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Noncommutative Enumeration in Graded Posets
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Abstract. We define a noncommutative algebra of flag-enumeration functionals on graded posets and show it
to be isomorphic to the free associative algebra on countably many generators. Restricted to Eulerian posets, this
ring has a particularly appealing presentation with kernel generated by Euler relations. A consequence is that even
on Eulerian posets, the algebra is free, with generators corresponding to odd jumps in flags. In this context, the
coefficients of thed-index provide a graded basis.
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1. Flag enumeration in graded posets

A natural setting for the study of enumeration of flags of faces in polytopes is the fam-
ily of ranked posets, that is, poses such that for anyx € P, every maximal chain
a<b< --- <x has the same number of elements. We assume for convenience that each
suchP is graded that is, has a unique minimal eleméand maximal elemerit Thus if

x € P has a maximal chain

A

O=Xg <Xy <--- < Xgk =X,

we say thax hasrank k, denoted (x) = k (and sa (f)) = 0). Further, we define the rank Bf
to ber (P) := r(1). For agraded poset P of radk+ 1 and a subsed {1, ..., d} =: [d],
we denote byfs(P) the number of flags (i.e., chains) mihaving elements with precisely
the ranksirs. Note thatthe ranks O a1 are notincluded here. Whé&={i, |, ..., k},
we will often write f; ; _ or fij i for fij . The functionS — fg(P) is often called
theflag f-vectorof P.

As a principal example, we can taketo be the lattice of all faces ofdpolytope. Here
fs(P) denotes the number of flags of faces with rankS,iwhere the rank of a face is one
more than its dimension, amdP) = d + 1.

We can viewfs as achain operatoon graded posets. We wrifg as the operator applied
to posets of rank, with the convention thatd(P) = 0 if r(P) # n. We think of f],
which counts the empty chain, as an operator in its own right, different for each vaiye of
and different from the number 1, even though it takes that value when applied to any rank
n poset. Chain operators for a fixed rank were studied in [3], where diintbar relations
were derived for the operator@*l, S C [d], restricted to face lattices af-polytopes or,
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more generally, to all rankl + 1 Eulerian posets. (See also [2].) We consider this case
later.

We first show that there are no linear relations holdingbgraded posets. Byfarmin
chain operators we mean any linear combinatos: ) s« fg with rational coefficients,
wheren is fixed.

Proposition 1.1 As operators on the family of all graded posets of rankhe chain
operators £ are linearly independent ove.

Proof: Suppose the fornfk = ) s fg vanishes on all graded posets.Af# 0, choose
T c [n — 1] of maximum cardinality such thatr # 0 and consider the rankposetPTN,
having (in addition td and1) N elements of each rarike T and one element of each
other rankk € [n — 1], wherex < y whenever (x) <r(y). Then fg(PTN) = NIT"8l 50
F(PY) is a polynomial inN of degree|T| havingar as its leading coefficient. That
vanishes identically on graded posets implies that= 0, a contradiction. O

There are, however, certain nonlinear relations holding among the opefgtorsor
ke Sc[n — 1], defineS§q = SN[k — 1] and I¥:={i — k|ieSi>k}. If Pis a
poset andk € P, then define the lower and upper intervals defineck by be P, := {y €
Ply=<x}and P*:={ye P|x <y}, respectively. We get the following straightforward
relations.

Proposition 1.2 Let P be arank d poset and&[d — 1]. Then for any ie S, we have

f§Py= > f5 (POfg (PY). (1.1)

X:r(X)=i
Based on (1.1), we define tisenvolutionof two chain operators by

fg f? = f(sjj{Z}U(TM) (1.2)

whereT +d :={i +d |i € T}. This product was first defined by Kalai [14], as a means
of generating new linear inequalities for fldgvectors of convex polytopes, and studied
further by Meisinger [16].

We call a familyP of graded posetereditaryif it is closed under taking intervals, that
is, if P € P, then for anyx < yin P, we haveP,, P* and thereforey, y] := P*N Py are
also inP. There are three main hereditary families that will concern us here: all graded
posets, all face lattices of polytopes and all Eulerian posets. Recall that a graded poset is
said to beEulerianif its Mobius functionu satisfiegu(x, y) = (—=1)"¥ "™ for every pair
X <y. See [19] for general background in this area.

We say a linear form on chain operatdf§ = Zagfg is nonnegative orP, denoted
Fd > 0,ifforanyP € P, F4(P) = Y asfd(P) > 0. We can similarly define nonposi-
tivity, equality and so on. The following proposition follows easily from Proposition 1.2.
In the caséP is the family of all face posets of polytopes, the first assertion is due to Kalai
[14, Lemma 6.1].



NONCOMMUTATIVE ENUMERATION IN GRADED POSETS 9

Proposition 1.3 For any hereditary family? of graded posets

(i) the convolution of two nonnegative forms is nonnegativel

(i) the convolution of a zero form with any form is a zero form.

