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Abstract. A spin model (for link invariants) is a square matwith non-zero complex entries which satisfies
certain axioms. Recently (Jaeger and Nomudra&lg. Combin10(1999), 241-278) it was shown tHavw 1 is

a permutation matrix (the order of this permutation matrix is called the “index¥hfand a general form was
given for spin models of index 2. In the present paper, we generalize this general form to an arbitrany.ifalex
particular, we give a simple form & whenmis a prime number.
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1. Introduction

Spin models were introduced by Vaughan Jones [7] to construct invariants of knots and
links. A spin model is essentially a square mawikwith nonzero entries which satis-
fies two conditions (type Il and type lll conditions). In his definition of a spin model,
Jones considered only symmetric matrices. It was generalized to non-symmetric case by
Kawagoe-Munemasa-Watatani [8].

Recently, Fraagis Jaeger and the second author [6] introduced the notion of “index” of a
spin model. For every spin modal, the transpos@V is obtained fromW by a permutation
of rows. Leto denote the corresponding permutationXof= {1,...,n} (n is the size
of W). Then the indexn is the order otr. In [6], it was shown thaK is partitioned into
m subsetsXg, X1, ..., Xm_1 such thatW(x,y) = n'~IW(y, x) holds for allx € X;,
y € X;j. Moreover, the case oh = 2 was deeply investigated, and a general form of spin
models of index 2 was given.

In the present paper, we investigate the structure of spin models of an arbitraryrindex
In Section 4, we show thaV is decomposed into block&;, andWi; splits into Kronecker
product of two matrice§; andT;; (Proposition 4.3). In Section 5, we give conditions on
Tij (Propositions 5.1 and 5.5). In Section 6, we apply this general form to some special
cases (Propositions 6.1 and 6.2). In particular, we give a simple fokviwhen the index
m is a prime number (Corollary 6.3).
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2. Preliminaries

In this section, we give some basic materials concerning spin models and association
schemes. For more details the reader can refer to [4—7].

Let X be a finite non-empty set with elements. We denote baty (C) the set of
square matrices with complex entries whose rows and columns are index&d Fyr
W e Matx (C) andx, y € X, the(x, y)-entry of W is denoted byV (X, y).

A type Il matrixon X is a matrixXW € Maty (C) with nonzero entries which satisfies the
type 1l condition

W(a, x)
% Won = ns.p (foralla,be X). (1)

Let W— e Maty(C) be defined byw~(x, y) = W(y, x)"1. Then type Il condition is
written asW W~ = nl (I denotes the identity matrix). Hence,W is a type Il matrix,
thenW is non-singular wittV—1 = n=*W~. It is clear thatw—! and'W are also type I
matrices.

A type Il matrix W is called aspin modebn X if W satisfiegype Il condition

Z W(a, Xx)W(b, x) D W(a, b)

W(c, X) - W(a, c)W(c, b) (for alla,b,ce X) (2)

XeX

for some nonzero complex numhber The numbeD is called thdoop variableof W. Set-
tingb=cin (2),) ,.x W(a, x) =DW(b, b)~! holds, so that the diagonal entrid&b, b)
is a constant, which is called timodulusof W.

For a spin modeW with loop variableD, any nonzero scalar multipleW is a spin
model with loop variable.?D. UsuallyW is normalized so thad? = n, but we allow any
nonzero value oD in this paper to simplify our arguments.

Observe that, for any spin modétg on X; with loop variableD; (i = 1, 2), their tensor
(Kronecker) productV; ® W is a spin model with loop variabl® = D; D,. Conversely,
it is not difficult to show that, iW; ® W, andW; are spin models, thew, must be a spin
model.

A (class d association schemen X is a partition ofX x X with nonempty relations
Ro, Ry, ..., Ry, whereRy = {(X, X) | x € X} which satisfy the following conditions:

(i) Foreveryi in {0,1,...,d}, there exists’ in {0, 1, ...,d} such thatR: = {(y, x) |
(x,y) € R}.
(iiy There exist integerspikj (i,j,ke{0,1,...,d}) such that for everyx, y) € Ry, there
are preci:selypikj elementg such thai(x, 2) € R and(z, y) € R;.
(iii) pf = pl; foreveryi, jin{0,1,....d}.

