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Abstract. A spin model (for link invariants) is a square matrixW with non-zero complex entries which satisfies
certain axioms. Recently (Jaeger and Nomura,J. Alg. Combin.10 (1999), 241–278) it was shown thatt WW−1 is
a permutation matrix (the order of this permutation matrix is called the “index” ofW), and a general form was
given for spin models of index 2. In the present paper, we generalize this general form to an arbitrary indexm. In
particular, we give a simple form ofW whenm is a prime number.
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1. Introduction

Spin models were introduced by Vaughan Jones [7] to construct invariants of knots and
links. A spin model is essentially a square matrixW with nonzero entries which satis-
fies two conditions (type II and type III conditions). In his definition of a spin model,
Jones considered only symmetric matrices. It was generalized to non-symmetric case by
Kawagoe-Munemasa-Watatani [8].

Recently, Fran¸cois Jaeger and the second author [6] introduced the notion of “index” of a
spin model. For every spin modelW, the transposet W is obtained fromW by a permutation
of rows. Letσ denote the corresponding permutation ofX = {1, . . . ,n} (n is the size
of W). Then the indexm is the order ofσ . In [6], it was shown thatX is partitioned into
m subsetsX0, X1, . . . , Xm−1 such thatW(x, y) = ηi− j W(y, x) holds for all x ∈ Xi ,
y ∈ X j . Moreover, the case ofm = 2 was deeply investigated, and a general form of spin
models of index 2 was given.

In the present paper, we investigate the structure of spin models of an arbitrary indexm.
In Section 4, we show thatW is decomposed into blocksWi j , andWi j splits into Kronecker
product of two matricesSi j andTi j (Proposition 4.3). In Section 5, we give conditions on
Ti j (Propositions 5.1 and 5.5). In Section 6, we apply this general form to some special
cases (Propositions 6.1 and 6.2). In particular, we give a simple form ofW when the index
m is a prime number (Corollary 6.3).
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2. Preliminaries

In this section, we give some basic materials concerning spin models and association
schemes. For more details the reader can refer to [4–7].

Let X be a finite non-empty set withn elements. We denote byMatX(C) the set of
square matrices with complex entries whose rows and columns are indexed byX. For
W ∈ MatX(C) andx, y ∈ X, the(x, y)-entry ofW is denoted byW(x, y).

A type II matrixon X is a matrixW ∈ MatX(C) with nonzero entries which satisfies the
type II condition:

∑
x∈X

W(a, x)

W(b, x)
= nδa,b (for all a, b ∈ X). (1)

Let W− ∈ MatX(C) be defined byW−(x, y) = W(y, x)−1. Then type II condition is
written asW W− = nI (I denotes the identity matrix). Hence, ifW is a type II matrix,
thenW is non-singular withW−1 = n−1W−. It is clear thatW−1 andtW are also type II
matrices.

A type II matrix W is called aspin modelon X if W satisfiestype III condition:

∑
x∈X

W(a, x)W(b, x)

W(c, x)
= D

W(a, b)

W(a, c)W(c, b)
(for all a, b, c ∈ X) (2)

for some nonzero complex numberD. The numberD is called theloop variableof W. Set-
ting b= c in (2),

∑
x∈X W(a, x)=DW(b, b)−1 holds, so that the diagonal entriesW(b, b)

is a constant, which is called themodulusof W.
For a spin modelW with loop variableD, any nonzero scalar multipleλW is a spin

model with loop variableλ2D. UsuallyW is normalized so thatD2 = n, but we allow any
nonzero value ofD in this paper to simplify our arguments.

Observe that, for any spin modelsWi on Xi with loop variableDi (i = 1, 2), their tensor
(Kronecker) productW1⊗W2 is a spin model with loop variableD = D1D2. Conversely,
it is not difficult to show that, ifW1⊗W2 andW1 are spin models, thenW2 must be a spin
model.