If P is the family of all graded posetthen the convolution of two nonzero forms is non-
negative if and only if both are nonnegative or both are nonpositive.

Proposition 1.3 gives us a systematic way of generating new linear conditions from others
already known to hold. It shows that the zero forms form an “ideal” in some sense, while
the nonnegative forms form a “multiplicative cone”. For Eulerian posets, we will see that
this ideal of zero forms is generated by Euler relations.

While Proposition 1.1 shows there are no nontrivial zero forms on all graded posets, there
are nontrivial nonnegative forms on the entire family. For examp®&ofT thenfs— f+ >0
for every graded poset. Less trivial perhaps is the inequélity f; — f3+ f, > Othat can
be seen to hold for any graded poset of rank at least 4. In [11], the cone of all nonnegative
forms on the family of all graded posets is described by giving the (finite) minimal set of
generators for the closure of the cone spanned byfflagctors of all graded posets. Finding
such descriptions for the families of all Eulerian posets and all face lattices of polytopes
or hyperplane arrangements remain interesting open problems. (See [5, 9, 10] for recent
results along these lines.) From the point of view of the algebras discussed in this paper, it
is interesting to note that in the case of all graded posets, the minimal generating set (that
is, the set okextreme raygfor the cone of nonnegative forms is closed under convolution,
except for a well-defined set of excluded factors (see [11, Theorem 3]).

In 82, we study the algebra structure on the set of chain operators on graded posets and
see it to be the free associative algebra= Q(yi, Yo, ...) on countably many generators.

In 83, we restrict to the family of all Eulerian posets and see that the alggbod chain
operators on these, a quotient®@fy, y», .. .), is itself isomorphic to the free associative
algebraQ(y1, V3, ¥s, . - ., Yok+1, - - - )- While much of the rest of the paper can be viewed as

a survey, in this algebraic setting, of enumeration theory for Eulerian posets, this result is
new. Its proof bears on algorithmic issues involving the verification of relatiods:inin

84, we study the components of the flagector as elements ihandA¢, deriving recursive
relations between flalg-vectors of different ranks. This leads to a derivation of the Dehn-
Sommerville relations for the flab-vectors as identities i\¢ and a relatively simple
derivation of the coefficients of thed-index of Eulerian posets as elementsAy. The
section concludes with a discussion of the tbrieector. Section 5 contains a description of
Aasthe dual algebrato a coalgebra and a discussion of related module structures associated
to posets of simplicial, cubical and simple polyhedra.

The development here extends that of [15]. We are grateful to Richard Ehrenborg, Mike
Stillman and Moss Sweedler for helpful discussions on various parts of this research, and
to Clara Chan, Vesselin Gasharovalédr Hetyei, Margaret Readdy and Stephanie Van
Willigenburg for useful comments on earlier versions of this paper.

2. The algebra of chain operators

In this section we lef® be the family of all graded posets. Throughout, weQebe the
field of rational numbers. For each> 0, define the vector space ov@rof forms on chain
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operators

AnZZ{ Z OtsfS|0[s€Q}.

Sc[n—1]

We have by Proposition 1.1 that dify =2""1. We setA;=Q. The graded vector space
A = D,-o An can be made into a (noncommutative) gradedigebra by means of the
convolution product (1.2). We see firstthat this algebra has a particularly simple description.

Theorem 2.1 Asgraded algebras ZQ(yi, Y», .. .), the free graded associative algebra
on generators y where the degree of ys taken to be i.

Proof: Define an algebra map

¢ :1Q(y1, Y2, ...) > A (2.1)

by p(y)) = fo. By repeated use of (1.2), we can easily see that

f_r'l

|1i2mik

= il g e g (2.2)
= (p(yilin_il T yik_ik—lyn—ik)’ (2.3)

so the chain operatorsj generate all chain operators by convolution (cf. [16, Theorem
3.2]) and thusp is onto. That it is one-to-one is a direct consequence of Proposition 1.1.
Homogeneity is clear. O

We henceforth will consider the algebfato be identical with the free associative alge-
braQ(ys, y», ...), interchangeably using expressions lke; for fi'+J andy; y; (P) for
£/ (P), and identifying the setfd | S C [n— 1]} with the setM,, := (i, Vi, - - Yi, | k>0,
i1+1i2+---+ix = n} of all degreen monomials inyy, ..., y,. For completeness, we take
Mo := {1}. Note that|M,,| = 2"~* whenn > 1.

We consider first the effect of poset duality on the algebrd&ecall that for a pose®,
the dual poseP* is defined as having the same underlying set with the reverse partial
order, so thaix <p. y if and only if y <p x. Define the involutionF — F on A
by Vi, Vie = Yi---Yi,- Itis easy to check that foF € A, F(P*)=F(P). Define
A ={F € A|F = (=1)F},i =0, 1, and note thad = A°@ A. We call elements oA®
and A' symmetricand antisymmetricrespectively. Symmetric forms are precisely those
taking the same value da and P*.