Let A; denote the adjacency matrix of the relatiBn so A; € Matx(C) is a{0, 1}-matrix
whose(x, y)-entryis equalto Lifandonly ifx, y) € R. ClearlyAg =1, Aioc A} = & j A
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(entry-wise product)y_f_, A, = J (all 1's matrix), andA Aj = Y, pk A hold. The
linear spanAd of {Ag, A1, ..., Ag} becomes a subalgebra bfaty (C), called theBose-
Mesner algebraof the association scheme. Observe tHats closed under entry-wise
product,A is closed under transpositioh— A, and.A containsl , J.

3. Associated permutation

Let W be a spin model oiX. Then there exists an association schd®ge. .., Ry on X
such that the corresponding Bose-Mesner algebrantainsw ([5] Theorem 11). In [6], it
was shown thatWW- = A (the adjacency matrix dRs) for somes € {0, 1, ..., d}, and
moreoverAg is a permutation matrix ([6] Proposition 2). Letdenote the corresponding
permutation onX, so thatAs(x,y) = 1if y = o(x) and As(X, y) = 0 otherwise. The
orderm of o is called thendexof W.

Observe tham = 1 if and only if W is symmetric. Also observe that, for two spin models
W of indexm; (i = 1, 2), the index oW, ® W, is equal to the least common multiple of
m; andm,. In particular, tensor product of a spin model of indexwvith any symmetric
spin model has indem.

Lemma 3.1

() Wx,0(x) =W(y,a(y) X,y € X).
(i) W(y,x) =W(o(X),y) (X,y e X).
(iii) Every orbit ofo has length m.

Proof:

(i) Observe that, sinc&/ € A, W is written as a linear combinatiolV = Zid=0 ti A, SO
W(x,y) =t for (x,y) € R. Since(x,o(x)) € Rs (for everyx € X), it holds that
W(x, (X)) = ts = W(y, 5 (y)).

(i) W(y, x) ='W(x, y) = (AW)(X, y) = W(o (X), Y). _

(i) Pickanyi (0 <i < m). SinceA; is a linear combination o\, ..., Aq and sinceA,
is a permutation matrix, we get, = A for somej # 0. Observe that the diagonal
entries ofA; are all zero sincg # 0. This means that' (which corresponds the
permutation matriXA;) has no fixed point oiX. We have shown that' fixes no point
(0 <i < m). Thus every orbit o must have lengtim. O

Lemma 3.2 There is a partition X= XU --- U X_1 such that(foralli, j € {0, ...,
m— 1})

W, y) =7 TW(y,x) (forallx e X;, y € X)), 3)

wheren denotes a primitive m-root of unity. Moreovyéor every i, o (X;) = X; holds for
some j.
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Proof: The existence of such a patrtition follows from [6] Proposition 3. As in the proof
of Lemma 3.1(i), we havéx, o (X)) € Rs andW(x, o (X)) = ts for all x € X. Then there
existss’ such that(o (x), X) € Ry, so thatW (o (x), X) = ty. Now pick anyx € X;. Then
o (x) € X;j for somej. On the other hand/(x, o (X)) = n'1W(a (x), X). These imply
n'~1 = tstg 1. This means thajtis independent of the choicexfe X;, sothaw (X;) = X;.

O

We fix a primitivem-root of unityn, and letXo, ..., Xn_1 be the partition oiX given in
Lemma 3.2. We identify theindex s, 1, ..., m—1}withZ, = Z/mZ. By Lemma 3.2,
there is a permutation onZ, such thav (X;) = X, (i € Zny). Lett denote the order
of 7, and sek = m/t.

Lemma3.3 #(i)—i=n(j)—jforalli, jeZn.

Proof: Pickanyx € Xi, y € Xj. We haves (X) € Xz, 0(y) € Xz(j). By Lemma 3.2,
W(x, o(x)) = 7 "DW(o(x), x) andW(y, o (y)) = 1 "DW(s(y), y). On the other
hand,W(x, o (X)) = W(y, o(y)) by Lemma 3.1(i), and als®V (o (X), X) = W(X, X) =
(the modulus of W)= W(y, y) = W(o (y), y) by Lemma 3.1(ii). These imply'—"0) =
nj*”(])_ 0

Lemma3.4 There exists an automorphigmof the additive grou@ m such thatr (¢(i)) =
@(i + k) foralli € Zy,. Moreover W(x,y) = (n*D)=IW(y, x) for every xe X,),
Y € Xy(j)-

Proof: Setk’'=n(0). Thenn(i) =i+ kK (i € Zy) by Lemma 3.3. Thu¥'Z,, =
{0,k 2k, ..., (t — 1K'} is an orbit ofr. Note that every orbit ofr has lengtht, and
hence the number of orbits afis equal tok = m/t (in particular,k must be an integer).
Clearlyk’Zy, is the unique subgroup &, of ordert, sok’Z,, = kZ,,. Hence there is an
automorphismy of the additive groufxZ,, such thatp(k) = K'.