A (class d) association schemeon X is a partition ofX × X with nonempty relations
R0, R1, . . . , Rd, whereR0 = {(x, x) | x ∈ X} which satisfy the following conditions:

(i) For everyi in {0, 1, . . . ,d}, there existsi ′ in {0, 1, . . . ,d} such thatRi ′ = {(y, x) |
(x, y) ∈ Ri }.

(ii) There exist integerspk
i j (i , j , k ∈ {0, 1, . . . ,d}) such that for every(x, y) ∈ Rk, there

are preciselypk
i j elementsz such that(x, z) ∈ Ri and(z, y) ∈ Rj .

(iii) pk
i j = pk

ji for everyi , j in {0, 1, . . . ,d}.

Let Ai denote the adjacency matrix of the relationRi , so Ai ∈ MatX(C) is a{0, 1}-matrix
whose(x, y)-entry is equal to 1 if and only if(x, y) ∈ Ri . ClearlyA0 = I , Ai ◦Aj = δi, j Ai
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(entry-wise product),
∑d

i=0 Ai = J (all 1’s matrix), andAi Aj =
∑d

k=0 pk
i j Ak hold. The

linear spanA of {A0, A1, . . . , Ad} becomes a subalgebra ofMatX(C), called theBose-
Mesner algebraof the association scheme. Observe thatA is closed under entry-wise
product,A is closed under transpositionA 7→ t A, andA containsI , J.

3. Associated permutation

Let W be a spin model onX. Then there exists an association schemeR0, . . . , Rd on X
such that the corresponding Bose-Mesner algebraA containsW ([5] Theorem 11). In [6], it
was shown thattWW−1 = As (the adjacency matrix ofRs) for somes ∈ {0, 1, . . . ,d}, and
moreoverAs is a permutation matrix ([6] Proposition 2). Letσ denote the corresponding
permutation onX, so thatAs(x, y) = 1 if y = σ(x) and As(x, y) = 0 otherwise. The
orderm of σ is called theindexof W.

Observe thatm= 1 if and only ifW is symmetric. Also observe that, for two spin models
Wi of indexmi (i = 1, 2), the index ofW1 ⊗W2 is equal to the least common multiple of
m1 andm2. In particular, tensor product of a spin model of indexm with any symmetric
spin model has indexm.

Lemma 3.1
(i) W(x, σ (x)) = W(y, σ (y)) (x, y ∈ X).
(ii) W(y, x) = W(σ (x), y) (x, y ∈ X).
(iii) Every orbit ofσ has length m.

Proof:

(i) Observe that, sinceW∈A, W is written as a linear combinationW = ∑d
i=0 ti Ai , so

W(x, y) = ti for (x, y) ∈ Ri . Since(x, σ (x)) ∈ Rs (for everyx ∈ X), it holds that
W(x, σ (x)) = ts = W(y, σ (y)).

(ii) W(y, x) = tW(x, y) = (AsW)(x, y) = W(σ (x), y).
(iii) Pick any i (0< i < m). SinceAi

s is a linear combination ofA0, . . . , Ad and sinceAi
s

is a permutation matrix, we getAi
s = Aj for some j 6= 0. Observe that the diagonal

entries ofAj are all zero sincej 6= 0. This means thatσ i (which corresponds the
permutation matrixAj ) has no fixed point onX. We have shown thatσ i fixes no point
(0< i < m). Thus every orbit ofσ must have lengthm. 2

Lemma 3.2 There is a partition X= X0 ∪ · · · ∪ Xm−1 such that( for all i , j ∈ {0, . . . ,
m− 1})

W(x, y) = ηi− j W(y, x) ( for all x ∈ Xi , y ∈ X j ), (3)

whereη denotes a primitive m-root of unity. Moreover, for every i, σ (Xi ) = X j holds for
some j.
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Proof: The existence of such a partition follows from [6] Proposition 3. As in the proof
of Lemma 3.1(i), we have(x, σ (x)) ∈ Rs andW(x, σ (x)) = ts for all x ∈ X. Then there
existss′ such that(σ (x), x) ∈ Rs′ , so thatW(σ (x), x) = ts′ . Now pick anyx ∈ Xi . Then
σ(x) ∈ X j for some j . On the other hand,W(x, σ (x)) = ηi− j W(σ (x), x). These imply
ηi− j = tst

−1
s′ . This means thatj is independent of the choice ofx ∈ Xi , so thatσ(Xi ) = X j .