Proposition 2.2 For n > 1, the subspace $of degree n symmetric forms on all graded
posets has dimensi@i—2 + 21/2/-1,

Proof: ForanyF € A,wehaveF +F € A°, F—F € AlandF = (F+F)+(F—F).
Thus ifM? is the set of symmetric elementsidf,, then the seM? U {m+m|m € M,\M?}
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is a basis forA%, and so
. 1, MY
dim A2 = [M2| + 5@ LM =2" 2+T".
It suffices to show thatM?| = 2l"/2!. To this end, supposa € M, andm=mm. Then
m=uyt, whereu € M;j, for somej = 0,1,..., 3] with n=2j +i. Thus|M?| =
14+1424 ... g 22=-1_9oln/2] O

Example 2.3 Forn = 4, dimA) = 6 and

Al = spar{ya, y1Y2Y1. Y. Y5 V1Ys + Yayi. YaYiYa + Yoy1Y1}
= spar f, T4, T f5, 1+ f5, 15+ 4] (2.4)

3.  Enumeration in Eulerian posets

WhenP is a proper hereditary family of graded posets then for a fbra A, it may be
thatF (P) = 0 for all posetsP € P. We let Ap» denote the set of operatorsAnconsidered
as operators orP. Thus the map

p . Q(yl’ Yo, .. ) - AP (31)

as in (2.1) may have a nontrivial kernel,
lp:={f €Q(y1,¥2,...) | f(P)=0 forall P e P}.

By Proposition 1.3]p is a (two-sided) ideal i (y1, Y2, . . .), the ideal ofvanishing forms
onP. By the convention thafg(P) = 0ifr(P) # d, Ip is a homogeneous ideal. Thus
theQ-algebraAy of all forms onP is isomorphic taQ(y1, Y2, .. .)/lp as a graded algebra.
When?P is the family of all graded posets, we halye= 0.

Henceforth, we restrict our attention to the famdyof Eulerian posets and certain
subfamilies. We denote the ideal of vanishing forms on all Eulerian posels éyd the
algebra of form®Q (y1, yo, ...)/l¢ by A¢. Our first task is to describe the iddgl To this
end, we recall the so-callegeneralized Dehn-Sommerville relatiofts Eulerian posets
[3, Theorem 2.1].

Theorem 3.1 Given arank d Eulerian poset P and subset$1,...,d — 1}, if {i,k} C
SuU{0,d}, i <k, and S contains no j such thatd j < k, then

k—1
Y DI (P = fE(PY L — (DY, (3.2)

j=i+1

The relations (3.2) are shown in [3] to generate all linear relations on chain operators over
the class of face posets of polytopes, and thus over all Eulerian posets.
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WhenS=0,i = 0 andk = d, (3.2) reduces to thEuler relationfor Eulerian posets of
rankd,

il — o4t — (DY + (- fd =0, (3.3)
which, with ¢ = f} f2~" = yiy4_i, can be written as
Yd — Y1Yd—1+ YaYa—2 — - + (=D yg_1ys + (=1 = 0. (3.4

Ford > 1, we defingyq := Ziﬂ-:d(—l)iyiyj, where the sum is over dll j > 0 and we
setyp = 1 for convenience. This is the elementAfcorresponding to the rardk Euler
relation. We callyq thed™ Euler form Note thatyy is homogeneous of degree For
examplex1 = 0, x2 = 2y2 — Y7 andys = Yoy1 — Y12

The relations (3.2) were derived in [3] directly from the Euler relations for arbitrary
intervals. This has been observed more explicitly in various forms in [14, 86, Remark 7]
and [16, Proposition 3.3]. Perhaps the clearest way to state this dependence is the following.

Proposition 3.2 The two-sided idealglof forms in A vanishing on all Eulerian posets is
generated by the Euler formg, d > 1.

Proof: This follows by noting that the relations (3.2) are all in the ideal generated by
the relations (3.3). That is, in terms of convolution of chain operators, (3.2) can be written
flﬁi] Ak—i fgﬁk =0. O

We next show that only the even degree Euler forms are needed to geherdthis
leads to showing thad¢ is essentially the free associative algebra generated bythe
n > 0, which, in turn, allows an easy computation of its Hilbert series.

Proposition 3.3 Forn > 1,

1 2n .
Xen+1 =~ Y W xeniai + (=D xengai Wil
i—1

Therefore lg = (xq,d > 1) = (xon, N > 1).
Proof: Forn > 1,ifr is the expression on the right side, then

—2 = Y (e + D xew)
i4+6=2n+1
O<i<2n+1

Y (DY e+ Dy v
i+j+k=2n+1

i>0

D0 =D 0w = Yoy + (D e — (=D ye))

{+k=2n+1



NONCOMMUTATIVE ENUMERATION IN GRADED POSETS 13
=-2 Y (-D'y=—2xzn11,
{+k=2n+1

where all indices are constrained to be nonnegative unless otherwise noted. O

Proposition 3.3 enables us to show ti#&t is essentially a polynomial algebra in the
odd-degree generators.