We claim thaty can be extended to an automorphismzZgf. In fact, for any cyclic
group G and for any subgroupd of G, any automorphism oH can be extended to an
automorphism o6. This fact can be easily shown wheénis a cyclicp-group. For general
case, decompogg into the Sylow subgroups.

Now we have an automorphismof Z,, such thatp(k) = K'. Sincer (i) =i + k' for all
i €Zm, we getn(p(i)) = ¢() +K =¢@) + oK) =i +k.

Letx € Xy, Y € Xy(j)- Then, by Lemma 3.2V (x, y) = n*P=#0W(y, x) holds for
all x € Xyiy, Y € Xy(j)- Herep(i) —o(j) = (i -1 —¢(j - 1) =ip(1) — jo) =
@) — j). HenceW(x, y) = (7*®)' - TW(y, x). O

Thus, by reordering the indic€$, 1, ..., m — 1} by ¢, and by replacing) with n*®,
we may assume that

i) =i+k (i €Zm. (4)
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4. General form of W

We use the notation of the previous section. We also use the notation:
)/k(Z, |) = n_ei_(k/z)lf(l_l). (5)

Proposition 4.1 Leti, j € Znand xe X;, y € Xj. Thenfor, ¢’ € Z,

W' (x), a“(y) = (€ — €, i — ) W(X, y). (6)

Proof: Assumel > 0 and¢’ > 0. First we consider the case 6f= 0. We proceed
by induction on¢. Obviously (6) holds fo = 0. By Lemma 3.1(ii) and Lemma 3.2,
W(y, x) = W(o (x), y) andW(y, x) = n' "W(X, y). HenceW(a (x), y) = n''W(X, y),
so (6) holdsfo¥ = 1. Now assumé > 1. Notingo (X) € X, = Xi+k and usinginduction,
W (%), y) = We" o (X)), y)

=n—-13G+k) - j)W(q(x), y)

=wE—1,30+k - Hn'"W(x,y)

= w1 = PDWX, Y).

Hence (6) holds foe’ = 0. Now suppose’ > 0. Notingo(y) € X ¢k and using
Lemma 3.2,

W(a' (x), o (y)) = w(€.i — (j + CK)IW(X, o* (y))
= (i = (j + 0 ITOW (" (y), x)
= Wi = (j + )y IRy, | —HW(y, )
= (i — () + )y 0@, j —inI T Wx, y)
=Nt — i = HW(X, y).
Thus (6) holds for non-negative integers’.
Sinces ~¢(x) € Xi_¢,

WX, y) = W(o“ (e (X)), y) = w(, (i — k) — HW(o~(X), y).
Hence

W(o (0, ) = it i — tk— ) HW(x, y)
£(i—tk—]j )+(k/2)2((71)W(X’ y)
Li=DHK/DUAD\Y (x y)

=1
=1
= w(=L. i = HW(X, y).

Sinces ' (y) € Xj_e«,

W(x,y) = W(x, o (07 (¥))) = m(—€,i — (j — CK)IW(X, o~ (y)).
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Hence

WX, o7 (y)) = m(=€,i — j + €K W(X, y)
= )/k(g/,| - J)W(Xs y)

Sinceo (y) € Xj ok,

W(o (), 0¥ () = w(—L,i — (j + €K)IW(X, o (y))

Similarly, we can show that

W(o (), 07 (y) = n@+£.i = HW(X, ),
and
W(o ™ (), 07" () = m(—€ + €T — HW(X, y).
This completes the proof of (6). O

Lemma 4.2 If mis eventhen k is even.

Proof: We apply Proposition 4.1 fot = m, ¢ = 0 andi = j. Then (6) implies
(M, 0) = 1, and this becomeg; ™?)XM-D — 1. Observe thay~™2 = —1, sincen
is a primitive m-root of unity andm is even. Hencg—1)X™b = 1, so thatk must be
even. N

Fori € Z,, set
t—1
Aj = U Xi +hk-
h=0
Observe thatAj| = t(n/m) = tn/(kt) = n/k, and that
k-1
X = U Aj,
i=0
Sinceo (Aj) = Aj, Aj is partitioned intcn-orbitsY;:

r
A=Y, (=0....k-1,
a=1
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wherer = |A;j|/m = n/(mK. Observe thatY!| = mand|Y. N X;| = k. We choose
representative elements

yoeYinX, (=0,..k-La=1...,1).
Then

X={o'(y,)]i =0,....k—La=1...,r,¢=0,....m—1}, @
and

W(o(v5), o (¥)) = m(@ = €1 = HW(Y,, y3) ®)

fore, ¢ e Zm,i,j=0,...,k—1ande,B=1,...,r.
We define square matricdg of sizer andS; of sizem (i, j =0,...,k—1) by

Ty ) = W(Y,.y)) (@ p=1...1),
Sj, &)y =mw—-"0,i—j) «€=0,...,m=1).

