof: This is immediate from (17) and Lemma 2.6. O

Corollary 3.6 LetI' = (X, R) denote a distance-regular graph with diameterd3,
a; # 0, and eigenvaluegy > 0; > - -- > 64. For all edges xye R,



172 JURISIC, KOOLEN AND TERWILLIGER

(i) xy istight with respect t@, if and only if equality holds in the right inequality 20),
(i) xy is tight with respect téy if and only if equality holds in the left inequality (20),
(iif) xy is not tight with respect tq for2 <i <d — 1.

Proof: (i), (ii) Immediate from (17) and Corollary 3.4.

(i) First supposed; = —1. We do not have equality fér=06; in (17), since the left side
equals 0, and the right side equbfs In particular,xy is not tight with respect t6;. Next
suppose); # —1. Then we do not have equality for= 6; in (17) in view of the above
mentioned fact, that the functioR is strictly decreasing on the intervalsk, —1) and
(—1, 00). O

4. Tight edges and combinatorial regularity

Theorem 4.1 LetI" = (X, R) denote a distance-regular graph with diameterd3 and
intersection number@a# 0. Letd denote a nontrivial eigenvalue Bf and letog, o1, . . ., oy
denote its cosine sequence. Letxdenote adjacent vertices in X. Then with reference to
Definition2.10, the following are equivalent.

(i) xy is tight with respect té.

(i) Forl<i <d;bothoi 4 # o, and forall ze D!_,

ay, 00j_1— Oj

ITi_1(2 N D] = (21)

9

1+0 o0i_1—o0j

a1 0j_1—00j

ITi(zNDi| = (22)

140 6i_1—o0i

Proof: (i)=(ii) Let the integeri be given. Observe by Corollary 3.6 thats either the
second largest eigenvalagor the least eigenvalu®, soo;i_1 # oj in view of Lemma 2.4.
Pick anyz € D|_,. ObserveD;] containsa, vertices, and each is at distarice 1 ori from
Z, S0

ITi_1(2) N Di| + | (2 N D}| = &. (23)

Let E denote the primitive idempotent associated 18y Corollary 3.4(iii), and sincay
is tight with respect t@,

n aq o N N
Ew=——(EX+ EY). 24
> | Eib= - —(EX+EY) (24)

1
weDy

Taking the inner product of (24) witkZ using Lemma 2.1, we obtain
1 1 i
0i-1|Ti-1(2) N Di| +0i|T (2 N Di| = H—G(Gi—l + o). (25)

Solving the system (23), (25), we routinely obtain (21), (22).
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(i)=(i) We show equality holds in (17). Counting the edges betwBérand D? using
(21) (withi = 2), we find in view of Lemma 3.2(i) that

0'2—0'2

foey =ba e =

(26)

Eliminating o, o2 in (26) usingd = ko and Lemma 2.3(ii), (iv), we readily find equality
holds in (17). Nowxy is tight with respect t@ by Corollary 3.4. O

Theorem 4.2 LetI’ = (X, R) denote a distance-regular graph with diameterd3 and
a; # 0. Letd denote a nontrivial eigenvalue of and letoy, o1, .. ., og denote its cosine
sequence. Let, ¥y denote adjacent vertices in X. Then with reference to Definiidf,
the following are equivalent.

(i) xy is tight with respect té,

(i) Forl<i <d—1; bothoj # o0i41, and for all ze D]

i_1— Oj l1-0 oj
12 N DY = |Mi_1(z) N DAL T I 27
| |+l( ) 1\ | i 1() 1|0i — o 11+U(7i — o ( )
- . — O 20-
I'i(2) N DY = —|I_4(2) n DY T2 9t
| I() 1| | i l() 1| 0 — Ois1 11+G
1_ .
—a o_%iv1 (28)
l14+00i —0it1
Supposéi)—(ii) above and that @ # 0. Then for all ze DJ
Ir (z)mDﬂ——alﬁjL (29)
d-1 1| — 11+0‘O'd71_0'd’
l1—0 ot
NN DY =& +ay < (30)

140 04_1—04q

Proof: (i)=(ii) Let the integeli be given. Observe by Corollary 3.6 thats either the
second largest eigenvaldg or the least eigenvalug, sooi # oi1 by Lemma 2.4. Pick
anyz € Dj. Proceeding as in the proof of Theorem 4 .&({ji), we find

ITi_1(2) N Di| + |1 (2 N Di| + |I11(2) N Di| = &y, (31)
2001y
l1+o0°

0i-1|Ti-1(2) N D] +0i [T () N D3| + 611 |Ti12(2) N D3| = (32)

Solving (31), (32) foI"i (z) N D1, |T+1(2) N D}|, we routinely obtain (27) and (28).
(ii)=(i) Settingi = 1in (27), and evaluating the result using (16), we find

F(x )_1—0 +a1—a o
’y_a—az ll+aa—02'

(33)
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Eliminatingo, o, in (33) using? = ko and Lemma 2.3 (ii), we find equality holds in (17).
Now xy is tight with respect t@ by Corollary 3.4.

Now suppose (i)—(ii) hold above, and tret # 0. Pick anyz € D§. Proceeding as in the
proof of Theorem 4.1(i}= (i), we find

[Ta—1(2) N Di| + |T4(2) N Di| = &, (34)
2040 &
0d-1|Td-1(2) N D}| + 04|Ta(2) N D}| = 11 01. (35)

Observery_1 # oq by (ii) above, so the linear system (34), (35) has unique solution (29),
(30). O

5. The tightness of an edge

Definition 5.1 Let I'=(X, R) denote a distance-regular graph with diameter 3,
intersection numbes; # 0, and eigenvalue > 61 > --- > 64. For each edggy € R,
lett = t(x, y) denote the number of nontrivial eigenvaluedofvith respect to whicky
is tight. We callt thetightnes=f the edgexy. In view of Corollary 3.6 we have:

() t =2if xyis tight with respect to both; andéy;

(i) t =1if xyis tight with respect to exactly one 6f anddy;
(iii) t = 0if xyis not tight with respect t6, or 6y.

Theorem 5.2 LetI' = (X, R) denote a distance-regular graph with diameterd3 and
a; # 0. For all edges xye R, the tightness t= t(x, y) is given by

t =3d + 1 — dim(MH), (36)

where M denotes the Bose-Mesner algebr& ofvhere

H= Span{ﬁ, 2 Z 2}, (37)

zeD}(x,y)
and where MH meanSparfmh|me M, he H}.

Proof: SinceEy, Eg, ..., Eq is a basis foM, and in view of (10),
d
MH = Z E;H (direct sum,
i=0
and it follows

d
dimMH = Zdim EH.
i=0
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Note that dimEgH = 1. For 1< i < d, we find by Lemma 2.7 and Corollary 3.4(ii)
that dimE; H = 2 if xy is tight with respect t@;, and dimE; H = 3 otherwise. The result
follows. O

6. Tight graphs and the fundamental bound

In this section, we obtain an inequality involving the second largest and minimal eigenvalue
of a distance-regular graph. To obtain it, we need the following lemma.