Theorem 3.4 There is a graded isomorphism @¥-algebras

Ag = Q<y11 y3s y5s cee y2k+l’ . > (35)

Proof: We think of the Euler formyq = xq(Y1, ..., Yq) @s a polynomial in the; and
recursively define the following homogeneous elementa b substitution:

1
Q2(Y1, ¥2) = Y2 — §X2(Y1, y2)

1
Q4(Y1, Y2, Y3, Ya) = Ya — §X4(y1, U2, Y3, Ya)

1
Ok (Y1, Y2, - -+, Yok) = Yok — §X2k(y17 02, Y3, U4, - - -, Yok—3, O2k—2, Yok—1, Y2k)

We claim thatyy is a polynomial inthe generatoys, ys, . . ., Ya_1 only. Thisis clear for
k = 1. Supposingitistrue fdc < n, we can seqy, involvesonlyy, vs, s, . . ., Yon—1, Y2n,
but the coefficient oy, is zero. It follows from the definition that

le = (x| k=1) = (yx —ax | k> 1). (3.6)

We define maps andy betweernQ(y1, V3, Vs, . . ., Y2ki1, - . .) and A¢ as follows. The
map

0:Q(Y1, ¥3, ¥5, ooy Yokg1, o) > A— QY1 Yo, ...} /lg = Ag,

is the restriction of the canonical projectiégn— Ac. Note that the ma\ — Q(y1, Vs,
ys, ...) defined byy,i 1 — VYsii1 andys — qu hasle in its kernel by (3.6), and so it
extends to a map

VA =Q(yL Yo, .. ) /le = Q(Y1, V3, Vs, . ).
Itis clear that) andy are graded homomorphisms witho =l andd oy =1. O

As noted earliel ¢ is a homogeneous ideal; in fact, the elemeptsre homogeneous
generators. ThuBgs = Q(vi1, Vo, ...)/l¢ is a graded)-algebra, and as a vector space over
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QA =QBA;DA, D - B A, ® -, WhereAg, is the set of all degre@ elements of
A¢. The Hilbert function ofA¢ is now an easy computation. Recall the Fibonacci numbers
aq defined byay = a, =1 andg, =a_1 + & _», fori > 3.

Corollary 3.5 For d > 1, the dimension of A is &g, the d-th Fibonacci number.

Proof: We have graded maps

Agy = Ac = Q(y1, ¥3,...)

so by Theorem 3.4A¢, is isomorphic to thal-th graded part oQ(y1, y3,...). Thus a
basis forAg, consists of all degre@ words in the odd-degreg. Each of these begins with
Y21, Where 1< i < k = |52 ]. It follows that

Ag, = V1As , @ Y3As, s D - @ Yu-1Aci1 -

Hence, ford > 2,

dimQ (Agd) = dimQ (Agd_l) + (dimQ(Agd_3) + -+ dimQ (A5u+1-2k))
= dimg (Agdfl) + dimg (Afd,z)’

while it is clear that dim (Ag,) = dimg(Ag,) = 1. O

Using the generating function for the Fibonacci numbers [19], we obtain the Hilbert
series forA¢. For completeness, we la§ = 1.

Corollary 3.6 The Hilbert series for Ais

. t
%dlmQ (Ag)td = éadtd =1+ m

We call a subse$ c [d] sparseif d ¢ Sand nof{i, i + 1} is a subset o8. In [3], it was
shown that the set 0If§+1, whereSis a sparse subset df]} is a basis for the flad -vector
of Eulerian posets, in the sense that a‘rﬁl is uniquely a linear combination of these.
A shortcoming of the sparse flag numbers is that they are not closed under the product on
A; for examplef? f3 = 2, However, Theorem 3.4 provides a multiplicative basis for
the flag f -vectors of Eulerian posets. We s8y= {i, ..., ix} C [d] hasodd jumpsf for
j=0.1,...,kijp1 —ijis odd, where we takig = 0 andix+1 =d + 1.

Corollary 3.7 The flag numbersgﬁl, where Sc [d] has odd jumpsform a multiplica-
tively closed basis for the vector space. A

As in the case of graded posets, we can consider the set of forsthrat are invariant
under polarity. As before, we denote mg the subring of symmetric forms on Eulerian
posets, and b)Agd the subspace of those of degke
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Corollary 3.8 Ford > 0, the subspace 93\ of symmetric forms of degree d in- Aas
dimension

i ST

dimo (A2) = | a4 ¥ a

ifd=2k—-1
5 |

Proof: SinceF e I¢ ifand only if F € I¢ and, in fact, the Euler forms are themselves
symmetric, the isomorphism (3.5) commutes with the involuffor> F. So it is enough
to determine the dimensions of the symmetric graded componer@syaf ys, vs, .. .,
Yoki1, - - .). Denote byMgq andl\7|3 the set of monomials, respectively, symmetric monomials,
of degredd in the odd-degree generators vs, ¥s, . . ..