For subset#\, B of X, letW| g denote the restriction (submatrix) 8f on A x B. For
two matricesS, T, we denote the Kronecker product By T.

Proposition 4.3 Fori, j =0,...,k—1,

WIY&XYA =Tj@pB) S (@p=1...r1),
and

Wiaxa; = §j ® Tij. )
Proof: Clear. O

ThusW decomposes into blocksjj = W/ xa; (i, ] =0, ...,k — 1), and each block
has the formM; = §; ® Ty (i, j =0,...,k—=1).

5. Type Il and Type Il conditions
Letm, k, t, r be positive integers witm = kt.

LetT; (i,j =0,...,k—1) be any matrices of sizewith nonzero entries, and I§;
(i,j =0,...,k—1) be the matrix of sizen defined by

S )y=ne—-t,i—j «=0,..m-1),
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wherey is defined by (5) for a primitiven-root of unityn. Now set
Wj;=5®T; (,j=0,....,k—1,

and letW be the matrix of sizem = kmrwhose(, j) block isW; (i, j =0,...,k—1).
We index the rows and the columnsWfby the set:

X={[i,¢,a] |0<i<k-21,0<f<m-11<a<r}
so that
W(i, ¢, o], [, €, B = Sj (¢, £)Tij (e, B). (10)

Proposition 5.1 W is a type Il matrix if and only if J is a type Il matrix for all i
j€{o0,...,k—1}.

Proof: The type Il condition (1) foa = [iy, €1, @1], b = [i2, £2, a2] becomes

k=1m-1 r : f

W([i, €1, ca], [i, €, a])
E E E = N8i,.i,00,.0,001.0r- 11
o W(['z, 62, az]’ [|, E, a]) i1,120€1,€2901,02 ( )

Using (10), we rewrite the left-hand-side as follows:

hs :kim’l " (s — € iy — )Ty (e, @)

= = el — £, — DTiji (2, @)

1
i=0

k—1 L (a1, @) m-—1
—L1ii+oia—(k/2) (L1 —02) (£1+Lo—1 L1—L)i lil ’ i1—iz+k(€1—£2))¢
= i+t (k/2)(€1—L2) (L1 +L2 )Zn(1 z)lz Zn(ll ia+k(ti—2))t

i=0 a=1 -rizi (a27 a)

=0
Observe that, sinceis a primitivem-root of unity,

-1
n

3

m if (ip—1i2) +k(f1—4£5) =0 (modm),

((i1—i2)+k(l1—L2))€ _
0 otherwise

)4

I
o

Observe thati; — i) + k(¢1 — £2) = 0 (modm) if and only ifi; = i, andé¢; = ¢,
(modt), since 0< iy, i < k—1 andm = kt.
Now suppose thal;; are type Il (, j =0, ...,k —1). We must show that the I.h.s. of

(11) becomes zero fory, £1, a1] # [i2, £2, @2]. By the above observation, we may assume

thati; =i, and¢; = £, (modt). We setl; — £, = ts. If a; # ap, then L.h.s. of (11)
vanishes by type Il condition fof;,;. Hence we may assumg = «ay. Thus we have
i1 =lg, 01 =ap, €1 — €, =0 (modt)andl; # £,. Hence

k-1
L.h.s. = mry~tittaz= (/2 -t (Ertte=1) Z 7SI
i=0
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Observe that' is a primitivek-root of unity. So Z, O(n Hsi = 0, sinces£ 0  (modKk).
We have shown that/ is type Il

Next suppose thaW is type Il. Pick any distinat, o« € {1, ..., r}. From(11) at; =i,
and¢; = £, (modt), we obtain

k—

[uy

(L1—0)i L -I-i|i(al7 O‘)

T] =
= Tiji(a2, @)

Il
o

Setting

Z -I—I]_I (a:ln a)
a=1 -rlll (012» a)

and considering the cage = 0, the above equation implies

k—

[N

(1")'Ki =0 (L2 =0,t,2t, ..., (K— 1),

Il
o

or equivalently
k—1 )
> H¥Ki =0 (e=0.1,....k— 1.