2

We fix a primitivem-root of unityη, and letX0, . . . , Xm−1 be the partition ofX given in
Lemma 3.2. We identify the index set{0, 1, . . . ,m−1}with Zm = Z/mZ. By Lemma 3.2,
there is a permutationπ on Zm such thatσ(Xi ) = Xπ(i ) (i ∈ Zm). Let t denote the order
of π , and setk = m/t .

Lemma 3.3 π(i )− i = π( j )− j for all i , j ∈ Zm.

Proof: Pick anyx ∈ Xi , y ∈ X j . We haveσ(x) ∈ Xπ(i ), σ(y) ∈ Xπ( j ). By Lemma 3.2,
W(x, σ (x)) = ηi−π(i )W(σ (x), x) and W(y, σ (y)) = ηi−π( j )W(σ (y), y). On the other
hand,W(x, σ (x)) = W(y, σ (y)) by Lemma 3.1(i), and alsoW(σ (x), x) = W(x, x) =
(the modulus of W)= W(y, y) = W(σ (y), y) by Lemma 3.1(ii). These implyηi−π(i ) =
η j−π( j ). 2

Lemma 3.4 There exists an automorphismϕ of the additive groupZm such thatπ(ϕ(i )) =
ϕ(i + k) for all i ∈ Zm. Moreover, W(x, y) = (ηϕ(1))i− j W(y, x) for every x∈ Xϕ(i ),
y ∈ Xϕ( j ).

Proof: Set k′ =π(0). Thenπ(i ) = i + k′ (i ∈ Zm) by Lemma 3.3. Thusk′Zm =
{0, k′, 2k′, . . . , (t − 1)k′} is an orbit ofπ . Note that every orbit ofπ has lengtht , and
hence the number of orbits ofπ is equal tok = m/t (in particular,k must be an integer).
Clearlyk′Zm is the unique subgroup ofZm of ordert , sok′Zm = kZm. Hence there is an
automorphismϕ of the additive groupkZm such thatϕ(k) = k′.

We claim thatϕ can be extended to an automorphism ofZm. In fact, for any cyclic
groupG and for any subgroupH of G, any automorphism ofH can be extended to an
automorphism ofG. This fact can be easily shown whenG is a cyclicp-group. For general
case, decomposeG into the Sylow subgroups.

Now we have an automorphismϕ of Zm such thatϕ(k) = k′. Sinceπ(i ) = i + k′ for all
i ∈ Zm, we getπ(ϕ(i )) = ϕ(i )+ k′ = ϕ(i )+ ϕ(k) = ϕ(i + k).

Let x ∈ Xϕ(i ), y ∈ Xϕ( j ). Then, by Lemma 3.2,W(x, y) = ηϕ(i )−ϕ( j )W(y, x) holds for
all x ∈ Xϕ(i ), y ∈ Xϕ( j ). Hereϕ(i ) − ϕ( j ) = ϕ(i · 1) − ϕ( j · 1) = iϕ(1) − jϕ(1) =
ϕ(1)(i − j ). HenceW(x, y) = (ηϕ(1))i− j W(y, x). 2

Thus, by reordering the indices{0, 1, . . . ,m− 1} by ϕ, and by replacingη with ηϕ(1),
we may assume that

π(i ) = i + k (i ∈ Zm). (4)
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4. General form of W

We use the notation of the previous section. We also use the notation:

γk(`, i ) = η−`i−(k/2)`(`−1). (5)

Proposition 4.1 Let i, j ∈ Zm and x∈ Xi , y ∈ X j . Then for̀ , `′ ∈ Z,

W(σ `(x), σ `
′
(y)) = γk(`− `′, i − j )W(x, y). (6)