As before, we have
ag + |M |

1 -
dim A2, = [W15] + 2 (e — W) =

so it suffices to show thaM{| is equal toay or ay,1, depending on whethat = 2k or
d = 2k — 1. Indeed, ifm € Mg with m = m andd = 2k, thenm = ud for u € My,
and so|M°| = |[My| = a. On the other hand, il = 2k — 1, thenm = uyd, where
i=135,....,2k—1,ue My,and 2 +i = 2k — 1Thus|M|_Z,0a_ak+1,by
properties of the Fibonacci numbers. O

Example 3.9 Ford =4, d|mA2 = 2(a4 +ap) = 2 and{yf, ylyg + yay1} (equivalently,
{fis f + f51) is a basis forA0 Ford = 5, dimAY = $(as + a4) = 4 and we

Pavi{yl, Y1YaY1, Vs, YiYiYs + YaYyiyi) (equivalentlyf f1234, fo f7. f+ f3)) is a basis
or

Finally, it is of some interest to be able to determine quickly whether two expressions
in A= Q(y1, Y2, . ..) represent the same element in the algelyaThis is equivalent to
determining whether an element Aflies in the Euler ideal:. By Proposition 3.3 and the
proof of Theorem 3.4, two elemenks G € A represent the same elementAy if and
only if they agree after the successive substitutions

1 .
Yo > G2 = VY2 — 5xa, 1 =K..., 1 (3.7)

2

whereysy is the largest even degree variable appearing in ektanG. Thus the generators
X2n constitute aninimal (noncommutativelsrobner basidor the ideall ¢ [24, §2.4]. The
result of the substitutions (3.7) in an elemént Q(y1, Y, .. .) is thenormal formof F,

an element of)(y1, s, ...). Implicit in this is an underlying term order on words, which
we take to be first by degree, then lexicographically among words of the same degree.
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4. Flagh-vector, cd-index and torich

In this section we discuss three enumerative invariants of Eulerian posets and derive some
of their properties in the context of the algel¥a.

4.1. The flag h-vector

The flagh-vector is another numerical invariant of graded posets and polytopes (and more
generally of balanced simplicial complexes [2, 18]). For a pd3eif rank d, and for

S ¢ [d—1], definehg(P) := > 1 5(—D!IS=ITH 1 (P). The functionS+— hg(P), S c [d],

is called theflag h-vectorof P. The relation betweeri andh can be inverted, and for all

S, fS(P) = ZTgs hT(P)-

For polytopes, it follows from topological considerations [18] that the fiagector
satisfies the relationss = hg. Since any relations holding for all polytopes must hold
for all Eulerian posets [3], these relations must be consequences of the generalized Dehn-
Sommerville equations (3.2) and so must be derivable as identities in the alyebra

As in the case of the flafj-vector, we can consider the flagvector to give operators on
graded posets, and hence define elements of the algebfal = {i, ..., ik} € [d — 1],
wherei; < - < iy, we definey? = yi, Vi, i, - - - Ya_i,. We letyS := yq. Define the flag
operators by

hg= > (DS =3 " (—1)S1Tlyg, (4.1)
TCS TCS
forall SC [d —1].
ForSc [d], k € [d], recall§g = SN[k—1]andS¥ = {i —k|i € S,i > k}. Note that
if T = {il, i2,...,in} andy® = ¥ Vi, iy - Yaoin = YiYis - - Yins theny'Tk[ik] = Vi, - - Vi
andygid = Yie: - Vin-
We begin with the multiplicative formula for the flageperators.

Proposition4.1 IfSc[k—1]and T c [l — 1], then
hshy = hir g + S uiro- (4.2)
Proof: We show an equivalent equality: f&c [d — 1],k ¢ S,

h%-i- h%Jk — (_1)ISH-1 Z (_1)IT\ f{i
keTcSSUk
= Z Z (_1)|§k]|*|T1‘(_1)|gk]|*|T2\ f_ll_<1 f%—k
T1C Sk T,cSK
k pRd—k
= hg,hgy™- O

The following relation betweeh? andh¥, k < d, provides a useful inductive tool for
studying the fladh-vector. It appears to be new. In the following, weh§t= Yo =1and
denote by miqaT) the least element in the nonempty et
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Theorem 4.2 Let SC[d — 1]. Then

= 3 pSinind = 3 1ng g,

ieSu(d} i€SU{0}

Proof: From (4.1) we get

hS= D + Yy Y (DS

ieS TCSmin(T)=i

(=D'Sya + > (=D'¥lyhG;!

ieS
- Y i
ieSo(d)
The second equality follows similarly. O
Corollary 4.3  Foreach Sc[d — 1], h§=h, S=[d —1]\'S, holds as an identity in A

Proof: We proceed by induction othand on|S|. The statement is clear for= 1. For
|S| = d — 1, it follows from Theorem 4.2 and by induction that