Observe thafn')® (e=0, 1, ..., k — 1) are distinct, sincg' is a primitivek-root of unity.
HenceK; =0( =0,1,...,k — 1) by Vandermonde determinant. Thus

Tiji(oa, o)

_ = i=0....,k=1),
Tii (a2, ) ( )

a=1

so thatT;; is type Il O

Lemma 5.2 Assume k is even when m is even. Then the matrix W satisfies the type Il
condition(2) if and only if the following equation holds for alj iio, iz € {0, ...,k — 1}
and for allag, ap, 3 € {1,...,r}:

k-1 /m-1 - . - - ; T OT |
B ()

=0 a=1

Tipi (a1, o)
Tiyis (o1, a3) Tig i, (3, 002) |
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Proof: The type Ill condition (2) fora = [iy, £1, 1], b = [i2, £2, ay], € = [is, €3, @3]
becomes

k‘“‘i“z Wt — & i — Dl — Lia =) Tiyilea, )Ty (@2, @)
i=0 ¢=0 a=1 Vk(z3 - Ev i3 - I) -I-i3,i ((X3, (X)
V(€1 — Lo, i1 —i2) Tiyi, (a1, @2)

yk(zl - 635 Il - IS)‘}/I((EB - EZa |3 - |2) -I-il,i3(ala a3)-ri3,i2(a37 a2)

By a direct (but somewhat long) computation, we obtain
Wl — € s —Dyla — £ ip —i)  n(ly — 3,11 —im)y(f3 — £a, i3 —i2)
Ykl —£,iz3 —1) V(€1 — L2, i1 —i2)
= KOy -, —1),

wherel = €1 + €, — 03,1 =iy + iy —i3. Sothe type Il condition becomes

SIAS  Tiyi (01, ) Ty (2. )
k([ [) _ 11,1 ) 12,1 9
‘ ( 1 - L I)>(Z Ti, i (a3, o)

i=0 =0 a=1

-rll,lz(alv az)
Tiyia (o1, a3) Tig i, (3, 002)

To complete our proof, we must show that

—1
n KOy~ -0 = Zn‘kzyk(ﬁ i —1).

3

)4

I
o

To show this, it is enough to show that(¢ + m, j) = w (¥, j) holds for all j, £.

(€ +m, J) _ nf(eer)]7(k/2)(Z+m)(£+m71)

= w(, j)n
=w, n

—mj—kme¢ _—(k/2)m(m-1)

n
—km(m-1)/2

Whenmis odd,(m — 1)/2 is an integer. Whem is evenk is even by our assumption, and
sok/2 is an integer. Thug xmM-1/2 — 1, |

Lemmab5.3 Forallu,sO<u<t-—-1,0<s<k-1),
w st ) = (=D ), ).
Proof: We computex(u + st, j) as follows.
V(U + st, j) — n—(u+st)j—(k/2)(u+st)(U+st—1)
_ n—uj—(k/Z)u(u—l)n—stjn—(kt)sun—(k/Z)st(st—l)

= p(u, j)n~Siy~k2stst=D,
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So itis enough to show that

n—(k/2)st(st—1) _ (_1)(t—l)s. (12)
If t is even, them is even and sg™? = —1. Hence, notingt — 1 is odd,

nf(k/Z)st(stfl) _ (n7<m/2))(3t*l)s _ ((_1)(3’[—1))5 = (=1)s,
so (12) holds. Next assuntés odd. Ifsis even, then

n—(k/Z)St(St—l) — n—(kt)(S/Z)(St—l) — n—m(S/Z)(St—l) =1

If sis odd, therst— 1 is even. Hence

—(k/2)st(st—1) — n—(kt)s(st—l)/z — —m)s(st—l)/Z -1

n (1
Therefore (12) holds in each case. O

Lemmab5.4
() Iftis odd then

3
i

-1
) | kY pui-kuudz i i =0 (modKk),
KL, ) = u;)

o~
Il
o

0 otherwise

(ii) Ift and k are eventhen

t—1
- k
m-1 —uj—kuu+1)/2 e _
_ ) k ] ifj == (modk),
e, ) = Zu:o" 1=3

o~

Il

o
o

otherwise

Proof: Using Lemma 5.3, we proceed as follows.

m-—1 t—1 k-1
T ne, ) = n Uy U+ st )

£=0 u=0 s=0

t—1 k-1

= (G e (N

— t—
= ( ((—1)t_1n_”)5)<
s=0 u

If t is odd, then the first factor becomes

=

1 (U, J')>.