Lemma 6.1 LetI" denote a nonbipartite distance-regular graph with diameter 3,
and eigenvaluegy > 01 > --- > 64. Then

kK+61(a+ 1 _ K+ 04(a1 +1)
(k+60)A+01)  (K+60a)(1+64)
(a1 + 1)(6g — 61)

- \y(1+91)(1+Gd)(k+91)(k+9d)’ (39)

(38)

where

v = (01+ alljr 1) <9d + alli 1) + (akﬁlrbll)z. (40)
Proof: Put (38) over a common denominator, and simplify. O
We now present our inequality. We give two versions.

Theorem 6.2 LetI" denote a distance-regular graph with diameterd3, and eigenvalues
8o > 61 > - -+ > 64. Then(i), (ii) hold below.

(i) Supposé is not bipartite. Then

K+6g(as + 1) - K+61(a1+1)
K+ 601 +6g) ~ (k+60)(A+61)

.. k k kalb]_
(i) (91 + m) (Qd + at 1) > — @+ 1)2- (42)

We refer to(42) as theFundamental Bound

(41)

Proof: (i) Firstassume; = 0. Thenthe leftside of (41) equalts+ 64) 1, and is therefore
negative. The right side of (41) equals+ 6;)~%, and is therefore positive. Next assume
a; # 0. Then (41) is immediate from (20).
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(i) First assumd" is bipartite. Therfy = —k anda; = 0, so both sides of (42) equal 0.
Next assumd” is not bipartite. Then (42) is immediate from (i) above, Lemma 6.1, and
Lemma 2.6. O

We now consider when equality is attained in Theorem 6.2. To avoid trivialities, we consider
only the nonbipartite case.

Corollary 6.3 LetI" denote a nonbipartite distance-regular graph with diameter @,
and eigenvalue§, > 6, > --- > 4. Then the following are equivalent.
() Equality holds in(41).
(i) Equality holds in(42).
(i) a1 # 0and every edge df is tight with respect to both; andéy.
(iv) a; # 0and there exists an edge Bfwhich is tight with respect to both andéy.

Proof: (i)« (ii) Immediate from Lemma 6.1.

(1), (i) =(iii) Supposea; = 0. We assume (42) holds with equality,®@+K) (64 +k) = 0,
forcing6y = —k. Now T" is bipartite by Lemma 2.5, contradicting the assumption. Hence
a; # 0. Letxy denote an edge df. Observe the expressions on the left and rightin (20) are
equal, so they both equdl(x, y). Now xy is tight with respect to both,, 64 by Corollary
3.6(i),(ii).

(iii) =(iv) Clear.

(iv)=(i) Suppose the edgey is tight with respect to both,, 64. By Corollary 3.6(i),(ii),

the scalarf (x, y) equals both the expression on the left and the expression on the right in
(20), so these expressions are equal. O

Definition 6.4 LetT' = (X, R) denote a distance-regular graph with diameter 3. We
say " is tight wheneverT" is not bipartite and the equivalent conditions (i)—(iv) hold in
Corollary 6.3.

We wish to emphasize the following fact.

Proposition 6.5 LetI" denote a tight distance-regular graph with diameterd3. Then
8 #0(1<i<d-1.

Proof: Observea; # 0 by Corollary 6.3(iii) and Definition 6.4. Nowy, ..., a4-1 are
nonzero by Lemma 2.8. O

We finish this section with some inequalities involving the eigenvalues of tight graphs.

Lemma 6.6 LetI’ = (X, R) denote a tight distance-regular graph with diameterd3
and eigenvaluegy > 61 > --- > 6y. Then(i)—(iv) hold below.
() 60 < 35
(i) Letp, po denote the first and second cosinesédgrrespectively. Thep? < p,.
(i) Leto, oo denote the first and second cosinesdarrespectively. Thea? > oy.
(iv) For each edge xy df, the scalar f= f(x, y) satisfied < f < b;.
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Proof: (i) Observe (42) holds with equality sinfas tight, anda; = 0 by Proposition 6.5,

Sinced; > 64, the first factor is positive, and the second is negative. The result follows.
(i) By Lemma 2.3(iv),

k?b1(0% — p2) = (K — 0g) (K + 04 (a1 + 1)). (43)

The right side of (43) is negative in view of (i) above, s0< p,.
(i) By Lemma 2.3(iv),

k?b1(0% — 02) = (K — 1) (K + O1(a1 + 1)). (44)

The right side of (44) is positive in view of Lemma 2.6(i), 86> 0>.
(iv) Observef equals the expression on the right in (20). This expression is positive and
less tharb, sinced; is positive. O

7. Two characterizations of tight graphs

Theorem 7.1 LetT" denote a nonbipartite distance-regular graph with diameter @,
and eigenvalue8y > 6; > --- > 64. Then for all real numbersg, 8, the following are
equivalent.

(i) Tistight ande, B is a permutation o, 64.

(i) 69 <a,B <6, and

k k . kalb]_
<a+al+1)<ﬂ+a1+1)__(al+1)2' (43)

Proof: (i)=-(ii) Immediate since (42) holds with equality.
(i)=(i) Interchangingx andp if necessary, we may assume> S. Since the right side
of (45) is nonpositive, we have

k
+ <0+ ,
=« a+1— ! a+1
k
> B+
zp r1 -t

By (45), the above inequalities, and (42), we have

ka]_b]_ . n k ,3 n k
(a1+1)2_ * a;+1 a;+1
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k k
6 6, 46
z<1+a1+1><d+al+l> (46)
ka1b1
> == 47
T (am+1)7? 4N

Apparently we have equality in (46), (47). In particular (42) holds with equality,isdight.
We mentioned equality holds in (46). Neither side is 0, siace: 0 by Proposition 6.5,
and it followsa = 6, B = 64. O

Theorem 7.2 LetT’ = (X, R) denote a nonbipartite distance-regular graph with diam-
eter d > 3, and eigenvaluegy > 60; > - -- > 64. Letd and6’ denote distinct eigenvalues
of I", with respective cosine sequenegsoy, . .., og andpg, p1, ..., p4. The following are
equivalent.

() Tistight ande, 6’ is a permutation of, 6y.

(i) Forl<i <d,

00j_1 — Oj PPI-1 — Pi (48)

(A+0)oi_1—o0i)  A+p)pi_1—pi)’

and the denominators i@8) are nonzero.

0% -0 P —p2
- , 49
(i) Ato0)0 -0  Atp)o—p2 (49)

and the denominators i#9) are nonzero.
(iv) 6 and®’ are both nontrivia) and

(0202 —0p)(p —0) = (op2 — 02p)(0p — 1). (50)

Proof: (i)=(ii) Recalla; # 0 by Proposition 6.5. Pick adjacent verticesy € X, and

let D] = Di(x, y) be as in Definition 2.10. By Corollary 6.3(iii), the edgg s tight with
respect to botld, 6’; applying (21), we find both sides of (48) eqtagllu"i,l(z) N D1y,
wherez denotes any vertex iB!_; (x, y). In particular, the two sides of (48) are equal. The
denominators in (48) are nonzero by Lemma 2.4 and Lemma 2.5.

