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1. Introduction

This paper focuses on the properties of Schubert cells as quasi-projective subvarieties of a
generalized flag variety. More specifically, we investigate the problem of distinguishing be-
tween different Schubert cells using vanishing patterns of generalized Pl¨ucker coordinates.

1.1. Formulations of the main problems

Let G be a simply connected complex semisimple Lie group of rankr with a fixed Borel
subgroupB and a maximal torusH ⊂ B. Let W=NormG(H)/H be the Weyl group ofG.
The generalized flag manifoldG/B can be decomposed into the disjoint union ofSchubert
cells X◦w = (BwB)/B, for w ∈ W.

To any weightγ that isW-conjugate to some fundamental weight ofG, one can associate
a generalized Pl̈ucker coordinate pγ on G/B (see [9] or Section 3 below). In the case of
type An−1 (i.e.,G = SLn), the pγ are the usual Pl¨ucker coordinates on the flag manifold.

The closure of a Schubert cellX◦w is theSchubert variety Xw, an irreducible projective
subvariety ofG/B that can be described as the set of common zeroes of some collection
of generalized Pl¨ucker coordinatespγ . It is also known (see, e.g., Proposition 4.1 below)
that every Schubert cellX◦w can be defined by specifying vanishing and/or non-vanishing
of some collection of Pl¨ucker coordinates.

The main two problems studied in this paper are the following.

Problem 1.1 (Short descriptions of cells) Describe a given Schubert cell by as small as
possible number of equations of the formpγ = 0 and inequalities of the formpγ 6= 0.

Problem 1.2 (Cell recognition) Suppose a pointx ∈G/B is unknown to us, but we have
access to an oracle that answers questions of the form: “pγ (x)= 0, true or false?” How
many such questions are needed to determine the Schubert cellx is in?
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Problem 1.2 looks harder than Problem 1.1, since we do not fix a Schubert cell in
advance. However, we will demonstrate that the complexity of the two problems is the
same: informally speaking, it takes as much time to recognize a cell as it takes to describe it.

Our interest in these problems was originally motivated by their relevance to the theory
of total positivity criteria. As shown in [5], these criteria take different form in different
Bruhat cellsBwB, so one has to first find out which cell an elementg ∈ G is in.

1.2. Overview of the paper

In Section 2, we illustrate our problems by working out the special caseG = SL3. Section 3
provides the necessary background on generalized Pl¨ucker coordinates, Bruhat orders, and
Schubert varieties.

The number of equations of the formpγ = 0 needed to define a Schubert variety is
generally much larger than its codimension. In Proposition 6.3, we show that for certain
Schubert varietyXw in the flag manifold of typeAn−1, one needs exponentially many (as
a function ofn) such equations to define it, even though codim(Xw) ≤ dim(G/B) = (n2).
Given this kind of “complexity” of Schubert varieties, it may appear surprising that every
Schubertcell actually does have a short description in terms of vanishing or non-vanishing
of certain Plücker coordinates. In Theorem 4.8, for the typesAr , Br , Cr , andG2, we provide
a description of an arbitrary Schubert cellX◦w that only uses codim(Xw) equations of the
form pγ = 0 and at mostr inequalities of the formpγ 6= 0. Thus in these cases every
Schubert cell is a “set-theoretic complete intersection.” Our proof of this property relies on
the new concept of aneconomicallinear ordering of fundamental weights. For the typeD,
a description of Schubert cells is slightly more complicated; see Proposition 4.11. This
completes our treatment of Problem 1.1.

In Section 5, we turn to Problem 1.2. Our main result is Algorithm 5.5 that recognizes
a Schubert cellX◦w containing an elementx. In the cases when an economical ordering
exists (i.e., for the typesAr , Br , Cr , andG2), our algorithm ends up examining precisely
the same Pl¨ucker coordinates ofx that appear in Theorem 4.8. In the case of typeAn−1,
recognizing a cell requires testing the vanishing of at most(

n
2) Plücker coordinates.

In Section 7, we discuss the problem ofcell recognition without feedback, i.e., the problem
of presenting a subset of Pl¨ucker coordinates whose vanishing pattern determines which
cell a point is in. We show that such a subset must contain all but a negligible proportion
of the Plücker coordinates. (Our proof of this result exhibits a surprising connection with
coding theory.) In Section 8, we demonstrate that the situation changes radically if we only
allow genericpoints in each cell. With this assumption, knowing the vanishing pattern of
polynomially many Pl¨ucker coordinates (namely, the ones corresponding to thebaseof W,
as defined by Lascoux and Sch¨utzenberger [13]), suffices to recognize a cell.

1.3. Comments

For the purposes of this paper, all the relevant information about any point on a flag variety
can be extracted from a finite binary string—the vanishing pattern of its Pl¨ucker coordinates.
No explicit description is known for the set of all possible vanishing patterns. For the
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type A, a combinatorial abstraction of these patterns is provided by the notion of a matroid;
for a general Coxeter group, such an abstraction was given by Gelfand and Serganova [9].
All results of the present paper can be directly extended to generalized matroids of [9]
(irrespective of their realizability), and in fact to a more general combinatorial framework
of “acceptable” binary vectors introduced in Definition 5.2.

Note that the “cell recognition” problem becomes much simpler if its input is an element
gB represented by a matrix ofg in some standard representation ofG. For instance, if
G = SLn, then the Bruhat cell of a given matrixg can be easily determined via Gaussian
elimination. The reader is referred to [11], where an even more general problem of clas-
sifying an arbitrary matrix (not necessarily invertible) is solved. (This was generalized to
the classical series in [10].)

2. Example: G = SL3

To illustrate our problems, let us look at a particular case of typeA2 whereG = SL3. In
this case, a flagx = (0 ⊂ F1 ⊂ F2 ⊂ F3 = C3) ∈ G/B can be represented by a 3× 2
matrix whose first column spansF1 and whose first two columns spanF2. The homogeneous
Plücker coordinates ofx are:

(1) the matrix entriesp1, p2, andp3 in the first column of the matrix;
(2) the 2× 2 minors on the first 2 columns:p12, p13, p23.

The complete set of restrictions satisfied by the 6 Pl¨ucker coordinates consists of:

(a) theGrassmann-Pl̈ucker relation p1 p23− p2 p13+ p3 p12 = 0;
(b) non-degeneracy conditions:(p1, p2, p3) 6= (0, 0, 0), (p12, p13, p23) 6= (0, 0, 0).