Proof: Assume` ≥ 0 and`′ ≥ 0. First we consider the case of`′ = 0. We proceed
by induction on`. Obviously (6) holds for̀ = 0. By Lemma 3.1(ii) and Lemma 3.2,
W(y, x) = W(σ (x), y) andW(y, x) = η j−i W(x, y). HenceW(σ (x), y) = η j−i W(x, y),
so (6) holds for̀ = 1. Now assumè>1. Notingσ(x) ∈ Xπ(i )= Xi+k and using induction,

W(σ `(x), y) = W(σ `−1(σ (x)), y)

= γk(`− 1, (i + k)− j )W(σ (x), y)

= γk(`− 1, (i + k)− j )η j−i W(x, y)

= γk(`, i − j )W(x, y).

Hence (6) holds for̀ ′ = 0. Now supposè ′ > 0. Notingσ `
′
(y) ∈ X j+`′k and using

Lemma 3.2,

W(σ `(x), σ `
′
(y)) = γk(`, i − ( j + `′k))W(x, σ `

′
(y))

= γk(`, i − ( j + `′k))ηi−( j+`′k)W(σ `
′
(y), x)

= γk(`, i − ( j + `′k))ηi−( j+`′k)γk(`
′, j − i )W(y, x)

= γk(`, i − ( j + `′k))ηi−( j+`′k)γk(`
′, j − i )η j−i W(x, y)

= γk(`− `′, i − j )W(x, y).

Thus (6) holds for non-negative integers`, `′.
Sinceσ−`(x) ∈ Xi−`k,

W(x, y) = W(σ `(σ−`(x)), y) = γk(`, (i − `k)− j )W(σ−`(x), y).

Hence

W(σ−`(x), y) = γk(`, i − `k− j )−1W(x, y)

= η`(i−`k− j )+(k/2)`(`−1)W(x, y)

= η`(i− j )+(k/2)`(`+1)W(x, y)

= γk(−`, i − j )W(x, y).

Sinceσ−`
′
(y) ∈ X j−`′k,

W(x, y) = W(x, σ `
′
(σ−`

′
(y))) = γk(−`′, i − ( j − `′k))W(x, σ−`

′
(y)).
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Hence

W(x, σ−`
′
(y)) = γk(−`′, i − j + `′k)−1W(x, y)

= γk(`
′, i − j )W(x, y).

Sinceσ `
′
(y) ∈ X j+`′k,

W(σ−`(x), σ `
′
(y)) = γk(−`, i − ( j + `′k))W(x, σ `

′
(y))

= γk(−`, i − j − `′k)γk(−`′, i − j )W(x, y)

= γk(−`− `′, i − j )W(x, y).

Similarly, we can show that

W(σ `(x), σ−`
′
(y)) = γk(`+ `′, i − j )W(x, y),

and

W(σ−`(x), σ−`
′
(y)) = γk(−`+ `′, i − j )W(x, y).

This completes the proof of (6). 2

Lemma 4.2 If m is even, then k is even.

Proof: We apply Proposition 4.1 for̀ = m, `′ = 0 and i = j . Then (6) implies
γk(m, 0) = 1, and this becomes(η−m/2)k(m−1) = 1. Observe thatη−m/2 = −1, sinceη
is a primitivem-root of unity andm is even. Hence(−1)k(m−1) = 1, so thatk must be
even. 2

For i ∈ Zm, set

1i =
t−1⋃
h=0

Xi+hk.

Observe that|1i | = t (n/m) = tn/(kt) = n/k, and that

X =
k−1⋃
i=0

1i ,

Sinceσ(1i ) = 1i ,1i is partitioned intoσ -orbitsYi
α:

1i =
r⋃
α=1

Yi
α (i = 0, . . . , k− 1),
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wherer = |1i |/m = n/(mk). Observe that|Yi
α| = m and |Yi

α ∩ Xi | = k. We choose
representative elements

yi
α ∈ Yi

α ∩ Xi (i = 0, . . . , k− 1, α = 1, . . . , r ).