(iiy=(iii) Seti = 2in (ii).

(i) =(iv) 6 is nontrivial, otherwises = o, = 1, and a denominator in (49) is zero.
Similarly 6’ is nontrivial. To get (50), put (49) over a common denominator and simplify
the result.

(iv)=(i) Eliminating o, 02, p, p2 in (50) usingd = ko, 8’ = kp, and Lemma 2.3(i), we
routinely find (45) holds forx = 6 andg = 6’. Applying Theorem 7.1, we fin& is tight,
and tha®, 6’ is a permutation ofy, 6. O
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8. The auxiliary parameter

LetT" denote a tight distance-regular graph with diamdter 3. We are going to show the
intersection numbers &f are given by certain rational expressions involviigdependent
parameters. We begin by introducing one of these parameters.

Definition 8.1 LetI" denote atight distance-regular graph with diameter3, and eigen-
valuesty > 6; > --- > 64. Let denote one ob,, 64. By theauxiliary parameterof I'
associated witld, we mean the scalar

k2 — 66’
=—, 51
*T ke —0) 1)
wheref’ denotes the complement @fin {61, 64}. We observe the auxiliary parameter for
04 is the opposite of the auxiliary parameter fgr

Lemma 8.2 LetI denote a tight distance-regular graph with diameter>d 3, and
eigenvalueg, > 01 > --- > 64. Letd denote one ofy, 64, and lete denote the auxiliary
parameter fo. Then(i)—(iv) hold below.

(i) e > 0if 6 =61, ande < 0if 6 = by.

(i) 1 < el
(iii) e < ko; ™.

(iv) le| < —kég™.

Proof: Firstassumé = 6;. By (51),
£—1=(k+0g)(k—01)(01 — 6 'k ' >0,
soe > 1. Recallp; > 0 anddy < 0. By this and (51),
kort — & = B3(k — 01 (K + 61)(6g — 6) k20, > 0,
soe < ko; . Similarily
kgt + & = 01(K — 03) (K + 64) (01 — 6a) k2951 < 0,

Soe < —k@gl. We now have the result fér = 6,. The result fo® = 64 follows in view
of the last line of Definition 8.1. O

Theorem 8.3 LetI" denote a nonbipartite distance-regular graph with diameter @,
and eigenvalueg, > 0; > --- > 64. Letd andd’ denote any eigenvalues Bf with respec-
tive cosine sequences, o1, ..., 04 andpg, p1, ..., pq4. Lete denote any complex scalar.
Then the following are equivalent.

(i) Tistight, 6,6’ is a permutation oby, 64, ande is the auxiliary parameter fof.
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(ii) 6 and®’ are both nontriviaJ and
0i pi — 0i—1pi—1 = &(0i—1pi — Pi-10i) (52)

forl<i <d.
(iii) 6 and®’ are both nontrivial, and

op—1l=e(p—0), 0202—0p=¢e(0p2— po2). (53)

Proof: (i)=-(ii) Itis cleard, 6’ are both nontrivial. To see (52), obsetu&’ are distinct,

so the equivalent statements (i)—(iv) in Theorem 7.2 hold. Putting (48) over a common
denominator and simplifying using= (1 — op)(c — p) "%, we get (52).

(i) =(iii) Seti =1 andi = 2in (52).

(i) = (i) We first showd # 6’. Suppos® = 6'. Theno = p, so the left equation of (53)
becomes? =1, forcingo =1 oro = —1. Buto # 1 sinced is nontrivial, andr # —1 since

I is not bipartite. We conclud@+# 6'. Now o # p; solving the left equation in (53) far,

and eliminating in the right equation of (53) using the result, we obtain (50). Now Theorem
7.2(iv) holds. Applying Theorem 7.2, we fifddis tight, and thab, 0’ is a permutation of

61, 64. Solving the left equation in (53) far, and simplifying the result, we obtain (51). It
follows ¢ is the auxiliary parameter far. a

9. Feasibility

Let I' denote a tight distance-regular graph with diameter3, and eigenvalueg, >

01 > --- > 4. Letd, 6’ denote a permutation @f, 64, with respective cosine sequences
00,01, ...,04 and pg, p1, ..., p4. Let ¢ denote the auxiliary parameter fér Pick any
integeri (1 <i < d), and observe (52) holds. Rearranging terms in that equation, we find

pi(oi —€oi_1) = pi—1(0i—1 — €0}). (54)

We would like to solve (54) for;, but conceivablys; — ¢0i_1 =0. In this section we
investigate this possibility.

Lemma 9.1 LetI" denote a tight distance-regular graph with diameter 8, and eigen-
valuesty > 0; > --- > 64. Letd, 6’ denote a permutation @f, 64, with respective cosine
sequencesy, o1, ..., 04 and pg, p1, ..., pq- Lete denote the auxiliary parameter fer.
Then for each integer {1 < i < d — 1), the following are equivalen(i) oi_1 = ¢o;; (ii)
oir1=¢oi; (iii) oy_1 =0i11; (V) pi = 0. Moreover suppos€i)—(iv) hold. Therd = 64 and
o' = 0.

Proof: Observe Theorem 8.3(i) holds, so (52) holds.

()=(iv) Replacingoi_1 by ea; in (52), we findoj pj (1 — ¢2) = 0. Observes? # 1 by
Lemma 8.2(ii). Suppose for the moment that= 0. We assume;_; = goj, S00;_1 = 0.
Now o;_1 = oj, contradicting Lemma 2.4. Heneg # 0, sop; = 0.
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(iv)=(i) Settingp; = 0in(52), wefindoj_1(ci_1—¢0;) = 0. Observep;_; # 0, otherwise
pi—1 = pi, contradicting Lemma 2.4. We conclude ; = ¢0j, as desired.

(i) < (iv) Similar to the proof of (i} (iv).

(1), (i) = (iii) Clear.

(iif) =(i) We cannot havé = 6, by Lemma 2.4(i), s® =64, 6’ = 0;. In particularp; _; #
pi+1. Adding (52) ati andi + 1, we obtain

Oi+1Pi+1 — Oi—10i—1 = €(0i Pi+1 — Oi+10i + Oi_10i — 0i Pi—1)-
Replacingoi 11 by oi_; in the above line, and simplifying, we obtain

(0i—1—€0i)(pit1 — pi—1) = 0.

It follows oi_1 = €0, as desired.
Now suppose (i)—(iv). Then we saw in the proof of @)i) thaté = 6y, 6’ = 6. O

Definition 9.2 LetI" = (X, R) denote a tight distance-regular graph with diamdter 3

and eigenvaluegy > 61 > --- > 64. Letoyg, 01, ..., o4 denote any cosine sequence for
and letd denote the corresponding eigenvalue. The sequefes, ..., oq (Or 0) is said
to befeasiblewhenever (i) and (ii) hold below.

(i) 0 isone ofty, Oy.
(i) oj_1#0gforl<i<d-1.

We observe by Lemma 2.4(i) thé{ is feasible.
We conclude this section with an extension of Theorem 8.3.