The Weyl group here is the symmetric groupS3, with generatorss1 = (1, 2) ands2 =
(2, 3) and relationss2

1 = s2
2 = 1 andwo = s1s2s1 = s2s1s2. In Table 1, we show which

Plücker coordinates must or must not vanish on each particular Schubert cell. In the table,
0 means “vanishes onX◦w,” 1 means “does not vanish anywhere onX◦w,” and the wildcard
∗ means that both zero and nonzero values do occur.

Table 1. Schubert cells and Pl¨ucker coordinates in typeA2.

w p1 p2 p3 p12 p13 p23 X◦w

e 123 1 0 0 1 0 0 p3 = p2 = p13 = 0

s1 213 ∗ 1 0 1 0 0 p13 = p23 = 0, p2 6= 0

s2 132 1 0 0 ∗ 1 0 p2 = p3 = 0, p13 6= 0

s1s2 231 ∗ 1 0 ∗ ∗ 1 p3 = 0, p23 6= 0

s2s1 312 ∗ ∗ 1 ∗ 1 0 p23 = 0, p3 6= 0

wo 321 ∗ ∗ 1 ∗ ∗ 1 p3 6= 0, p23 6= 0
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Figure 1. Vanishing patterns of Pl¨ucker coordinatesp2, p3, p13, p23.

Concerning Problem 1.1, we see that each Schubert cell can be described in terms of the
4 Plücker coordinatesp2, p3, p13, p23 (these are exactly the “bigrassmannian” coordinates
discussed in Section 8). Moreover, 3 equations/inequalities suffice to describe every single
cell, as shown in the last column of Table 1.

Altogether, there are 11 possible vanishing patterns for the Pl¨ucker coordinatesp2, p3,

p13, p23. The classification of points on the flag variety according to the vanishing patterns
of these coordinates provides a refinement of the Schubert cell decomposition. In figure 1,
we represent this stratification by a graph (actually, the Hasse diagram of a poset) whose
11 vertices are labelled by the vanishing patterns and whose edges show how the subcells
degenerate into each other when a condition of the formpI 6= 0 is replaced bypI = 0.
The dashed boxes enclose the subsets making up individual Schubert cells. See Section 8
for further discussion of this poset.

The Schubert varietiesXw are defined by theequalitiesappearing in the last column of
Table 1. Thus in this case the minimal number of equations of the formpγ (x) = 0 that
define a Schubert varietyXw as a subset ofG/B is equal to its codimension. In general,
however, such a statement is grossly false (see Section 6).

Turning to Problem 1.2, the best recognition algorithm is given in figure 2; it requires
3 questions. Notice that each branch of the tree provides a short description of the corre-
sponding Schubert cell.

3. Preliminaries

In this section, we review basic facts about generalized Pl¨ucker coordinates, the Bruhat or-
ders, and Schubert varieties. For general background on these topics, see, e.g., [9, Section 4],
[1], and [6, §23.3, 23.4].
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Figure 2. Cell recognition algorithm for the typeA2.

3.1. Generalized Plücker coordinates

Our approach to this classical subject is similar to the one of Gelfand and Serganova
[9, Section 4.2]. Let us fix some linear orderingω1, . . . , ωr of fundamental weights;
the choice of this ordering will later become important. We will call the weightsγ ∈Wωi

Plücker weights of level i. Recall that the orbits of fundamental weights are pairwise disjoint,
so the notion of level is well defined.

Let Vωi be the fundamental representation ofG with highest weightωi . The Plücker
weightsγ of level i are precisely the extremal weights ofVωi . The corresponding weight
subspacesVωi (γ ) are known to be one-dimensional. Let us fix an arbitrary nonzero vector
vγ ∈ Vωi (γ ) for each suchγ . In particular,vωi is a highest weight vector inVωi , and thus
an eigenvector for the action of anyb ∈ B; we will write bvωi = bωi vωi .

Definition 3.1 Thegeneralized Pl̈ucker coordinate pγ associated to a Pl¨ucker weightγ of
leveli is defined as follows. Forg ∈ G, let pγ (g) be the coefficient ofvγ in the expansion of
gvωi into any basis ofVωi consisting of weight vectors. It follows thatpγ (gb) = bωi pγ (g)
for anyg ∈ G andb ∈ B. Thus we can think ofpγ as a global section of the line bundle
on G/B corresponding to the characterb 7→ bωi of B. It then makes sense to talk about
vanishing or non-vanishing ofpγ at any pointx = gBof the generalized flag manifoldG/B.

Although the definition ofpγ depends on the choice of normalization for the vectorsvγ ,
this dependence is not very essential: a different choice of normalizations only changes
eachpγ by a nonzero scalar multiple. In particular, the set of zeroes of eachpγ is a uniquely
and unambiguously defined hypersurface inG/B.

We note that one natural choice of normalization is the following: definepγ as the
“generalized minor”1γ,ωi , in the notation of [5, Section 1.4].

For the typeAn−1, the notion of a Pl¨ucker coordinate specializes to the ordinary one (see,
e.g., [7]), as follows. Let us use the standard numeration of the fundamental weights, so
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that Vω1 = V = Cn is the defining representation ofG=SLn, andVωi =3i V . Plücker
weights of leveli are naturally identified with subsetsI ⊂ [1, n] of cardinalityi : under this
identification, the weight subspaceVωi (γ ) is the one-dimensional subspace3iCI ⊂3i V .
The varietyG/B is identified with the manifold of all complete flagsx = (0⊂ F1 ⊂ · · · ⊂
Fn = V) in V : for x = gB ∈ G/B, the subspaceFi is generated by the firsti columns of
the matrixg. The Plücker coordinatepI (x) is simply the minor ofg with the row setI and
the column set [1, i ] = {1, . . . , i }. It follows that pI doesnotvanish at a flagx if and only
if Fi ∩ C[1,n]−I = {0}.

3.2. Bruhat orders

The Bruhat order can be defined for an arbitrary Coxeter groupW. (Even though it seems
to be well established that the Bruhat order is actually due to Chevalley, we stick with the
traditional terminology to avoid misconceptions.) LetS= {s1, . . . , sr } be the set of simple
reflections inW, and`(w) be the length function. The Bruhat order onW is the transitive
closure of the following relation:w < wt for any reflectiont (that is, aW-conjugate of a
simple reflection) such that̀(w) < `(wt).