Then

X = {σ `(yi
α

) ∣∣ i = 0, . . . , k− 1, α = 1, . . . , r, ` = 0, . . . ,m− 1
}
, (7)

and

W
(
σ `
(
yi
α

)
, σ `

′(
y j
β

)) = γk(`− `′, i − j )W
(
yi
α, y j

β

)
(8)

for `, `′ ∈ Zm, i , j = 0, . . . , k− 1 andα, β = 1, . . . , r .
We define square matricesTi j of sizer andSi j of sizem (i, j = 0, . . . , k− 1) by

Tij (α, β) = W
(
yi
α, y j

β

)
(α, β = 1, . . . , r ),

Si j (`, `
′) = γk(`− `′, i − j ) (`, `′ = 0, . . . ,m− 1).

For subsetsA, B of X, let W|A×B denote the restriction (submatrix) ofW on A× B. For
two matricesS, T , we denote the Kronecker product byS⊗ T .

Proposition 4.3 For i , j = 0, . . . , k− 1,

W|Yi
α×Y j

β
= Ti j (α, β) Si j (α, β = 1, . . . , r ),

and

W|1i×1 j = Si j ⊗ Ti j . (9)

Proof: Clear. 2

ThusW decomposes into blocksWij = W|1i×1 j (i, j = 0, . . . , k − 1), and each block
has the formWi j = Si j ⊗ Ti j (i, j = 0, . . . , k− 1).

5. Type II and Type III conditions

Let m, k, t , r be positive integers withm= kt.
Let Ti j (i, j = 0, . . . , k − 1) be any matrices of sizer with nonzero entries, and letSi j

(i, j = 0, . . . , k− 1) be the matrix of sizem defined by

Si j (`, `
′) = γk(`− `′, i − j ) (`, `′ = 0, . . . ,m− 1),
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whereγk is defined by (5) for a primitivem-root of unityη. Now set

Wi j = Si j ⊗ Ti j (i, j = 0, . . . , k− 1),

and letW be the matrix of sizen = kmr whose(i, j ) block is Wij (i, j = 0, . . . , k − 1).
We index the rows and the columns ofW by the set:

X = {[i, `, α] | 0≤ i ≤ k− 1, 0≤ ` ≤ m− 1, 1≤ α ≤ r },

so that

W([i, `, α], [ j, `′, β]) = Si j (`, `
′)Ti j (α, β). (10)

Proposition 5.1 W is a type II matrix if and only if Ti j is a type II matrix for all i,
j ∈ {0, . . . , k− 1}.

Proof: The type II condition (1) fora = [i1, `1, α1], b = [i2, `2, α2] becomes

k−1∑
i=0

m−1∑
`=0

r∑
α=1

W([i1, `1, α1], [i, `, α])

W([i2, `2, α2], [i, `, α])
= nδi1,i2δ`1,`2δα1,α2. (11)

Using (10), we rewrite the left-hand-side as follows:

l.h.s. =
k−1∑
i=0

m−1∑
`=0

r∑
α=1

γk(`1− `, i1− i )Ti1i (α1, α)

γk(`2− `, i2− i )Ti2i (α2, α)

= η−`1i i+`2i2−(k/2)(`1−`2)(`1+`2−1)
k−1∑
i=0

η(`1−`2)i
r∑
α=1

Tii i (α1, α)

Ti2i (α2, α)

m−1∑
`=0

η(i1−i2+k(`1−`2))`.

Observe that, sinceη is a primitivem-root of unity,

m−1∑
`=0

η((i1−i2)+k(`1−`2))` =
{

m if (i1− i2)+ k(`1− `2) ≡ 0 (mod m),

0 otherwise.