Theorem 9.3 LetI" denote a nonbipartite distance-regular graph with diameter @,
and eigenvaluegy > 6; > --- > 64. Let® and 8’ denote any eigenvalues Df with
respective cosine sequenegsoy, ..., o4 and pg, p1, . . ., pq- Lete denote any complex
scalar. Then the following are equivalent.
(i) T istight, 0 is feasible ¢ is the auxiliary parameter fof, and 6’ is the complement
of 6 in {6y, 64}.
(i) ' is not trivial,

[
p=]22=—2 0=<izd, (55)
j:laj —&0j1

and denominators it55) are all nonzero.

Proof: (i)=-(ii) Clearly ¢’ is nontrivial. To see (55), observe Theorem 8.3(i) holds, so
(52) holds. Rearranging terms in (52), we obtain

pi(oi —eoi_1) = pi—1(oi-1 —€0;) (L <i <d). (56)
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Observes; #¢oi_1 for 2<i <d by Lemma 9.1(ii), andr #¢ by Lemma 8.2(ii), so the
coefficient ofp; in (56) is never zero. Solving that equation fgrand applying induction,
we routinely obtain (55).

(i)=() We show Theorem 8.3(iii) holds. Obserdeis nontrivial; otherwiser =1,
forcing p =1 by (55), and contradicting our assumption thats nontrivial. One readily
verifies (53) by eliminatingo, p, using (55). We now have Theorem 8.3(iii). Applying
that theorem, we findl' is tight, 0, 6’ is a permutation of;, 64, and that is the auxiliary
parameter fod. It remains to show is feasible. Suppose not. Then there exists an integer
i (1 <i=<d-1 suchthabi_; = oj;1. Applying Lemma 9.1, we findj,; = ¢o0;. But
oir1 — €oi Is a factor in the denominator of (55) (withreplaced by + 1), and hence is
not 0. We now have a contradiction, &ds feasible. O

10. A parametrization

In this section, we obtain the intersection numbers of a tight graph as rational functions of
a feasible cosine sequence and the associated auxiliary parameter. We begin with a result
about arbitrary distance-regular graphs.

Lemma10.1 LetI" denote adistance-regular graph with diameterd3, and eigenvalues
60> 61> --- > 064.Letod, 8’ denote a permutation 6f, 94, with respective cosine sequences
00,01, ...,04 andpg, p1, ..., pd. Then

ke (@=02)A—p)—(p—p)1-0) (57)

C(p—p)(L—0)o — (0 —a)(L—p)p’
b = k (Gi—1—0i) A —p)pi — (pi—1 — pi)(A —0o)oj 1<i<d-1). (58
(pi — pi+1)(oi—1 — o) — (07 — oi+1)(Pi—1 — pi)
(0i —oi+1) (X —p)pi — (oi — pi+D)(1 — o)o;

(pi — pi+1)(oi—1 — o) — (07 — oi1)(Pi—1 — pi)

¢ =k l<i=zd-21, (59

p—1

g,
0d-1 — Od Pd—1 — Pd

and the denominators itb7)—(60) are never zero.

Proof: Line (60) is immediate from Lemma 2.3(v), and the denominators in that line are
nonzero by Lemma 2.4. To obtain (58), (59), pick any integér< i < d — 1), and recall
by Lemma 2.2(iii) that

Ci(oi—1—0i) — bi(oi — 0i+1) = k(o — Doy, (61)
Ci(pi—1— pi) — bi(pi — pig1) =k(p —Dpi. (62)
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To solve this linear system fay andb;, consider the determinant

D = del(o'i—l_o'i oi —Gi+1)
H pi-1—pi pi—pis1)
Using Lemma 2.4, we routinely fin; # 0. Now (61), (62) has the unique solution

(58), (59) by elementary linear algebra. The denominators in (58), (59) both Bguial
particular they are not zero. To get (57), set 1 andc; = 1in (59), and solve fok. O

Theorem 10.2 LetI" denote a nonbipartite distance-regular graph with diameter 8,
and letog, 01, . . . 04, &, h denote complex scalars. Then the following are equivalent.
(i) TCistight o, 01, ...0qis afeasible cosine sequencefyr is the associated auxiliary
parameter from51), and

(1-0)1-02)

h= (02—02)(1—¢0)’ 63)
(i) oo =1, 041 =004, ¢ # —1,

k=hZ—. (64)

b — (0i—1 — 007)(0i1+1 — £0i) L<i<d_1), (65)
(0i—1 — 0i41)(0i41 — 0)

G = h(0i+1—00i)(0i—1 — £0j) 1<i<d—1), (66)
(0i+1 — 0i—1)(0i—1 — 0})

Cq = hz :i (67)

and denominators i{64)—(67)are all nonzero.

Proof: Letfy > 6, > --- > 64 denote the eigenvalues Bf

(i)=(ii) Observeoy = 1 by Lemma 2.2(ii), and # —1 by Lemma 8.2(ii). Le® denote
the eigenvalue associated with, o1, . . ., o4, and observe by Definition 9.2 thatis one

of 01, 64. Let 6’ denote the complement 6fin {61, 64}, and letpog, p1, . .., pg denote the
cosine sequence fo¥. Observe Theorem 9.3(i) holds. Applying that theorem, we obtain
(55). Eliminatingog, o1, ..., pq in (57)—(60) using (55), we routinely obtain (64)-(67), and
thatogq_1 = ooy.

(ii) =(i) One readily checks

C(oi_1—0)) —bi(oi —oi1) =k(c —Do; (1 <i =<d),

whereoy,1 is an indeterminant. Applying Lemma 2.2(i),(iii), we fing, o1, ..., 04 IS
a cosine sequence far, with associated eigenvalue:=ko. By (64), (65), and since
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k, by, ..., bg_1 are nonzero,
oj#eoj-1 (1=j=d.

Set
pi=[[22= 0<is<d) (68)

One readily checkgy = 1, and that
Ci(pi—1—pi) —bi(pi —piz) =k(p—Dp (1=<i=<d),

wherepg.1 is an indeterminant. Applying Lemma 2.2(i),(iii), we fing, p1, ..., poq is @
cosine sequence fdr, with associated eigenval#g := kp. We claimé’ is not trivial.
Suppos@’ is trivial. Thenp = 1. Setting = 1andp = 1in (68) we findo —e = 1—¢o,
forcing (1 — o)(1+ ¢) = 0. Observer # 1 since the denominator in (67) is not zero, and
we assume # —1, so we have a contradiction. We have now shéWwis nontrivial, so
Theorem 9.3(ii) holds. Applying that theorem, we fifidss tight, 6 is feasible, and thatis
the auxiliary parameter &f. To see (63), sét= 1 andc; = 1 in (66), and solve foh. O

Proposition 10.3 With the notation of TheoredD.2, supposdi), (ii) hold, and letdy >
01 > --- > 64 denote the eigenvaluesBf If ¢ > 0, then

oo —e)(1—o07) 1-o0,

6, = Oy = . 69
! (1—e0)(op —0?)’ d oy — 02 (69)
If ¢ <0, then
1—o0, o(c —e)(1—o02)
61 = , = . 70
! 0y — 02 d (1—g0)(or —02) (70)

We remark that the denominators(®9), (70) are nonzero.