For every subsetJ of [1, r ], let WJ denote the parabolic subgroup ofW generated by the
simple reflectionssj with j ∈ J. Each coset inW/WJ has a unique representative which
is minimal with respect to the Bruhat order. These representatives are partially ordered by
the Bruhat order, inducing a partial order onW/WJ . This partial order is also called the
Bruhat order onW/WJ .

We will be especially interested in the coset spaces modulomaximalparabolic subgroups
Wî = W[1,r ]−{i }. The following basic result is due to Deodhar [2, Lemma 3.6].

Lemma 3.2 For u, v ∈ W, we have: u ≤ v if and only if uŴi ≤ vWî for all i .

From now on we assume thatW is the Weyl group associated to a semisimple complex
Lie group G. Then the stabilizer of a fundamental weightωi is the maximal parabolic
subgroupWî . Thus the correspondencew 7→ wωi establishes a bijection between the coset
spaceW/Wî and the setWωi of Plücker weights of leveli . This bijection transfers the
Bruhat order fromW/Wî to Wωi . Note that ifγ andδ are two Plücker weights of the same
level, withγ ≤ δ with respect to the Bruhat order, then the weightγ − δ can be expressed
as a sum of simple roots. The converse statement is true for typeA but false in general.
A counterexample for the typeB3 is given in [16, pp. 176, 177]; see also Deodhar [3] (we
thank John Stembridge for providing this reference).

The Bruhat order on the Weyl groupW also has the following well-known geometric
interpretation in terms of Schubert cells and Schubert varieties:

u ≤ v ⇐⇒ X◦u ⊂ Xv ⇐⇒ Xu ⊂ Xv. (3.1)

A similar interpretation exists for the Bruhat order on any coset spaceW/WJ : if PJ is
the parabolic subgroup inG corresponding toWJ then the correspondencew 7→ wPJ
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establishes a bijection betweenW/WJ andG/PJ , and we haveuWJ ≤ vWJ if and only if
the “cell” (BuPJ)/PJ is contained in the closure of(BvPJ)/PJ .

To illustrate the above concepts, consider the case of typeAn−1 whereG = SLn, andW is
the symmetric groupSn. We have already seen that Pl¨ucker weights of leveli are in natural
bijection with thei -subsets of [1, n]. The Bruhat order on thei -subsets of [1, n] can be
explicitly described as follows: for two subsetsJ = { j1 < · · · < ji } andK = {k1 < · · · <
ki }, we haveJ ≤ K if and only if j1 ≤ k1, . . . , ji ≤ ki . Let u andv be two permutations
in Sn. By Lemma 3.2,u ≤ v (in the Bruhat order) if and only ifu([1, i ]) ≤ v([1, i ]) for
any i , in the sense just defined. (This is the original Ehresmann’s criterion [4].)

3.3. Set-theoretic description of Schubert varieties

The following proposition is well known to experts although we were unable to find it
explicitly stated in the literature.

Proposition 3.3 A point x∈G/B belongs to the Schubert variety Xw if and only if pγ (x) =
0 for any Pl̈ucker weightγ (say, of level i) such thatγ 6≤ wωi in the Bruhat order.

We note that the much stronger results in [12, 15] provide a scheme-theoretic description
of Schubert varieties.

We will show that Proposition 3.3 is an easy corollary of the following lemma.

Lemma 3.4[12, 17]
1. A point x on the Schubert variety Xw belongs to the Schubert cell X◦w if and only if

pwωi (x) 6= 0 for all i .
2. A Plücker coordinate pγ of level i identically vanishes on Xw if and only ifγ 6≤ wωi .

Lemma 3.4 can be extracted from [17, Lemmas 3 and 4] and [12, Corollary 10.2]. (We
thank the anonymous referee for providing these references.) To keep our presentation
self-contained, and to spare the reader from the trouble of reconciling the notation and
conventions of [17] with the ones in this paper, we provide short proofs of Lemma 3.4 and
Proposition 3.3 below.

Proof: We begin by proving Lemma 3.4. Let us first show thatpwωi vanishes nowhere
on X◦w. Recall the definition ofpγ (gB): up to a nonzero scalar, this is the coefficient of
vγ in the expansion ofgvωi in any basis ofVωi consisting of weight vectors. HereVωi is
the fundamental representation ofG with highest weightωi , andvγ ∈ Vωi is a (unique up
to a scalar) vector of weightγ . It follows that if g ∈ BwBandγ = wωi , then pγ (gB) is
a nonzero scalar multiple of the coefficient ofvγ in the expansion ofbvγ for someb ∈ B.
This coefficient is clearly nonzero, as desired.

Let us now assume thatγ is a Plücker weight of leveli such thatγ ≤ wωi . Thenγ = uωi

for someu ≤ w. We have just proved thatpγ vanishes nowhere onX◦u. But X◦u ⊂ Xw by
(3.1); thereforepγ does not identically vanish onXw.
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To complete the proof of Part 2, we need the converse statement: ifpγ does not identically
vanish onXw thenγ ≤ wωi . (The following argument was shown to us by Peter Littelmann;
it closely follows the proof of Proposition 1 in Gelfand and Serganova [9, Section 5].) Let
P(Vωi ) denote the projectivization of the vector spaceVωi , and let [v] ∈ P(Vωi ) denote
the projectivization of a nonzero vectorv ∈ Vωi . Then the stabilizer of [vωi ] in G is the
maximal parabolic subgroupPî , so the mapg 7→ g[vωi ] identifies the coset spaceG/Pî
with the orbitG[vωi ] ⊂ P(Vωi ).

We shall use the following well-known fact: the convex hull of all weights of the rep-
resentationVωi is a convex polytope whose vertices are precisely the Pl¨ucker weights of
level i . It follows that, for every Pl¨ucker weightγ of level i , there exists a one-parameter
subgroupχ : C6=0→ H such that

lim
t→∞χ(t)

δ/χ(t)γ = 0 (3.2)

for any weightδ 6= γ of Vωi .
Now supposepγ does not identically vanish onXw. By definition, this means thatvγ

appears with nonzero coefficient in the expansion ofgvωi for someg ∈ BwB. Using (3.2),
we see that

[vγ ] = lim
t→∞χ(t)g[vωi ].