Observe that(i1 − i2) + k(`1 − `2) ≡ 0 (mod m) if and only if i1 = i2 and`1 ≡ `2

(mod t), since 0≤ i1, i2 ≤ k− 1 andm= kt.
Now suppose thatTi j are type II (i , j = 0, . . . , k − 1). We must show that the l.h.s. of

(11) becomes zero for [i1, `1, α1] 6= [i2, `2, α2]. By the above observation, we may assume
that i1 = i2 and`1 ≡ `2 (mod t). We set̀ 1 − `2 = ts. If α1 6= α2, then l.h.s. of (11)
vanishes by type II condition forTi1i . Hence we may assumeα1 = α2. Thus we have
i1 = i2, α1 = α2, `1− `2 ≡ 0 (mod t) and`1 6= `2. Hence

l.h.s.= mrη−`1i1+`2i2−(k/2)(`1−`2)(`1+`2−1)
k−1∑
i=0

ηtsi.
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Observe thatηt is a primitivek-root of unity. So,
∑k−1

i=0(η
t )si = 0, sinces 6≡ 0 (mod k).

We have shown thatW is type II.
Next suppose thatW is type II. Pick any distinctα1,α2 ∈ {1, . . . , r }. From (11) ati1 = i2

and`1 ≡ `2 (mod t), we obtain

k−1∑
i=0

η(`1−`2)i
r∑
α=1

Tii i (α1, α)

Ti2i (α2, α)
= 0.

Setting

Ki =
r∑
α=1

Ti1i (α1, α)

Ti1i (α2, α)

and considering the case`2 = 0, the above equation implies

k−1∑
i=0

(
η`1
)i

Ki = 0 (`1 = 0, t, 2t, . . . , (k− 1)t),

or equivalently

k−1∑
i=0

(ηt )eiKi = 0 (e= 0, 1, . . . , k− 1).

Observe that(ηt )e (e= 0, 1, . . . , k− 1) are distinct, sinceηt is a primitivek-root of unity.
HenceKi = 0 (i = 0, 1, . . . , k− 1) by Vandermonde determinant. Thus

r∑
α=1

Ti1i (α1, α)

Ti1i (α2, α)
= 0 (i = 0, . . . , k− 1),

so thatTi1i is type II. 2

Lemma 5.2 Assume k is even when m is even. Then the matrix W satisfies the type III
condition(2) if and only if the following equation holds for all i1, i2, i3 ∈ {0, . . . , k − 1}
and for allα1, α2, α3 ∈ {1, . . . , r }:

k−1∑
i=0

(
m−1∑
`=0

η−k`γk(`, i − i1− i2+ i3)

)(
r∑
α=1

Ti1,i (α1, α)Ti2,i (α2, α)

Ti3,i (α3, α)

)

= D
Ti1,i2(α1, α2)

Ti1,i3(α1, α3)Ti3,i2(α3, α2)
.
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Proof: The type III condition (2) fora = [i1, `1, α1], b = [i2, `2, α2], c = [i3, `3, α3]
becomes

k−1∑
i=0

m−1∑
`=0

r∑
α=1

γk(`1− `, i1− i )γk(`2− `, i2− i )

γk(`3− `, i3− i )
· Ti1,i (α1, α)Ti2,i (α2, α)

Ti3,i (α3, α)

= D
γk(`1− `2, i1− i2)

γk(`1− `3, i1− i3)γk(`3− `2, i3− i2)
· Ti1,i2(α1, α2)

Ti1,i3(α1, α3)Ti3,i2(α3, α2)
.

By a direct (but somewhat long) computation, we obtain

γk(`1− `, i1− i )γk(`2− `, i2− i )

γk(`3− `, i3− i )
· γk(`1− `3, i1− i3)γk(`3− `2, i3− i2)

γk(`1− `2, i1− i2)

= η−k(`− ˆ̀)γk(`− ˆ̀, i − î ),

where ˆ̀ = `1+ `2− `3, î = i1+ i2− i3. So the type III condition becomes

k−1∑
i=0

(
m−1∑
`=0

η−k(`− ˆ̀)γk(`− ˆ̀, i − î )

)(
r∑
α=1

Ti1,i (α1, α)Ti2,i (α2, α)

Ti3,i (α3, α)

)

= D
Ti1,i2(α1, α2)

Ti1,i3(α1, α3)Ti3,i2(α3, α2)
.

To complete our proof, we must show that

m−1∑
`=0

η−k(`− ˆ̀)γk(`− ˆ̀, i − î ) =
m−1∑
`=0

η−k`γk(`, i − î ).