Proof: Let6 denote the eigenvalue Bfassociated withyg, o1, . . ., 4. By Lemma 2.2(iii)
and (64), we obtain

0 = ko
_ oo —e)(1—o07) . (71)
(1—e0)(o2—0?)
Observe € {61, 04} Sinceoy, o1, . . ., og is feasible. Let’ denote the complement 6fin

{61, 64}, and letp denote the first cosine associated withObserve condition (i) holds in
Theorem 9.3, so (55) holds. Setting-= 1 in that equation, we find

1—¢o

p= (72)

o—¢
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By Lemma 2.2(iii), (64), and (72), we obtain

0 =kpo
1—0’2
= . 7
p— (73)

To finish the proof, we observe by Lemma 8.2(i) that 01,0’ = 64 if ¢ > 0, andd = 64,
0 =6,if ¢ <O. O

Theorem 10.4 LetTI" denote a tight distance-regular graph with diameterd3, and
eigenvaluegy > 0; > --- > 64. Then(i) and(ii) hold below.

() ag =0.
(i) Letoy, oy, ..., 04 denote the cosine sequencedgior 64, and lets denote the asso-
ciated auxiliary parameter fronil).
Then
a = (0i41 — 00i)(0i—1 — 00j) L<i<d_1), (74)
(Gi+1 — 0i)(0i—1 — 0i)
where
_ 1 1 _
e—D1—-02) (75)

C (02—o0)(l—¢0)

Proof. (i) Comparing (64), (67), we sde= cq, and it followsay = O.

(i) First assumeny, 01, ..., o4 iS the cosine sequence féf, and recall this sequence

is feasible. Leth be as in (63). Then Theorem 10.2(i) holds, so Theorem 10.2(ii) holds.
Evaluating the right side & = k—b; — ¢ using (64)—(66), and simplifying the result using
(63), we obtain (74), (75). To finish the proof, |}, o1, ..., og denote the cosine sequence
for 64, and recall by Definition 8.1 that the associated auxiliary parametér=s—e. We
show

a — € =DA—-p2) (Pit1— ppi)(pPi-1— ppi)' (76)

(0% — p2)(L—¢€'p) (pPit1— pi)(Pi-1— pi)

By Theorem 7.2(ii) (with replaced by + 1),

1 06i41— o0 _ 1 piy1— ppi . 77)
l1+0 oiy1—oi 1+p piqa—pi
Subtracting 1 from both sides of Theorem 7.2(ii), and simplifying, we obtain
1 o_1—00i 1 pi_1—ppi (78)

1+0 oici—oi  14p pii—pi



186 JURISIC, KOOLEN AND TERWILLIGER

By (53),
(e — DA —02)(1+0)? _(E=DHA - p)(1+ p)?
2 =~ (79)
(0 —02)(1—¢0) (02— p2)(1 —¢'p)
Multiplying together (77)—(79) and simplifying, we obtain (76), as desired. O

We end this section with some inequalities.

Lemma10.5 LetI" denote atight distance-regular graph with diameter 8, and eigen-
valuesfy > 91 > --- > 64. Letd denote one ofq, 4, and letog, o1, .. ., o4 denote the
cosine sequence for Suppos® = 0;. Then

(i) oi_1>00; (1<i<d-1,

(i) ooi_1 >0 (2<i <d).

Suppos® = 64. Then

(i) (=1 (oo —0i_1) >0 (1<i=<d-1),
(V) (=) (oi —00i_1) >0 (2<i <d).

Proof: (i) We first showoj_; — ooj is nonnegative. Recadh # 0 by Proposition 6.5, so
Theorem 4.1 applies. L&t y denote adjacent vertices ¥y and recall by Corollary 6.3 that

the edgexy is tight with respect t@. Now Theorem 4.1(i) holds, so (22) holds. Observe
the left side of (22) is honnegative, so the right side is nonnegative. In that expression on
the right, the factors % o andoj_; — o; are positive, so the remaining factgr 1 — oo

is nonnegative, as desired. To finish the proof, observe— oo; is a factor on the right in

(74), so it is not zero in view of Proposition 6.5.

(ii)—(iv) Similar to the proof of (i) above. O

11. The 1-homogeneous property

In this section, we show the concept of tight is closely related to the concept of 1-homo-
geneous that appears in the work of Nomura [14-16].

Theorem 11.1 LetT’ = (X, R) denote a tight distance-regular graph with diameter
d > 3, and eigenvalue§; > 6, > --- > 64. Letoy, o1, . . ., 04 denote the cosine sequence
associated witld; or 6y4. Fix adjacent vertices xy € X. Then with the notation of Definition
2.10we have the followingror all integers i (1 < i < d — 1), and for all vertices z D!,

(0% — 02)(0i — 0i41)
(0 — 02)(00i — 0i41)

|Fi_1(Z) N D:1L| = (80)

2 _ ) — 7
|Fi+l(z) N D;H —b (o 02)(0i-1 — 0i) ) (81)

(0 — 02)(0i—1 — 00j)
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Proof. First assumey, o1, ..., gq IS the cosine sequence fér, and letog, o1, .. ., od
denote the cosine sequence figr The edgexy is tight with respect to both;, 64, so by
Theorem 4.2(ii),

Oi_1 — Oj l1-0 Oj

;12 N DY = |I_1(2) N D} , 82
| |+l() 1| | i-1(2) l|Ui—Ui+1 ll+00i—6i+1 ( )
1 — O 1_ "
M@0 D} = [ra@npi 22 22 A (83)
P — Pit1 1+pp0 —pis1
Eliminating po, o1, ..., pq in (83) using (55), we obtain
Oj—1 — Oj Oj — E0j
Ty N D} = |1 N D —=—— 12—~
Oi — 0j410j—-1 — €0
1—o0)(0j11— €0i
t+ay ( )( i+1 i) (84)

(1+0)1—=e)(oi —0iyn)’
wheree denotes the auxiliary parameter associated @itlsolving (82), (84) fol T +1(2)

N D1l and|Tj_1(2) N D}|, and evaluating the result using (63), (65), (66), (74), we get (80),
(81), as desired. To finish the proof observe by Theorem 7.2(ii), (iii) that

(0% —02)(0i —0iy1) _ (0° = p2)(pi — piy1)

= ; (85)
(0 —02)(o0i —0oiy1) (P — p2)(PPi — Pit1)
(0% — 021 —0) _ (p* = p2)(pi1— pi) (86)
(0 —0)(0i-1—001)  (p—p2)(pi-1— ppi)
m

Theorem11.2 Letl’ = (X, R) denote atight distance-regular graph with diametee B,
and eigenvaluegy > 61 > --- > 64. Letoy, o1, .. ., o4 denote the cosine sequence fgr
or 64. Fix adjacent vertices xy € X. Then with the notation of Definitidh10we have the
following (i), (ii).