It follows that [vγ ] lies in the closure of(BwB)[vωi ]. We haveγ = uωi for someu ∈ W.
Identifying as above the orbitG[vωi ] with the coset spaceG/Pî we conclude that the coset
u Pî is contained in the closure of(BwPî )/Pî . As explained in Section 3.2, this implies
thatγ = uωi ≤ wωi , and Part 2 is proved.

To complete the proof of Part 1, it remains to show the following: ifx ∈ Xw \ X◦w, then
pwωi (x) = 0 for somei . Any x ∈ Xw \ X◦w belongs toXu for someu < w. By Lemma 3.2,
we haveuωi < wωi for somei . We have just proved that this implies thatpwωi vanishes
on Xu. In particular,pwωi (x) = 0, completing the proof of Lemma 3.4.

To deduce Proposition 3.3 from Lemma 3.4, we letX ⊂ G/B denote the variety defined
by the equationspγ (x) = 0 for all Plücker weightsγ of any leveli such thatγ 6≤ wωi . The
inclusionXw ⊂ X follows from Lemma 3.4.2. Now assume thatx /∈ Xw; say,x ∈ X◦v with
v 6≤ w. By Lemma 3.2, there existsi such thatvωi 6≤ wωi . By Lemma 3.4.1,pvωi (x) 6= 0.
Thereforex /∈ X, as desired. 2

4. Short descriptions of Schubert cells

This section is devoted to set-theoretic descriptions of Schubert cells. Such a description
of X◦w can be obtained by combining Lemma 3.4 (1) with the set-theoretic description of
Xw in Proposition 3.3. However, the following proposition shows that we can do better.

Proposition 4.1 An element x∈ G/B belongs to a Schubert cell X◦w if and only if, for
every i∈ [1, r ], the following conditions hold:
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(1) pwωi (x) 6= 0;
(2) pγ (x) = 0 for all γ ∈ wW[i,r ]ωi such thatγ > wωi .

Proof: In view of Lemma 3.4, these conditions are certainly neccesary. Let us prove that
they are also sufficient. Suppose that (1)–(2) hold, and letx ∈ X◦u. Our goal is to show
thatu = w. First, by (1) and Lemma 3.4, we havewωi ≤ uωi for all i , hencew ≤ u by
Lemma 3.2. Now suppose thatw < u. Then at least one of the inequalitieswωi ≤ uωi is
strict; take the minimal indexi such thatwωi < uωi . The equalitieswω j = uω j for j < i
imply thatw−1u ∈⋂i−1

j=1 Wĵ . Using the equalityWJ1 ∩ · · · ∩WJk = WJ1∩···∩Jk valid in any
Coxeter group (see [1]), we conclude that

i−1⋂
j=1

Wĵ = W[i,r ] . (4.1)

It follows that the weightγ = uωi satisfies both conditions in (2), so we must havepuωi (x) =
0. But this contradicts the last statement in Lemma 3.4, and we are done. 2

Notice that condition (2) in Proposition 4.1 depends on the choice of ordering of funda-
mental weights. We will introduce a special class ofeconomicalorderings that lead to the
minimal possible number of equations in (2).

For anyi , let R(i ) denote the set of positive roots whose expansion into the sum of simple
roots contains the simple rootαi .

Proposition 4.2 The correspondenceα 7→ sαωi is an embedding of R(i ) into Wωi −{ωi }.

Proof: Let α be a positive root. We have

ωi − sαωi = (ωi , α
∨)α, (4.2)

where(, ) is aW-invariant scalar product of weights, andα∨ = 2α/(α, α) is the dual root.
By definition of fundamental weights,(ωi , α

∨) is the coefficient ofα∨i in the expansion of
α∨ into the sum of dual simple roots. Clearly this coefficient is nonzero precisely when
α ∈ R(i ). Since no two positive roots are proportional to each other, the vectors(ωi , α

∨)α
for α ∈ R(i ) are distinct nonzero vectors, proving the proposition. 2

Definition 4.3 We say that an indexi ∈ [1, r ] (or the corresponding fundamental weight
ωi ) is economicalfor W if the correspondence in Proposition 4.2 is abijection between
R(i ) andWωi − {ωi }. This is equivalent to

1+ |R(i )| = |Wωi | = |W|/|Wî |. (4.3)

Here is a classification of all economical fundamental weights in irreducible Weyl groups.

Proposition 4.4 Let W be an irreducible Weyl group of rank r with the set of simple
reflections ordered as in[1]. An index i is economical for W precisely in the following three
cases:
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(1) r ≤ 2, and i is arbitrary.
(2) W is of type Ar for r > 2, and i = 1 or i = r .
(3) W is of type Br or Cr for r > 2, and i = 1.

Proof: First let us show that an indexi is indeed economical in each of the cases (1)–(3).
The statement is trivial for typeA1. If r = 2 thenW is of type A2, B2 or G2, i.e., is a
dihedral group of cardinality 2d whered = 3, 4 or 6, respectively. We have|W|/|Wî | = d
for anyi sinceWî is the two-element group. On the other hand,d is the number of positive
roots in each case which implies that|R(i )| = d − 1 (the only positive root not inR(i ) is
the simple root different fromαi ). Thus our statement follows from (4.3).

In case (2), we haveW = Sr+1 andWî = Sr for i = 1 or i = r . Therefore,|W|/|Wî | =
(r + 1)!/r ! = r + 1. On the other hand,R(1) (resp.R(r )) consists ofr rootsε1 − ε j+1

(resp.ε j − εr+1 ) for j = 1, . . . , r , in the standard notation of [1]. Thus bothi = 1 and
i = r are economical.

Similarly, in case (3), the indexi = 1 (in the usual numeration) is economical because
|W|/|W[2,r ] | = (2r r !)/(2r−1(r −1)!) = 2r , while R(1) (say, for typeBr ) consists of 2r −1
roots: ε1± ε j ( j = 2, . . . , r ) andε1.