To show this, it is enough to show thatγk(`+m, j ) = γk(`, j ) holds for all j , `.

γk(`+m, j ) = η−(`+m) j−(k/2)(`+m)(`+m−1)

= γk(`, j )η−mj−km`η−(k/2)m(m−1)

= γk(`, j )η−km(m−1)/2.

Whenm is odd,(m− 1)/2 is an integer. Whenm is even,k is even by our assumption, and
sok/2 is an integer. Thusη−km(m−1)/2 = 1. 2

Lemma 5.3 For all u, s (0≤ u ≤ t − 1, 0≤ s ≤ k− 1),

γk(u+ st, j ) = ((−1)t−1η−t j )sγk(u, j ).

Proof: We computeγk(u+ st, j ) as follows.

γk(u+ st, j ) = η−(u+st) j−(k/2)(u+st)(u+st−1)

= η−u j−(k/2)u(u−1)η−st jη−(kt)suη−(k/2)st(st−1)

= γk(u, j )η−st jη−(k/2)st(st−1).
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So it is enough to show that

η−(k/2)st(st−1) = (−1)(t−1)s. (12)

If t is even, thenm is even and soη(m/2) = −1. Hence, notingst− 1 is odd,

η−(k/2)st(st−1) = (η−(m/2))(st−1)s = ((−1)(st−1)
)s = (−1)s,

so (12) holds. Next assumet is odd. Ifs is even, then

η−(k/2)st(st−1) = η−(kt)(s/2)(st−1) = η−m(s/2)(st−1) = 1.

If s is odd, thenst− 1 is even. Hence

η−(k/2)st(st−1) = η−(kt)s(st−1)/2 = (η−m)s(st−1)/2 = 1.

Therefore (12) holds in each case. 2

Lemma 5.4
(i) If t is odd, then

m−1∑
`=0

η−k`γk(`, j ) =

k
t−1∑
u=0

η−u j−ku(u+1)/2 if j ≡ 0 (mod k),

0 otherwise.

(ii) If t and k are even, then

m−1∑
`=0

η−k`γk(`, j ) =

k
t−1∑
u=0

η−u j−ku(u+1)/2 if j ≡ k

2
(mod k),

0 otherwise.

Proof: Using Lemma 5.3, we proceed as follows.

m−1∑
`=0

η−k`γk(`, j ) =
t−1∑
u=0

k−1∑
s=0

η−k(u+st)γk(u+ st, j )

=
t−1∑
u=0

k−1∑
s=0

η−(ku+ms)((−1)t−1η−t j )sγk(u, j )

=
(

k−1∑
s=0

((−1)t−1η−t j )s

)(
t−1∑
u=0

η−kuγk(u, j )

)
.

If t is odd, then the first factor becomes

k−1∑
s=0

(η−t j )s =
k−1∑
s=0

(η−t ) js =
{

k if j ≡ 0 (mod k),

0 otherwise.
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Supposet andk are even. In this case,m is also even, so thatη(kt/2) = η(m/2) = −1. Hence
the first factor becomes

k−1∑
s=0

((−1)η−t j )s =
k−1∑
s=0

(
η(kt/2)η−t j

)s
=

k−1∑
s=0

(ηt )((k/2)− j )s

=
k if

k

2
− j ≡ 0 (mod k),

0 otherwise.

Now the result follows by

η−kuγk(u, j ) = η−u j−ku(u+1)/2. 2

Proposition 5.5 Assume k is even when m is even. Then the matrix W satisfies the type
III condition (2) if and only if the following equation holds for all i1, i2, i3 ∈ {0, . . . , k−1}
and for allα1, α2, α3 ∈ {1, . . . , r }:(

t−1∑
u=0

η−u(i −î )−ku(u+1)/2

)(
r∑
α=1

Ti1,i (α1, α)Ti2,i (α2, α)

Ti3,i (α3, α)

)

= (D/k)
Ti1,i2(α1, α2)

Ti1,i3(α1, α3)Ti3,i2(α3, α2)
,

whereî = i1+ i2− i3, and i denotes the integer in{0, . . . , k− 1} such that

i ≡
 î (mod k) if t is odd,

î + k

2
(mod k) if t is even.