(i) Forallintegersi(1<i <d-1),andforall ze DII

(0i — 0i41)(00i_1 — 07)

rnbD i =c¢ , 87
[F@nbis)=c (0i-1 — 0i)(00i — 0i41) &7)
it1] _ . (Oi—1—0i)(0i —00i41)
IT(@ N D =b Py — (88)
(i) Forallintegersi(2 <i <d), andforallze D! ;U Di“l,
@0 DI =a Lo o2t) (89)

(0i—1—0i)(0i_2 — 00i_1)
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Proof: (i) To prove (87), we assumie> 2; otherwise both sides are zero. ketdenote
the expression on the right in (80). Ltdenote the number of ordered painssuch that

ueli_1@ND}, ver@nD=} v =i-2

We computeN in two ways. On one hand, by (80), there are preciaglghoices fou, and
givenu, there are preciselg _; choices for, so

N =«iG_;1. (90)

On the other hand, there are precisglyz) N D{jﬂ choices forv, and giverw, there are
preciselyw; _; choices fomu, so

N = |['(2) N D|Zf|ei_1. (91)

Observe by Lemma 2.4, Lemma 6.6, and (80) that # O; combining this with (90), (91),
we find

IT(2) N D/71| = Gy .

Eliminating«j _1, ¢ in the above line using (80), we obtain (87), as desired. Concerning
(88), first assumé = d — 1. We show both sides of (88) are zero. To see the left side is
zero, recallay = 0 by Theorem 10.4, forcingj, = 0 by Lemma 2.9, sdD{,j = ) by the

last line in Definition 2.10. The right side of (88) is zero since the fag§of — o oq in the
numerator is zero by Lemma 2.3(vi). We now show (88)ifer d — 2. Let 8 denote the
expression on the right in (81). L&’ denote the number of ordered painssuch that

ueli1(@ND, vel@ND, auv) =i+2

We computeN’ in two ways. On one hand, by (81), there are precigglghoices foru,
and giveru, there are precisely; . ; choices for, so

N' = Bibii1. (92)

On the other hand, there are precisflyz) N Di‘jr’ﬂ choices forv, and giverw, there are
preciselyg;1 choices fomu, so

N’ = |2 N D!T|Bis1. (93)

Observe by Lemma 2.4, Lemma 6.6, and (81) that = 0; combining this with (92), (93),
we find

P2 N D1 =biaBiB L

Eliminating 8;, i1 in the above line using (81), we obtain (88), as desired.
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(i) Let y; denote the expression on the right in (21), andletenote the expression on
the right in (87). LetN” denote the number of ordered pairssuch that

ueli_1(ND], vel(ND], d(u,v)=i-2
We computeN” in two ways. On one hand, by Theorem 4.1(ii), there are precigely
choices fowu. Givenu, we find by (87) (withx andi replaced by andi — 1, respectively)
that there are precisety_1 — §;_1 choices for; consequently

N” = i (Ci—1 — 8i-1). (94)

On the other hand, there are precisglyz) N Diij| choices forv, and giverw, there are
preciselyw;_; choices foru, whereg; _; is from the proof of (i) above. Hence

N” = () N D71 |ei—1. (95)
Combining (94), (95),
T2 N DZ7] = n(Ci1— &)y

Eliminatinge; _1, ¥4, 8i—1 in the above line using (80), (21), (87), respectively, and simpli-
fying the result using Theorem 10.4(ii), we obtain (89), as desired. O

Definition 11.3 LetI' = (X, R) denote a distance-regular graph with diamdter 3, and
fix adjacent verticeg, y € X.

(i) Forallintegers, j we define the vectow; = wj (X, y) by

wj= Y2 (96)

zeD/

WhereDij = Dij (X, y) is from (15).
(i) Let £ denote the set of ordered pairs

L={ijl0<i,j=<d pj#0}. (97)

We observe that for all integeisj, w; # 0 if and only ifij € L.
(iif) We define the vector spad® = W(x, y) by

W = Sparfwj | ij € £}. (98)

Lemmal1ll.4 Letl' = (X, R) denote a distance-regular graph with diameterd, and
assume a# 0. Then
() L={i—-1i|l<i<dlUli,i—1|1l<i<djUlii|l=<i <e}
wheree=d — lifag=0ande=d ifag # 0.
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3d if ag #0,

(i) £l = {Sd —1 ifag=0. (99)

(iii) Let x, y denote adjacent vertices in, dnd let W= W(X, y) be as in(98). Then

. 3d if ag # 0,
dimW = 100
{3d -1 if aqg =0. ( )

Proof: Routine application of Lemma 2.8 and Lemma 2.9. O

Lemma 11.5 Letl’ = (X, R) denote a distance-regular graph with diametep-d3, fix
adjacent vertices xy € X, and let the vector space W W(X, y) be as in(98). Then the
following are equivalent.
(i) The vector space W is A-invariant. .
(i) For all integers i j,r,s (ij € £ and rs e £), and for all z € D/, the scalar
IT'(2) N D7 is a constant independent of z.
(i) The following conditions hold. .
(a) Forallintegersi(l <i <d),andforall ze D,I the scalargI"(z) N Di'j| and
IT'(2) N Di'ﬁ| are constants independent of z. _ _
(b) Forallintegersi(2 <i < d),andforallze D! _,UD|~*, the scalanil"(z)ND; ]|
is a constant independent of z.

Proof: (i)« (ii) Routine.
(iiy=(iii) Clear.
(iif) = (ii) Follows directly from Lemma 2.11. O

Definition 11.6 LetI’ = (X, R) denote a distance-regular graph with diamdter 3. For
each edgey € R, the grapil is said to bel-homogeneous with respect to whenever
()—(iii) hold in Lemma 11.5. The graph' is said to bel-homogeneoushenever it is
1-homogeneous with respect to all edge®in

Theorem 11.7 LetD’ = (X, R) denote a distance-regular graph with diameter-d3.
Then the following are equivalent.
(i) T istight
(i) a1 #0, ag =0, andT is 1-homogeneous
(i) a1 # 0, ag = 0, andT is 1-homogeneous with respect to at least one edge.

Proof: (i)=-(ii) Observea; # 0 by Proposition 6.5, andy = 0 by Theorem 10.4. Pick
any edgeye R.By Theorem 11.2, we find conditions (iii)(a), (iii)(b) holdinLemma 11.5, so
I" is 1-homogeneous with respecttp by Definition 11.6. Apparently is 1-homogeneous
with respect to every edge, $ois 1-homogeneous.

(i) = (iii) Clear.

(i) = (i) Supposel’ is 1-homogeneous with respect to the edgee R. We showxy

is tight with respect to botl;, 4. To do this, we show the tightness= t(x, y) from
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Definition 5.1 equals 2. Consider the vector spéte- W(x, y) from (98), and the vector
spaceH from (37). ObservaV is A-invariant by Lemma 11.5, and/ containsH, so it
containaviH, whereM denotes the Bose-Mesner algebr&'ofhe spac&V has dimension
3d — 1 by (100), soMH has dimension at mostdd3— 1. Applying (36), we findt > 2.
From the discussion at the end of Definition 5.1, we obseree?, and thaky s tight with
respect to botld;, 64. Now I is tight in view of Corollary 6.3(iv) and Definition 6.4. O

12. Thelocal graph

Definition 12.1 LetT" = (X, R) denote a distance-regular graph with diameter 3.
For each vertex € X, we letA = A(x) denote the vertex subgraphldinduced o™ (x).
We refer toA as thelocal graphassociated wittx. We observeA hask vertices, and is
regular with valency;. We further observe is not a clique.