To show that cases (1)–(3) exhaust all economical indices, we use the following obser-
vation: if i is economical forW then, in particular, we have

ωi − woωi = (ωi , α
∨)α

for some positive rootα (cf. (4.2)), wherewo is the maximal element ofW. Sincewo sends
positive roots to negative ones, it follows that−woωi is also a fundamental weight (possibly
equal toωi ), and soα must be a dominant weight. IfW is simply-laced, i.e., all roots are of
the same length, then it is known thatW acts on the setR of roots transitively. Therefore,
there is a unique root which is a dominant weight: the maximal rootαmax. The tables in
[1] show that ifW is simply-laced but not of typeAr thenαmax is proportional to some
fundamental weightωi , so only this fundamental weight has a chance to be economical.
But then we have

|Wωi | = |Wαmax| = |R| = 2|R+| > |R(i )| + 1,

so, for a simply lacedW not of typeAr , there are no economical indices.
If W is not simply-laced then there are precisely two roots which are dominant weights:

the maximal long root and the maximal short root. Leaving aside cases (1) and (3) that we
already considered, this leaves only three more possibilites for an economical index:i = 2
for W of typeBr with r > 2; andi = 1 or i = 4 for W of typeF4. Since the root system of
type F4 is self-dual, we have|Wω1| = |Wω4| = |R+|, while |R(i )| ≤ |R+| − 3 for anyi
(sinceR(i ) does not contain three simple roots different fromαi ). As for W of typeBr and
i = 2, the setWω2 consists of 2r (r − 1) weights of the form±(εi ± ε j ), 1≤ i < j ≤ r ,
and we have

|R(2)| + 1≤ |R+| − r + 2= r (r − 1)+ 2< 2r (r − 1) = |Wω2|.
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We see that, in each of the three cases,|R(i )| + 1 < |Wωi |, i.e., i is not economical, and
we are done. 2

Proposition 4.5 If a fundamental weightωi is economical for W then the Bruhat order
on Wωi is linear.

Proof: Let γ = wωi andδ be two distinct Pl¨ucker weights of leveli . Thenw−1δ 6= ωi ,
which by Definition 4.3 implies thatw−1δ = tωi for some reflectiont . Sincewt andw are
comparable in the Bruhat order, the same is true forδ = wtωi andγ = wωi . 2

According to V. Serganova (private communication), the converse of Proposition 4.5
is also true: the Bruhat order onWωi is linear precisely in one of the cases (1)–(3) in
Proposition 4.4.

Definition 4.6 A linear ordering of fundamental weights is calledeconomicalif, for eachi ,
the indexi is economical for the groupW[i,r ] .

This definition can be restated as follows. For a positive rootα, let µ(α) denote the
smallest indexi such thatα ∈ R(i ). (In other words, the expansion ofα does not contain
the simple rootsα1, . . . , αi−1 but does containαi .) The ordering of fundamental weights
is economical if and only if, for everyi ∈ [1, r ], the mapα 7→ sαωi is a bijection between

(i) the set of positive rootsα with µ(α) = i and
(ii) the setW[i,r ]ωi − {ωi }.

Repeatedly using Proposition 4.4, we obtain the following corollary.

Corollary 4.7 An irreducible Weyl group possesses an economical ordering of fundamen-
tal weights if and only if it is of one of the types Ar , Br ,Cr , or G2. In each of these cases,
the standard ordering of fundamental weights given in[1] is economical.

For an economical ordering, Proposition 4.1 can be refined as follows.

Theorem 4.8 Suppose the fundamental weights are ordered in an economical way. Then
an element x∈ G/B belongs to a Schubert cell X◦w if and only if:

pwωi (x) 6= 0 for all i such that there exists a positive rootα withµ(α) = i

andwα negative;
(4.4)

pwsαωµ(α) (x) = 0 for all positive rootsα such thatwα is also positive. (4.5)

Proof: Recall that, forα > 0, the rootwα is positive if and only ifwsα > w. In view of
this, Proposition 4.1 shows that conditions (4.4)–(4.5) are indeed necessary.

Assume that (4.4)–(4.5) hold. To prove thatx ∈ X◦w, it suffices to show thatpwωi (x) 6= 0
for all i ∈ [1, r ]. Suppose otherwise, and leti be the minimal index such thatpwωi (x) = 0.
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By (4.4), we havewα > 0 (thuswsα > w) for all positive rootsα with µ(α) = i . In
view of the definition of economical ordering, the weightwωi is the minimal element of
wW[i,r ]ωi . Now (4.5) implies thatpγ (x) = 0 for all γ ∈ wW[i,r ]ωi − {wωi }.

Supposex ∈ X◦u. The same argument as in the proof of Proposition 4.1 shows thatu ∈
wW[i,r ] . Sincepuωi (x) 6= 0, the weightuωi must coincide withwωi , which contradicts the
assumptionpwωi (x) = 0. 2

The number of equations in (4.5) is equal to the number of positive rootsα such that
wα is also positive; this is precisely the codimension dim(G/B)− `(w) of X◦w in the flag
variety. Furthermore, the number of inequalities in (4.4) is at most min(r, `(w)). Applying
Corollary 4.7, we obtain the following solution of Problem 1.1 for typesA, B,C, andG2.

Corollary 4.9 For each of the types Ar , Br ,Cr , and G2, conditions(4.4)–(4.5)(with the
standard ordering of fundamental weights) describe an arbitrary Schubert cell X◦w using
dim(G/B)− `(w) equations and at mostmin(r, `(w)) inequalities.

As a special case, we obtain the following enhancement of [5, Proposition 4.1].

Corollary 4.10 For the type An−1, an element x∈ G/B belongs to the Schubert cell X◦w
if and only if it satisfies the following conditions:

pw([1,i ])(x) 6= 0 for all i such that there exists j> i with w( j ) < w(i ); (4.6)

pw([1,i−1]∪{ j })(x) = 0 whenever1≤ i < j ≤ n andw(i ) < w( j ). (4.7)

Thus X◦w can be described by at most(n2) equations and inequalities of the form pI = 0 or
pI 6= 0.

We conclude this section by addressing Problem 1.1 for typeDr . We note that forr ≥ 4,
there are no economical indices. The indexi = 1 (in the standard numeration) is “one root
short” of being economical:|W|/|W[2,r ] | = 2r while R(1) consists of 2r − 2 rootsε1± ε j

( j = 2, . . . , r ). As a consequence, we have to add extra equations to those in (4.5) in order
to describeX◦w. To minimize the number of these equations, we use the following ordering
of fundamental weights, which is somewhat different from the one in [1]:

Theorem 4.8 and Corollary 4.9 then have the following analogues (with similar proofs).