Proof: This is a direct consequence of Lemmas 5.2 and 5.4. 2

6. Some special cases

We use the notation in Section 4.

Proposition 6.1 Suppose k= 1. Then m is odd, and

W = S⊗ T,

where S is a spin model of size m and index m which is given by

S(`, `′) = η−(1/2)(`−`′)(`−`′−1) (`, `′ = 0, 1, . . . ,m− 1),

and T is a symmetric spin model of size n/m.
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Proof: Whenk = 1, we haveX = 10 andr = n/m. SettingS = S00 andT = T00,
W = W|10 = S⊗ T by Proposition 4.3. ObviouslyS(`, `′) = S00(`, `

′) = γ1(`− `′, 0).
For α, β ∈ {1, . . . , r }, T(α, β) = W(y0

α, y0
β) = η0−0W(y0

β, y0
α) = T(β, α), so thatT is

symmetric.
Sincem is odd by Lemma 4.2,S is a spin model on the cyclic group of orderm, which

was constructed in [2] (see also [1, 3]). SinceW= S⊗ T with W, S are spin models,T
must be a spin model. 2

Proposition 6.2 Suppose k= m. Then

W|Xi×X j = Si j ⊗ Ti j (i, j = 0, 1, . . . ,m− 1),

and

Si j (`, `
′) = η−(`−`′)(i− j ) (`, `′ = 0, . . . ,m− 1).

The matrices Ti j are type II matrices of size r= n/m2. Moreover the following equation
holds for all i1, i2, i3 ∈ {0, . . . ,m− 1} and for allα1, α2, α3 ∈ {1, . . . , r }:

r∑
α=1

Ti1,i (α1, α)Ti2,i (α2, α)

Ti3,i (α3, α)
= (D/m)

Ti1,i2(α1, α2)

Ti1,i3(α1, α3)Ti3,i2(α3, α2)
,

where i denotes the integer in{0, . . . ,m− 1} such that i≡ i1+ i2− i3 (mod m).

Proof: We have t = 1, r = n/(mk)= n/m2 and Xi =1i (i = 0, . . . ,m − 1). Hence
W|Xi×X j = Si j ⊗ Ti j by Proposition 4.3. Sinceη(m/2)`(`−1) = (ηm)`(`−1)/2 = 1, γm(`, i ) =
η−`i . So Si j (`, `

′) = η−(`−`
′)(i− j ). By Proposition 5.1,Ti j is a type II matrix. Now the

result follows from Proposition 5.1 and 5.5. 2

Corollary 6.3 Let W be a spin model on X of prime index m. Then one of the following
holds, whereη denotes a primitive m-root of unity.
(i) W = S⊗ T, where S is a spin model of size m with

S(`, `′) = η−(1/2)(`−`′)(`−`′−1) (`, `′ = 0, 1, . . . ,m− 1),

and T is a symmetric spin model of size|X|/m.
(ii) W decomposes into m2 blocks Wi j (i, j = 0, . . . ,m− 1) with Wi j = Si j ⊗ Ti j , where

Si j are matrices of size m defined by

Si j (`, `
′) = η−(`−`′)(i− j ) (`, `′ = 0, 1, . . . ,m− 1),

and Ti j are type II matrices of size r= n/m2 which satisfy the following equation for
all i 1, i2, i3 ∈ {0, . . . ,m− 1} and for allα1, α2, α3 ∈ {1, . . . , r }:

r∑
α=1

Ti1,i (α1, α)Ti2,i (α2, α)

Ti3,i (α3, α)
= (D/m)

Ti1,i2(α1, α2)

Ti1,i3(α1, α3)Ti3,i2(α3, α2)
,

where i denotes the integer in{0, . . . ,m− 1} such that i≡ i1+ i2− i3 (mod m).
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