In this section, we show the local graphs of tight distance-regular graphs are strongly-
regular. We begin by recalling the definition and some basic properties of strongly-regular
graphs.

Definition 12.2 [3, p. 3] A graph A is said to bestrongly-regularwith parameters
(v, k, A, u) wheneverA hasv vertices and is regular with valenay adjacent vertices
of A have precisely. common neighbors, and distinct non-adjacent verticea dfave

preciselyu common neighbors.

Lemma 12.3 [3, Thm. 1.3.1] Let A denote a connected strongly-regular graph with
parameterqv, k, A, i), and assume\ is not a clique. Them has precisely three distinct
eigenvaluesone of which isc. Denoting the others by 5,

(k =1k —9)
p=—

, A=kKk+Tr+S+TrS, =K -+rs. (101)
K+TrS

The multiplicity ofk as an eigenvalue ol equalsl. The multiplicities with which,rs
appear as eigenvalues af are given by

mult = W mult = w (102)
u(s—r) ur —s)

Theorem12.4 LetI’ = (X, R) denote atight distance-regular graph with diameter 3,
and eigenvaluegy > 01 > - -- > 64. Pickd € {01, 04}, leto, o, denote the first and second
cosines fol, respectivelyand lete denote the associated auxiliary parameter frgsi).
Then for any vertex x X, the local graphA = A(x) satisfiegi)—(iv) below.

(i) A is strongly-regular with parameter&, a;, A, ), where k is the valency @f, and

B Ll-02)A+0)1—¢)
(0 —02)(1—¢0)

a = (103)
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20 l1—-0 o3 1-o0,
A =a —a — , 104
l1+c7 11+ao—02 o — 07 ( )
a o2 — 02
= N 105
" 1+0 0 —o0> ( )
(i) A is connected and not a clique.
(i)  The distinct eigenvalues of are &, r, s, where
a 1-
r= 29 g _Z"%2 (106)
1+0 o — 0y
(iv) The multiplicities of r s are given by
1 — 1-9)(1 —
mult = (1+o0)(o 8)’ mult, = Q=8 +0)(02—¢0) (107)

05 — 02 (02 —02)(1—€0)

Proof: (i) Clearly A hask vertices and is regular with valeney. The formula (103) is
from Theorem 10.4(ii). Pick distinct verticas z € A. We count the number of common
neighbors ofy, zin A. First suppose, z are adjacent. By (28) (with= 1) we findy, z
have precisely. common neighbors i\, wherex is given in (104). Next suppose z are
not adjacent. By (21) (with = 2), we findy, z have preciselyx common neighbors in,
wherew is given in (105). The result now follows in view of Definition 12.2.

(i) We saw in Definition 12.1 thaA is not a clique. Observe the scajatin (105) is not
zero, sincea; # 0 by Proposition 6.5, and sine€ # o, by Lemma 6.6(ii), (iii). It follows
A is connected.

(iif) The scalara is an eigenvalue oA by Lemma 12.3. Using (104), (105), we find the
scalarg, sin (106) satisfy

A=a;+r +S+rs, Ww=ay +rs.

Comparing this with the two equations on the right in (101), we find the saalais (106)

are the remaining eigenvalues &f

(iv) By (102) and (i) above,

as+ 1@ —9)
pu(s—r)

ar+D@—r)

, multy =
Uk P

mul, =

Eliminatingay, u, r, sin the above equations using (103), (105), (106), we routinely obtain
(107). O

Definition 12.5 LetI" denote a distance-regular graph with diameter 3, and eigen-
valuesfy > 61 > --- > 64. We define

b1
1+6;

by
1+64°

b~ i=—-1- , bt = -1

We recallay — k <03 < —1 < 6, by Lemma 2.6, sb~ < —1,b" > 0.
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Theorem 12.6 LetI’ = (X, R) denote a distance-regular graph with diameter-d3.
Then the following are equivalent.
() Tis tight.
(i) Forall x € X, the local graphA(x) is connected strongly-regular with eigenvalues
a, b+, b~.
(iii) There exists x X for which the local graph (x) is connected strongly-regular with
eigenvaluesa b™, b™.

Proof: (i)=-(ii) Pick anyx € X, and letA = A(x) denote the local graph. By Theorem
12.4, the graph\ is connected and strongly-regular. The eigenvalueA ather thana;
are given by (106), where for convenience we take the eigenvaingolved to bef;.
Eliminating o, o7 in (106) usingd; = ko and Lemma 2.3(i), and simplifying the results
using equality in the fundamental bound (42), we routinely find b™, s =b~.

(iiy=(iii) Clear.

(i) =(i) SinceA = A(x) is connected, its valenay is not zero. In particular” is not
bipartite. The grapl\ is not a clique, so (101) holds fax. Applying the equation on the
left in that line, we obtain

k(ap + b+b7) =(ag — b+)(a1 —b). (108)

Eliminatingb™, b~ in (108) using Definition 12.5, and simplifying the result, we routinely
obtain equality in the fundamental bound (42). NDvis tight, as desired. O

13. Examples of tight distance-regular graphs

The following examples (i)—(xii) are tight distance-regular graphs with diameter at least 3.
In each case we give the intersection array, the second largest eigefialnd the least
eigenvalugy, together with their respective cosine sequeriegs {p; }, and the auxiliary
parametee for 6;. Also, we give the parameters and nontrivial eigenvalues of the local
graphs.

(i) TheJohnson graph ®d, d) has diameted and intersection numbeas = 2i (d —i),

b =d—-i)? ¢ =ifori =0,...,d, cf. [3, p. 255]. It is distance-transitive, an
antipodal double-cover, an@-polynomial with respect t6;.

Eachlocal graphislattice graph Ky x Kq, with parameter&d?, 2(d—1), d—2, 2)
and nontrivial eigenvalues=d — 2,s = -2, cf. [3, p. 256].

(iiy Thehalved cub% H(2d, 2) has diameted and intersection numbeas = 4i (d —i),
bh=@d-i@d-2 —1),¢ =i(@2 —1fori =0,...d, cf. [3, p. 264]. It is
distance-transitive, an antipodal double-cover, @gdolynomial with respect té;,.

Each local graph is a Johnson graplkd, 2), with parametergd(2d — 1),
4(d — 1), 2(d — 1), 4 and nontrivial eigenvalues = 2d — 4, s = -2, cf. [3,
p. 267].
(iif) The Taylor graphsare nonbipartite double-covers of complete graphs, i.e., distance-
regular graphs with intersection array of the fdikmc,, 1; 1, ¢,, k}, wherec, < k—1.