[d 11 = Z( 1~ lYJ [d— 1 —1] (4.3)
= Z(—l)iflyj hg ! (4.4)
j=1

Ford > 1,|S] <d —1andk ¢ S, we show first that

hg—h§=hg, —h&e (4.6)

Indeed, lettinglT = S\k, we have by Proposition 4.1
d d k d—k
hs+ hg = hg, hga

and
d kK pd—k
hf +hfu = ht,

Since§y andT[k] are complementary sets ik{ 1], we have by induction thdug = h#{kl.
Similarly, h&* = hd3¥, and therefore

hd +hd, =hd +hd ,,



18 BILLERA AND LIU

which gives (4.6). By induction, the right-hand side of (4.6) is zero, completing the
proof. O

4.2. Thecd-index

Thecd-index of an Eulerian pos& is a honcommutative polynomial in two variables that
provides an efficient encoding of the fldgvector or flagh-vector of P. From the point of
view of the algebraA, it can be seen as giving an interesting graded basis.

SupposeP is rankd + 1 andS C [d]. Letu; = aifi ¢ Sandu; = bif i € S. Define
Us = u% = UjUy - - - Uq. It was shown in [6] that if one considers the generating function

®(P)= Y hs(P)us, (4.7)

Sc[d]

then this is a polynomial it = a+ b andd = ab + ba if and only if the generalized
Dehn-Sommerville equations hold fé. Define degc) = 1, degd) = 2. We can write
®(P) as

O(P) =) ¢u(P)w

where the summation runs over all degteenonomials inc andd; there areag,1 such
monomials. We call thisd-polynomial®(P) thecd-indexof P.

We derive the existence of tlve-index as a consequence of the Euler relations. One can
consider the expression (4.7) as defining a polynodlal= ZSc[n—l] hgu’{l inaandb
with coefficients inQ(y1, Y2, ...}, or in Ac. Note that®" is bihomogeneous, of degree
in they; and of degre@ — 1 inaandb. If we let Ac(a+ b, ab + ba) = A¢{(c, d) denote
the ring of all (noncommutative) polynomials crandd with coefficients inA¢, then the
existence of thed-index is equivalent to the following.

Theorem 4.4 As a polynomial with coefficients incA®" € Ag(c, d).
Before we prove the theorem, we note the straightforward identities,

> (=D = @-b)k, (4.8)

Sclk]

for anyk, and

(@b 1 (—D¥a) (¢ — 2d)sc, if k is even, and 4.9)
a— + (=Dka) = .
—(@-2d)'%", if kis odd.

The second of these can be found in [21].
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Proof of Theorem 4.4: The proofis by induction on; noted®?! = y; and®? = y,(a+b)
are inA¢(c, d). Using Theorem 4.2 and (4.8) we can write

o = Z hgug 1_ Z (Z (_1)|§i]yihr§71i>ug—l

SCln-1] Scln—1] \ieSo(n)
n-1
i=1 TC[i— VC[n—i—1] Sc[n-1]

n
=D yi@-b' "o,

where we defind®? = ad® = 1 for convenience.
Sincehs = hg, we haved" = Y chsus = ) ghgus = ) ghsus. This means we can
obtain another such formula fd" by changing all’s into b’s and vice-versa. Therefore,

n
— Z Vi (_1)ifl(a _ b)i71a®n7i )
i=1
Adding, we get
n ) ) )
=Y vi@—b'Hb+ (=)' aye" . (4.10)
i=1
Thus, by (4.9) and the induction hypothesig, € A¢(c, d). O

This proof, while formally different than that of [21, Theorem 1.1] (which operates in the
incidence algebra of a pose}, appears to cover similar ground. This is likely a consequence
of the development in 85.1. We note that (4.10), which is essentially dual to [21, Eq. (11)],
can be used with (4.9) to computd-indices recursively as elements Af(c, d). As an
illustration, we compute the polynomid®. Recall that the basic relations & through
degree 3 are = y? andy,y; = Y1V

Example 4.5 Forrank 3 posets, we get from the definition

@3 = yaa + (Y1Y2 — Ya)ba+ (y2y1 — ya)ab + (Yiyiy1 — VoY1 — YiYa + Ya)b?
= y3(¢* — 2d) + y1Y.d = y5¢° + (Y1Y2 — 2ys)d

and sop = y3 andgy = Y12 — 2ys. Alternatively, from (4.10) and (4.9) we get

203 = y1c02 — yo(c? — 2d) L + y3(c? — 2d)cd?
= V1Y2C? — YoY1 (€% — 2d) + 2y3(c? — 2d).
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4.3. Toric h-vector

Finally, we can easily describe the so-called tbreector as an element of the polynomial
ring A[x] in one mdete[mmate oveh. We define polyn0m|alian =h"(x) = Y5 k'
andg™ = g"(x) = Y/ 5 (K" — K" ) in Alx] by h® = g° = 1, and

hn — Zl gn_iYi (X _ 1)i_1, (411)

forn > 0. Itis easy to see that this definition is equivalent to that given in [20] or [19,
83.14]. Againh"(x) is bihomogeneous, of degreen they; and degree — 1 in x.
For example, from (4.11) we gt = ¢°y; = y; and

h? = glys + @%%2(x — 1) = yox + (Y2 — ya).

and

h® = g?y1 + g'ya(x — 1) + g%ya(x — 1)2
= y3x® + (Y1¥2 — 2y)X + (Y5 — Ya¥1 — Y1Y2 + Y3).