Proposition 4.11 Let G be of type Dr , r ≥ 4, and let the fundamental weights be ordered
as above. Then an element x∈ G/B belongs to a Schubert cell X◦w if and only it satisfies
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conditions(4.4)–(4.5), along with the condition

pγ (x) = 0 wheneverγ = w(ε1+ · · · + εi−1− εi ) > w(ε1+ · · · + εi ), i ≤ r−3.

(4.8)

Thus X◦w can be described using at mostdim(G/B)− `(w)+ r − 3 equations and at most
min(r, `(w)) inequalities.

We note thatγ = w(ε1+ · · · + εi−1− εi ) in (4.8) is indeed a Pl¨ucker weight of leveli ,
sinceγ = wss′ωi , wheres ands′ are the reflections corresponding to the rootsεi − εi+1

andεi + εi+1, respectively.

5. Cell recognition algorithms

Our approach to the cell recognition problem (Problem 1.2) will be based on Proposition 4.1
and Theorem 4.8.

Suppose that the binary string(bγ ) is the vanishing pattern of all Pl¨ucker coordinates at
some pointx ∈ G/B:

bγ = bγ (x) =
{

0 if pγ (x) = 0;

1 if pγ (x) 6= 0.
(5.1)

The following lemma is a reformulation of Lemma 3.4.

Lemma 5.1 For any x∈ G/B and any i∈ [1, r ], the set of all Pl̈ucker weightsγ of level
i such that bγ (x) = 1 has a unique maximal element with respect to the Bruhat order on
Wωi . Furthermore, if x belongs to the Schubert cell X◦w = (BwB)/B, then this maximal
element is equal towωi .

In view of Lemma 5.1, any vectorbγ (x) is “acceptable” according to the following
definition.

Definition 5.2 A binary vector(bγ ), whereγ runs over all Pl¨ucker weights, is called
acceptableif

for any i ∈ [1, r ], the set{γ ∈ Wωi : bγ = 1} is nonempty, and has a unique

maximal elementγi with respect to the Bruhat order; (5.2)

there existsw ∈ W such thatγi = wωi for any i . (5.3)

It is immediate from Lemma 3.2 that the elementw in (5.3) is unique.
We will now study the following purely combinatorial problem that includes Problem 1.2

as a special case.

Problem 5.3 For a given acceptable vector(bγ ), compute the elementw in (5.3) by testing
the minimal number of bitsbγ .
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Forγ ∈ Wωi , let us denoteW(γ ) = {u ∈ W : uωi = γ }. ThusW(γ ) is a left coset inW
with respect to the stabilizer ofωi (i.e., with respect toWî ). Our approach to Problem 5.3
will be based on the following lemma, which follows from (4.1).

Lemma 5.4 Let (bγ ) be an acceptable binary vector. In the notation of Definition5.2,
for every i, we have:

W(γ1) ∩ · · · ∩W(γi−1) = wW[i,r ];

also, γi is the maximal element ofwW[i,r ]ωi such that bγi = 1.

The following algorithm for Problem 5.3 is based on Lemma 5.4; it successively computes
the weightsγ1, γ2, . . . , and in the end obtainsw as the sole element in the intersection
W(γ1) ∩ · · · ∩W(γr ).

Algorithm 5.5
Input: acceptable binary vector(bγ ).
Output: the elementw ∈ W given by (5.3).

U := W;
for i from 1 to r do

fix a linear orderUωi ={η1 < · · · < ηm} compatible with the Bruhat order;
j := m;
while bη j = 0 do j := j − 1; od;
comment: η j = γi = max{γ ∈ Uωi : bγ = 1}
U := U ∩W(η j );

od;
return (U);

In particular, this algorithm can be used to solve Problem 1.2: if the input vector(bγ ) is the
vanishing pattern (5.1) for a pointx ∈ G/B, then the algorithm returns the elementw ∈ W
such thatx ∈ X◦w.

The algorithm depends on the choice of the ordering of fundamental weights. As in
Section 4, the best results are achieved for economical orderings. In this case, Proposi-
tion 4.5 implies that the set of weightsUωi = wW[i,r ]ωi appearing in Algorithm 5.5 is
linearly ordered by the Bruhat order, making the third line of the algorithm redundant.

In particular, in the case of typeAn−1, the standard ordering of the fundamental weights,
and an acceptable vector defined by (5.1), Algorithm 5.5 takes the following form. (As
before, we identify the Pl¨ucker weights with subsets in [1, n].)

Algorithm 5.6
Input: vanishing pattern of Pl¨ucker coordinates of a complete flagx in Cn.
Output: permutationw ∈ Sn such thatx ∈ X◦w.
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I := ∅;
for i from 1 to n do

k := n;
while k > min([1, n]− I ) and (k ∈ I or pI∪{k}(x) = 0) do k := k−1; od;
w(i ) := k;
I := I ∪ {k};
comment: I = w([1, i ])

od;

To convince oneself that Algorithm 5.6 is a specialization of Algorithm 5.5, it suffices
to observe the following: the weights inwW[i,r ]ωi correspond to thei -subsets of the form
w([1, i − 1])∪ {k}, and the Bruhat order onwW[i,r ]ωi corresponds to the usual ordering of
the valuesk.

In the special case of typeA2, we recover the algorithm presented in figure 2.
Algorithm 5.6 agrees completely with the description of Schubert cells given in

Corollary 4.10: to arrive at anyw, we need to check exactly the same Pl¨ucker coordi-
nates that appear in (4.6)–(4.7). We thus obtain the following result.

Proposition 5.7 For a complete flag x inCn, Algorithm5.6 recognizes the Schubert cell
x is in by testing at most(n2) bits of the vanishing pattern of its Plücker coordinates.

We omit the typeB (or C) analogues of Algorithm 5.6 and Proposition 5.7, which can
be obtained in a straightforward way.

6. On the number of equations defining a Schubert variety

Problem 1.1 is closely related to the classical problem of describing Schubert varietiesXw
as algebraic subsets ofG/B.

Problem 6.1 (Short descriptions of Schubert varieties) Define an arbitrary Schubert vari-
ety Xw (as a subset ofG/B) by as small as possible number of equations of the form
pγ = 0.

The aim of this section is to demonstrate that, for a certain Schubert varietyXw of
type An−1, one needs exponentially many (as a function ofn) such equations to defineXw
(set-theoretically).