Il
o

k—1 _ k-1 ) k if j=0 (modk)
—tj\S — —tyJs — ’
Z(" ) SZ(;(" ) { 0 otherwise

s=0
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Supposé andk are even. In this case is also even, so that</2 = y(M?2 = _1. Hence
the first factor becomes

k-1 _ k=1 W2 s
(=D e =) " (p*/2y7)

k—1
— Z(nt)((k/z)—j)s
s=0
L ko
k if E—j =0 (modk),

0 otherwise

Now the result follows by

Tlikqu(U, ]) — nfujfku(u+1)/2- 0
Proposition 5.5 Assume k is even when m is even. Then the matrix W satisfies the type
Il condition (2) if and only if the following equation holds for alliio, iz € {0, ..., k—1}
and for allaey, ap, a3 € {1, ...,r}:

tz_i n_“(i —H—ku(u+1)/2 Zr: Til,i (o, Ol)Tiz,i (o2, o)
u=0 a=1 -rig.i (aaa a)
—(D/K) Tiyi, (01, a2) ’
Tiis (@1, a3) Tiy i, (3, or2)
wherel =iy +i, — i3, and i denotes the integer 0, . .., k — 1} such that
i (modk) if t is odd,

~

+ ; (modk) iftiseven

Proof: This is a direct consequence of Lemmas 5.2 and 5.4. O

6. Some special cases

We use the notation in Section 4.

Proposition 6.1 Suppose k= 1. Then m is oddand
W=S®T,

where S is a spin model of size m and index m which is given by
S, 0y =~ Y2EOCE=D = 0,1,...,m—1),

and T is a symmetric spin model of sizam
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Proof: Whenk = 1, we haveX = Ag andr = n/m. SettingS = SoandT = Ty,
W = W|,, = S® T by Proposition 4.3. ObviousI$(¢, £') = So(f, £') = y1(£ — £, 0).
Fora, B e {1,....r}, T(a, ) = W(Y2. ¥9) = n°> °W(yg. yQ) = T(B. ), so thatT is
symmetric.

Sincem is odd by Lemma 4.2Sis a spin model on the cyclic group of ordey which
was constructed in [2] (see also [1, 3]). Sinde=S® T with W, Sare spin modelsT
must be a spin model. O

Proposition 6.2 Suppose k= m. Then

Wixxx; =95 ®Tj (,j=0,1,....m-1),
and

Sj(, €)=~ O0=D g ¢ =0,...,m=1).

The matrices T are type Il matrices of size & n/m?. Moreover the following equation

holds for all iy, i5,i3 € {0,...,m— 1} and for allay, as, 3 € {1, ..., r}:
i -ﬁl,i(a_lf, a)Ti, (a2, @) — (D/m) Tini (a1, a2) ’
~ isi (03, @) Tivis (a1, @3) Tig i, (3, a2)
where i denotes the integer {, ..., m — 1} such thati=i; +i, —iz (modm).

Proof: We havet=1, r=n/(mk=n/m? and Xj =A; (i=0,...,m — 1). Hence
Wi(x xx; = Sj ® Tij by Proposition 4.3. Sincg™/2¢= = (nM«E=b/2 = 1y (e, i) =
n~%. SoSj(,¢) = n~¢*0=D By Proposition 5.1];; is a type Il matrix. Now the
result follows from Proposition 5.1 and 5.5. O

Corollary 6.3 Let W be a spin model on X of prime index m. Then one of the following
holds wheren denotes a primitive m-root of unity.
(i) W= S®T, where S is a spin model of size m with

S, ) = n~MAEOEE=D (g g =0,1,...,m— 1),

and T is a symmetric spin model of sj28/m.
(i) W decomposes intofiblocks W, (i, j =0, ..., m— 1) with W; = §; ® T;j, where
S; are matrices of size m defined by

Sj(L, ) =n" 00D g g =0,1,...,m=1),

and T; are type Il matrices of size £ n/m? which satisfy the following equation for

alliq, iz ize{0,...,m—1}andforallay, as, a3 € {1,...,r}:
Xr: Til,i(OfF, a)Ti, (a2, @) — (D/m) Tipi, (0, 02) ’
~ isi (03, ) Tiy i (o, a3) Tig i, (a3, @22)

where i denotes the integer {0, ..., m — 1} such thati=i; + i, — iz (modm).
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