Note that the lead term ¢f" is alwaysy,. Over A¢, h? andh? reduce toy,x + y» and
yaXx? 4 (Y12 — 2y3)X + Y3, respectively. To see that the constant term'oélways re_duces
to yn OVGI"Ag observe that by (4.11) and induction, this is equaitd ,(—1)' g oy =
S (=D "ty v + (=D ty,, which equalsy, in A by (3.4).

To distinguish them from terms of the fldgvector, we denote the components of the
toric h-vectorby (3, ..., A" ), whereh! := k" , .. We have seen th&" = h"_, .
holds in Ac wheni = 0. In fact, this identity holds imA¢ for all i since it holds for all
Eulerian posets [19, 3.14.9]. Similarly, it follows from [6, Theorem 7] tyﬁfl e A2, that
is, glfk“ k“ (see Corollary 3.8). One advantage of this formulation is that it is clear
from (4.11) that thehn are mteger linear combinations of g [6, Theorem 6]. In fact,

one gets a recursive formufg = Z” Ry (= 1i-i-1(' 1)gn 1k ¥i (cf. [4)]).

5. Related algebraic structures

There are two algebraic structures related to those discussed so far, one involving coalgebras
studied in a similar context in [12], the other involving modules associated to classes of
Eulerian posets having restrictions on their lower or upper intervals.

5.1. Duality and the associated coalgebras

We discuss first the connection between the algebras studied here to the coalgebras of [12].
We will see that the algebra can be viewed as the graded dual to the coalg€ldeab).
For the basic definitions of coalgebras we refer to [17] or [23]. Thappeared to be the
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dual of some coalgebra was first pointed out to us by Moss Sweedler. The discussion in this
subsection was suggested to us by Richard Ehrenborg and is included here for completeness.
Let C be a coalgebra with coassociative coproduct

A:C—>CQC.

We do not assume thét has a counit. Then the vector space ddal= Homg(C, Q) is
an algebra (possibly without a unit), with multiplication defined, fog € C*, by

(Fxg)0) =Y f(x) 9(x)- (5.1)

(See [23, Proposition 1.1.1] or [17, Lemma 1.2.2].) Here we use the Sweedler notation
A(X) =), X1 ® X for the coproduct.

Suppose, in additionC = €., Cy is a graded vector space, a@dis graded as a
coalgebra, that isp(Cp) C EBiH;n Ci ® Cj. ThenifC} is the vector space dual @,
thegradeddual ofC, C9 := .., C;!, is a subalgebra a@*. Here we have an orthogonal
direct sum, in the sense thatfife Ci,ce Cpandk # mthenf(c) =0.

We are interested in the underlying vector space of the free associative algjebra
Q(a, b). Asin[12], we makeC into a coalgebra (without counit) by defining a coproduct
A:C—->CQ®Chy

n
A(vl'vz"'vn)=ZU1"'vi—1®vi+1mvn,
i=1

for anab-word vy - v2---v,. FOr exampleA(aba) = 1® ba+a®a+ab® 1. Asa
coalgebraC = @ C, is graded, wher€&; is the span of alab-words of degrea — 1.
We define elementsg = vy - - - vq_1 € Cy, SC [n— 1], by

- b ifi €S, and
“"Tla—b ifi¢s

For fixedn, the elementsd form a Q-basis for the vector spadg,. The effect of the
coproduct on these elements is straightforward.

Lemmab5.1 Foreachnandeach 8 [n— 1],

A(v) = Z Uis{i] ® vy .
ieS

The connection with the algebrais given by the following.

Proposition 5.2 The graded dual of the coalgebra C is isomorphic to the subalgebra
A" = @P,., A as a gradedQ-algebra.
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Proof: Leted be a dual basis to the basi§ of Cy,, i.e., (€g, v-kr) = 8nk - dsT. Then by
(5.1) and Lemma 5.1,

(€3-€h vR) = > (€8 vk, ) - (€F. vRa)
ieR

= 8n+k,m . [n € R] . (eg, Ug{n]> . (e|-|(-, vl};[ﬂ])
= Sn+km - [N € R] - 8s Ry - O7.RI

n-+k m
= 8n+k.m . 5R.SJ{n]U(T+n) = <eS_J{n}U(T+n)7 UR>,

where h € R]is 1if n € Rand 0 otherwise, showing the m&p— A™ given byel — {2
to be an isomorphism @-algebras. O

Finally, we note that recently Bergeron et al. [7] have shown the alg&btta be dual
to the peak Hopf algebra of Stembridge [22]. This latter object was introduced in the
seemingly unrelated context of enrichBepartitions. While posets are a basic part of what
is considered in [22], there is nothing explicitly Eulerian about them.