Throughout this section,G = SLn andW = Sn. Any Schubert cellX◦w has the special
representativeπw: it is a complete flag inCn formed by the coordinate subspacesCw([1,i ])
for i = 1, . . . ,n. The following obvious observation will be useful in obtaining lower
bounds.

Lemma 6.2 For w ∈ Sn, a Plücker coordinate pI does not vanish atπw if and only if
I = w([1, |I |]).
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Proposition 6.3 Suppose that n= 4k is divisible by4. Letw ∈Sn be the maximal element
of the parabolic subgroup Ŵ2k = S2k × S2k ⊂ Sn (thusw puts the elements in each of the
blocks[1, 2k] and[2k+ 1, 4k] in the reverse order). Suppose the setI is such that

Xw = {x ∈ G/B : pI (x) = 0 for I ∈ I}.

Then

|I| ≥
(

2k
k

)
. (6.1)

Note that the right-hand side of (6.1) grows as 2n/2/
√

n, while the codimension of this
particular Schubert varietyXw equals(n/2)2.

Proof: Our lower bound for|I| is based on the following idea. Suppose a permutation
u ∈ Sn is such thatu 6≤ w. Then the flagπu does not belong to the Schubert varietyXw, so
there must existI ∈ I such thatpI (πu) 6= 0. By Lemma 6.2, this means thatI = u([1, |I |]).
In view of Lemma 3.4, the membershipI ∈ I also implies thatI 6≤ w([1, |I |]). We conclude
that, in order to prove (6.1), it suffices to construct a subsetU ⊂ Sn satisfying the following
three properties:

(1) u 6≤ w for anyu ∈ U ;
(2) |U | = (2k

k )
2;

(3) for every subsetI ⊂ [1, n] such thatI 6≤ w([1, |I |]), there are at most(2k
k ) permutations

u ∈ U such thatI = u([1, |I |]).

DefineU to be the set of all permutationsu that send [1, k] ∪ [2k+1, 3k] onto [1, 2k], and
increase on each of the blocks [1, k], [k+1, 2k], [2k+1, 3k], and [3k+1, 4k]. Eachu ∈ U
is uniquely determined by twok-subsetsA = u([1, k]) ⊂ [1, 2k] andB = u([k+1, 2k]) ⊂
[2k + 1, 4k]; we write u = uA,B. Now (2) is obvious. SinceuA,B([1, 2k]) = A ∪ B >

[1, 2k] = w([1, 2k]), we haveu 6≤ w for anyu ∈ U , soU satisfies (1).
It remains to prove (3). LetI ⊂ [1, n] be such thatI 6≤ w([1, |I |]). We need to show

that there are at most(2k
k ) permutationsuA,B ∈ U such thatI = uA,B([1, |I |]). First of

all, we haveuA,B([1, i ]) ≤ w([1, i ]) for i ≤ k or i ≥ 3k. Therefore, we may assume that
k < |I | < 3k. Let us consider two cases.

Case 1.|I | = k + l for somel ∈ [1, k]. The equalityI = uA,B([1, |I |]) means thatI is
the union ofA and the set ofl smallest elements ofB. ThusA = [1, 2k] ∩ I is uniquely
determined byI , while the number of choices forB is (4k−maxI

k−l ), which is less than(2k
k ).

Case 2.|I | = 2k + l for somel ∈ [1, k − 1]. Now the equalityI = uA,B([1, |I |]) means
that I is the union ofA, B, and the set ofl smallest elements of [1, 2k] − A. Thus
B = [2k+ 1, 4k] ∩ I is uniquely determined byI , while the number of choices forA is
(
k+l
k ) < (

2k
k ).

This concludes the proof of (6.1). 2
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Corollary 6.4 There exist elements u< v in W = S4k such that Xu has codimension1
in Xv, while defining Xu inside Xv requires at least 1

4k2 (
2k
k ) equations of the form pI = 0.

Proof: Consider a saturated chainw = v0 < v1 < · · · < vN = wo in the Bruhat
order, wherew is the same as in Proposition 6.3. (thusN = 4k2). If M(u, v) denotes the
minimal number of equations of the formpI = 0 definingXu inside Xv , then obviously
M(w,wo) ≤

∑
M(vi , vi+1) ≤ N · maxi (M(vi , vi+1)). Combining this with the lower

bound onM(w,wo) obtained in Proposition 6.3 completes the proof. 2

7. On cell recognition without feedback

In this section, we examine the following problem.

Problem 7.1 (Cell recognition without feedback) Find a subset of Pl¨ucker coordinates of
smallest possible cardinality whose vanishing pattern at any pointx ∈ G/B uniquely
determines the Schubert cell ofx.

Notice that, unlike in Problem 1.1, the Schubert cell is not fixed in advance; and in
contrast to Problem 1.2, we have to present the entire list of Pl¨ucker coordinates right away
(i.e., there is no feedback).

Example 7.2 Consider the special case ofG = SL3. Analyzing Table 1 in Section 2,
we discover that the list in question must contain the Pl¨ucker coordinatesp3 (to distinguish
between vanishing patterns of generic elements of Schubert cells labelled bys1s2 andwo),
p2 (same reason, fore ands1), p13 (for e ands2), andp23 (for s2s1 andwo). The vanishing
pattern of these 4 Pl¨ucker coordinates does indeed determine the cell a point is in (see last
column of Table 1). Hence this 4-element collection of Pl¨ucker coordinates provides the
unique solution to Problem 7.1 for the typeA2.

The following result shows that for the typeA, the subset asked for in Problem 7.1 must
contain an overwhelming proportion of all Pl¨ucker coordinates.

Proposition 7.3 For the type An−1, any subset satisfying the requirements in Problem7.1
contains at least then−1

n+1 proportion of all Pl̈ucker coordinates.

Note that there are 2n − 2 Plücker coordinates altogether in this case.

Proof: We will actually show more: that this many Pl¨ucker coordinates are needed to
distinguish between the vanishing patterns of any two different elements of the formπw,
for w ∈ W = Sn (we use the notation introduced at the beginning of Section 6). LetI be a
collection of subsetsI ⊂ [1, n] such that the vanishing patterns of the Pl¨ucker coordinates
pI (πw), for I ∈ I, are distinct for all elementsw ∈ W. In view of Lemma 6.2, this means
that for any distinctu, v ∈ W, there exists an indexi ∈ [1, n] such that the subsetsu([1, i ])
andv([1, i ]) are distinct, and at least one of them belongs toI.
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Let I be a nonempty proper subset of [1, n] of cardinality i . Chooseu ∈ W so that
u([1, i ]) = I , and letv = usi . Thenu([1, j ]) = v([1, j ]) unlessj = i , implying thatI
must contain eitheru([1, i ]) = I orv([1, i ]) = I \{u(i )} ∪ {u(i+1)} (or both). We conclude
that for any two subsetsI , J ⊂ [1, n] of the same cardinality which are Hamming distance 2
from each other (i.e., one is obtained from another by exchanging a single element), the
collectionI has to contain eitherI or J.