194 JURISIC, KOOLEN AND TERWILLIGER

They have diameter 3, and afg-polynomial with respect to both;, 64. These
eigenvalues are given oy = «, 63 = B, where

a+p=k—2c—1, af = —k,

anda > B. See Taylor [19], and Seidel and Taylor [17] for more details.

Each local graph is strongly-regular with parametgssas, A, i), wherea; =
k—c;—1,A=(3a; —k—1)/2andu = a;/2. We note botla;, ¢, are even anét
is odd. The nontrivial eigenvalues of the local graph are

_a-1 _p-1

r

) S=
2 2

(iv) The graph 3Syn(7) has intersection arrajl0, 6, 4, 1; 1, 2, 6, 10} and can be ob-
tained from a sporadic Fisher group, cf. [3, pp. 397-400]. It is sometimes called the
Conway-Smith graph. It is distance-transitive, an antipodal 3-fold cover, and is not
Q-polynomial.

Each local graph is Retersen graphwith parameter$10, 3, 0, 1) and nontrivial
eigenvalues = 1,s = —2, see [11], [3, 13.2.B].

(v) The graph 305 (3) has intersection arraj45, 32,12, 1; 1, 6, 32, 45} and can be
obtained from a sporadic Fisher group, cf. [3, pp. 397—-400]. It is distance-transitive,
an antipodal 3-fold cover, and is n@-polynomial.

Each local graph is generalized quadrangle G@, 2), with parameterg45, 12,
3, 3) and nontrivial eigenvaluas= 3,s = —3. See [3, p. 399].

(vi) The graph 307(3) has intersection arrajl 17, 80, 24, 1; 1, 12, 80, 117} and can be
obtained from a sporadic Fisher group, cf. ip. 397—400]. It is distance-transitive,
an antipodal 3-fold cover, and is n@-polynomial.

Each local graph is strongly-regular with parametéfsz, 36, 15, 9), and nontriv-
ial eigenvalues = 9,s = —3. [3, 13.2.D].

(vii) The graph 3Fiy4 has intersection array31671 2816Q 216Q 1; 1, 108Q 2816Q
31671 and can be obtained from a sporadic Fisher group, cf. [3, p. 397]. Itis distance-
transitive, an antipodal 3-fold cover, and is ri@tpolynomial.

Each local graph is strongly-regular with paramet8671, 351Q 693 351) and
nontrivial eigenvalues = 351,s = —9. They are related tBiys.

(viii) The Soicherl graphhas intersection arra§s6, 45, 16, 1; 1, 8, 45, 56}, cf. [2], [4,
11.41], [18]. It is distance-transitive, an antipodal 3-fold cover, and is @et
polynomial.

Each local graph is &ewirtz graphwith parameter56, 10, 0, 2) and nontrivial
eigenvalues = 2,s = —4, [3, p. 372].

(ix) The Soicher2 graplhnas intersection arrgyt16, 315 64, 1; 1, 32, 315 416}, cf. [18]

[4, 13.8A]. Itisdistance-transitive, an antipodal 3-fold cover, and isgitolynomial.
Each local graph is strongly-regular with paramet@ss, 100, 36, 20) and non-
trivial eigenvalues = 20,s = —4.

(x) TheMeixnerl graphas intersection arrgyt 76, 135, 24, 1; 1, 24, 135 176}, cf. [13]

[4,12.4A]. It is distance-transitive, an antipodal 2-fold cover, an@-polynomial.
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Each local graph is strongly-regular with paramet&i&, 40, 12, 8) and nontrivial
eigenvalues = 8,s = —4.

(xi) TheMeixner2 graptas intersection arrgyt 76, 135, 36, 1; 1, 12, 135 176}, cf. [13]

[4,12.4A]. Itis distance-transitive, an antipodal 4-fold cover, and i€xpblynomial.
Each local graph is strongly-regular with parametéis, 40, 12, 8) and nontrivial
eigenvalues = 8,s = —4.

(xii) The Patterson graphhas intersection arra§280, 243 144 10; 1, 8, 90, 280}, and
can be constructed from the Suzuki group, see [3, 13.7]. It is primitive and distance-
transitive, but noQQ-polynomial.

Each local graph is a generalized quadrarigf®?9,3) with parameter&280, 36,
8, 4) and nontrivial eigenvalues= 8,s = —4, [3, Thm. 13.7.1].

Name 61 04 {oi} {pi} 3
d-2i -l .1.2..4 d+2
Jad  dd-2 -4 a= o= d(d(— 1;~-~(d—il+1) g
Taylor « B <1, % _—k“ —1 <1, g _7’3 71> EJ—F;
3.Sym(7) 5 —4 <1, % 0, _71, _71) (1, %2 1%’ %2 1) g
3.05 3 15 -9 <1, % 0, %1 %1) (1, %1 1—10 %1 1) 2
3.07(3) 39 -9 <1, % 0, %1 _71) (1, 1—; 635 % 1) g
3.Fia 3519 -81 <1, é 0, I—; _71) (1, 3_?11 %204 3_—911 1> %4
Soicherl 14 -16 <1, % 0, %1 _71) <l, _72 % _72 1) 2
Soicher2 104 -16 <1, % 0 %1 _71) (1, ;—é, 911 ;é 1) ;
Meixnerl 44 -16 <1, % (0 _71 —1) 1, I—i 3% I—i 1 3
Meixner2 44 -16 <1, % 0, I—; %1> 1, I—i 3—13 I—i 1 3
Patterson 80 —28 (1 ; Zil ;—g %l) (1 I—; 4% ;—i 237) g

Appendix A:  1-homogeneous partitions of the known examples of the AT4 family
and the Patterson Graph

In [21] a tight non bipartite antipodal distance-regular graph with diameter four was
parameterized by the eigen valuesnd—s of the local graphs and the size of its antipodal
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(a) AT4(1,2,3) (b) AT4(2,2,2) (¢) AT4(4,2,2) (d) AT4(3,3,3)

Figure A.1 1-homogeneous partition of (a) the Conway-Smith graph (b) the Johnson g(&p#), (c) the
halved cube} H (8, 2), and (d) the D5 (3).

8 8 2 2 o
45 1(35)16 8o\l 45 R 36 1 1
O v s 196 o %3
R e
10)36-—21801412620)0 (40) a4 08120)
Mg g
11/10 24 4= 1 1] 8796 96)* 40
5 i —3\2 1% A0S =3)
g E 2 2 0
(¢) AT4(2,4,3) () AT4(8.4,2) (g) AT4(8,4,4)

Figure A.2 1-homogeneous partition of (e) the Soicherl graph, (f) the Meixner1 graph, (g) the Meixner2 graph.

32@!
80

(h) AT4(9,3,3) (i) AT4(20,4,3)

Figure A.3 1-homogeneous patrtition of (h) theC¥(3), (i) the Soicher2 graph.

(j) AT4(351,9,3) (j) AT4(351,9,3)

Figure A.4 1-homogeneous partition of (j) thers;, graph and (i) the Patterson graph.
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classes. The graphwas calleceamipodal tight graph of diameter four and with Parameters
(r, s, t) and denoted by AT4(s, t).
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