5.2. Simplicial and cubical quotients

Interesting classes of Eulerian posets are provided by the face lattices of simplicial and
cubical polytopes, that is, polytopes such that every face is, respectively, a simplex or a
cube. From the poset point of view, this condition becomes one on lower intervals and leads
to consideration of certain quotients of the algeBgaby one-sided ideals. To this end, we
consider the following.

A subfamily P of graded posets is said to lmever hereditanyf it is closed under taking
lower intervals, i.e., ifP € P andx € P, thenP, € P. Similarly P is upper hereditaryf
P* € P for everyx € P € P. The following is analogous to Proposition 1.3.

Proposition 5.3 Suppose Fe Ais a zero form on a clasB of graded posets and @ A
is any form. IfP is lower (uppen hereditary then the form F G (respectivelyG - F) is
also a zero form. Thus the subspaged A of zero forms ofP is a right (left) ideal in the
algebra A.

A lower hereditary family of poset® is said to bdower uniformif there areQ; € P,
i > 1, withr(Q;) = i such that for any® € P and anyx € P, x # 1, Py ~ Q.
Similarly, P is upper uniformif its dual is lower uniform. Thus, for a posétin a lower
uniform family P, every rank proper lower interval oP is isomorphic toQ;. Our primary
examples of lower uniform families of posets are the face posets of simplicial or cubical
polytopes. HereQ; is, respectively, the face poset of @&n— 1)-dimensional simplex
or cube. Examples of upper uniform families can be obtained from these by duality. Of
particular interest is the family of face posets of simple polytopes, that is, those whose duals
are simplicial.

Note that forP lower uniform andP € P of rankd, if S = {s;,..., s} C [d — 1],
S < -+ < S thenfg(P) = f3 (Qs) - f4(P). Thus for a uniform family of posets,
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the study of chain operators reduces to that of ordinawectors. This leads us to the

following.
Given constantsij € Q (i, j > 1), alower uniformideabf Ais arightidealy generated
by the elements; yj Yk — Gij Yi+j Y I, j, k = 1. Similarly anupper uniform ideals a left

ideal generated by the elememisyiy; — Gij YkYi+j. If lu is a uniform ideal, then the
quotientAy = A/(l¢ + ly) is aright or left module oveA, which we will refer to as a
uniform module Note that a uniform ideal is always homogeneous and so uniform modules
are always graded.

Proposition 5.4 If Ay, is the subspace of degree d elements in some uniform module A
then

dimg (Ay,) < {dTHJ

Proof: We assumé) is lower uniform and sd\, is a right A-module. Successive appli-
cations of the relation; y; yk = Gij Yi+j Yk to (the last three terms of) a degreenonomial
ending with y for somek reduce the monomial to a multiple gf_xyk. So any two
monomials ending witly, are linearly dependent iA‘L’,.

By Theorem 3.4, we know that any degieelement inAy can be written as linear com-

bination of monomials ending witfy; 1,1 <k = Ld—;lj. Then by the above observation,
any degrea element inAy is a linear combination ofq_1Y1, Yd—3Y3, - - - » Yd+1—2k Yok_1-
So dimy(Ay,) < |42 ). o

Note this bound is not tight in general. d¢f =0 for all i, j, theny;y;y«=0 for all
i, j,k > 0. Thus wherd is odd,yq spansAd; hence, dirg(A%) = 1 in this case.

For face posets of simplicial-polytopes, the flagf -vectors are determined by tHe
vectors as noted above; for example, ikli < j < d, thenf;; = (i‘)fj. For cubical

polytopes, we have théf; = Zi‘i(ijj) fj. From this, the following is straightforward.

Proposition 5.5 The uniform families of posets consisting of face posets of simplicial
respectively cubical polytopes correspond to uniform ideals ip generated by elements
Yi¥i Yk — Gij Yi+j Y i, J, k = 1, where

(I Jlr J> for simplicial polytopesand
Gj = . o
2 <I + JJ 1> for cubical polytopes

Proposition 5.4 allows us to conclude that the linear span of thefflagctors of all
simplicial d-polytopes (or all cubicall-polytopes) has dimension at mqgg—lj. Actually
equality holds in both cases [13], and thus all linear relations on simplicial or cubical
polytopes are spanned by convolutions of linear forms with Euler relations or with the
forms given in Proposition 5.5.

Note that the relation between the simplicial and the cubical constants is suggestive of
the relation between the usual simplicielector and the cubicdl-vector introduced by
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Adin [1]. It would be of interest to find liftings to the flaf-vector of the linear inequalities
given by the nonnegativity of the simplicigtvector for simplicial convex polytopes (the
generalized lower bound theorem) and the conjectured nonnegativity of the q#ieetor

for cubical polytopes (the cubical lower bound conjecture). See [8] for a discussion of these
and other face number inequalities.
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