Let Ī i denote the collection of alli -subsets of [1, n] not in I. ThenĪ i does not contain
two subsets at Hamming distance 2 from each other. Such collections of subsets are called
binary codes of constant weight detecting single errors, and they were an object of extensive
study in coding theory. In particular, various upper bounds on the cardinality of such a code
have been obtained; see, for example, [14, Chapter 17]. (We thank Richard Stanley for
providing this reference.) For our purposes, it will suffice to have a very simple upper bound

|Ī i | ≤ 1

i

( n
i − 1

)
= 1

n+ 1

(n+ 1
i

)
. (7.1)

Although this bound is immediate from a sharper [14, Ch. 17, Corollary 5], we will give a
proof for the sake of completeness.

To prove (7.1), note that all(i − 1)-subsets contained in variousi -subsets in̄I i must be
distinct. EachI ∈ Ī i containsi such subsets, implying thati · |Ī i | ≤ ( n

i−1), as desired.
The proof of Proposition 7.3 can now be completed as follows:

|I| = 2n − 2−
n−1∑
i=1

|Ī i |

≥ 2n − 2− 1

n+ 1

n−1∑
i=1

(n+ 1
i

)
= 2n − 2− 1

n+ 1
(2n+1− n− 3)

= n− 1

n+ 1
(2n − 1). 2

8. Generic vanishing patterns

In the course of the above proof of Proposition 7.3, we have actually shown the following:
assuming there is no feedback, “almost all” Pl¨ucker coordinates are needed to distinguish
between special representativesπw of Schubert cells. We will now demonstrate that the
situation changes dramatically if we replace these “most special” representatives by the
“most generic” ones.

In what follows,W is an arbitrary Weyl group. We associate to anyw ∈ W thegeneric
vanishing pattern(bgen

γ (w)) defined by

bgen
γ (w) =

{
1 if γ ≤ wωi ;

0 if γ 6≤ wωi ,
(8.1)

whereγ runs over all Pl¨ucker weights of any leveli . By Lemma 3.4, this is the vanishing
pattern(bγ (x)) (cf. (5.1)) of Plücker coordinates for a generic elementx ∈ X◦w.
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Problem 8.1 (Recognizing generic points without feedback) Find a minimal subset of
Plücker coordinates whose vanishing pattern distinguishes between the generic patterns
(bgen
γ (w)).

Our solution of this problem will be based on the techniques developed by Lascoux and
Schützenberger [13], and further enhanced by Geck and Kim [8]. Let us first recall the
main definitions and results of these papers.

Let P be a finite poset with unique minimal and maximal elements. We say thata ∈ P
is thesupremumof a subsetQ ⊂ P if a ≥ q for anyq ∈ Q, and moreovera < b for any
other elementb ∈ P with this property.

Definition 8.2 Thebase B= B(P) of P is the subset ofP consisting of all elements
a ∈ P which cannot be obtained as the supremum of a subset ofP not containinga.

Proposition 8.3 [13] The map a7→ {b ∈ B : b ≤ a} is an embedding of P(as an
induced subposet) into the boolean algebra of all subsets of B= B(P). Moreover, any
other subset B′ ⊂ P with this property contains B.

The following result appeared in [13, Th´eorème 3.6]; another proof was given in [8,
Theorem 2.5].

Theorem 8.4[13] For every element u in the base of a finite Coxeter group W, there are
unique simple reflections si and sj such that usi < u and sj u < u.

Let B(W) denote the subset of Pl¨ucker weights which correspond to the elements of the
baseB(W), as follows:

B(W) = {uωi : u ∈ B(W), usi < u}.

Proposition 8.5 The correspondencew 7→ (bgen
γ (w)), whereγ runs overB(W), is an

embedding of W(as an induced subposet) into the Boolean lattice of all binary vectors of
the corresponding length. Moreover,B(W) is a minimal subset of Plücker weights that has
this property.

Thus the set of the Pl¨ucker coordinatespγ , with γ ∈B(W), provides a solution of
Problem 8.1.

Proof: Let u ∈ B(W), and letγ = uωi ∈B(W) be the corresponding weight. Sinceu is
the minimal representative of the cosetuŴi , it follows that for anyw ∈ W, the condition
“γ ≤ wωi ” is equivalent to “u ≤ w.” Therefore, (8.1) becomes

bgen
γ (w) =

{
1 if u ≤ w;

0 if u 6≤ w.
(8.2)
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Thus the set of non-vanishing Pl¨ucker coordinatespγ , γ ∈ B(W), at a generic point in
X◦w corresponds exactly to the set of elements in the baseB(W) that are less than or equal
thanw in the Bruhat order. The proposition then follows from Proposition 8.3. 2

The basesB(W)were explicitly described and enumerated in [13] (for the typesA andB)
and [8] (for all other types). As shown in [8, 13], ifW is of one of the classical typesAr ,
Br , and Dr , then the cardinality ofB(W) is a cubic polynomial inr . In particular, for
the typeAn−1 whenW = Sn, the base consists of the(n+1

3 ) “bigrassmannian” permuta-
tions: every triple of integers 0≤ a < b < c ≤ n gives rise to a such a permutation
that acts identically on each of the blocks [1,a] and [c + 1, n] while interchanging the
blocks [a+ 1, b] and [b+ 1, c]. The correspondingbigrassmannian Plücker coordinateis
p[1,a]∪[b+1,c] . Proposition 8.5 tells that the vanishing pattern of these(

n+1
3 ) Plücker coordi-

nates uniquely determines the Schubert cell of a given complete flagx in Cn, provided we
know thatx is generic within its cell. In the special casen = 3, the bigrassmannian Pl¨ucker
coordinates are exactly the four coordinatesp2, p3, p13, p23 involved in Example 7.2 and
in the descriptions of Section 2.
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