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1. Introduction

This paper focuses on the properties of Schubert cells as quasi-projective subvarieties of a
generalized flag variety. More specifically, we investigate the problem of distinguishing be-
tween different Schubert cells using vanishing patterns of generalinelid?lcoordinates.

1.1. Formulations of the main problems

Let G be a simply connected complex semisimple Lie group of rankth a fixed Borel
subgroupB and a maximal torusl c B. LetW = Normg (H)/H be the Weyl group o6.
The generalized flag manifold/B can be decomposed into the disjoint uniorsehubert
cells X, = (BwB)/B, forw € W.

To any weighty that isW-conjugate to some fundamental weigh@Gfone can associate
ageneralized Ricker coordinate pon G/B (see [9] or Section 3 below). In the case of
type An_1 (i.e.,G = SL;), the p, are the usual Rkker coordinates on the flag manifold.

The closure of a Schubert cefl;, is theSchubert variety X, an irreducible projective
subvariety ofG/B that can be described as the set of common zeroes of some collection
of generalized Ricker coordinatep, . It is also known (see, e.g., Proposition 4.1 below)
that every Schubert ceX? can be defined by specifying vanishing and/or non-vanishing
of some collection of Ricker coordinates.

The main two problems studied in this paper are the following.

Problem 1.1 Short descriptions of cells Describe a given Schubert cell by as small as
possible number of equations of the fopp = 0 and inequalities of the form, # 0.

Problem 1.2 Cell recognition Suppose a point € G/B is unknown to us, but we have
access to an oracle that answers questions of the fopp(x) =0, true or false?” How
many such questions are needed to determine the Schubettis@ll?
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Problem 1.2 looks harder than Problem 1.1, since we do not fix a Schubert cell in
advance. However, we will demonstrate that the complexity of the two problems is the
same: informally speaking, it takes as much time to recognize a cell as it takes to describe it.

Our interest in these problems was originally motivated by their relevance to the theory
of total positivity criteria. As shown in [5], these criteria take different form in different
Bruhat cellsBw B, so one has to first find out which cell an elemgrd G is in.

1.2. Overview of the paper

In Section 2, we illustrate our problems by working out the special@aseS L;. Section 3
provides the necessary background on generaliaeckBi coordinates, Bruhat orders, and
Schubert varieties.

The number of equations of the form, = 0 needed to define a Schubert variety is
generally much larger than its codimension. In Proposition 6.3, we show that for certain
Schubert varietyX,, in the flag manifold of typeA,_1, one needs exponentially many (as
a function ofn) such equations to define it, even though codiy) < dim(G/B) = ('2‘).

Given this kind of “complexity” of Schubert varieties, it may appear surprising that every
Schubertell actually does have a short description in terms of vanishing or non-vanishing
of certain Plicker coordinates. In Theorem 4.8, for the typesB;, C,, andG,, we provide

a description of an arbitrary Schubert c&l, that only uses codigX,,) equations of the
form p, = 0 and at most inequalities of the fornp, # 0. Thus in these cases every
Schubert cell is a “set-theoretic complete intersection.” Our proof of this property relies on
the new concept of amconomicalinear ordering of fundamental weights. For the tyipe

a description of Schubert cells is slightly more complicated; see Proposition 4.11. This
completes our treatment of Problem 1.1.

In Section 5, we turn to Problem 1.2. Our main result is Algorithm 5.5 that recognizes
a Schubert celX? containing an elememnt. In the cases when an economical ordering
exists (i.e., for the typesy, B;, C;, andG,), our algorithm ends up examining precisely
the same Ritker coordinates of that appear in Theorem 4.8. In the case of type:,
recognizing a cell requires testing the vanishing of at ni)geliicker coordinates.

In Section 7, we discuss the problencefl recognition without feedbacke., the problem
of presenting a subset of RIKer coordinates whose vanishing pattern determines which
cell a point is in. We show that such a subset must contain all but a negligible proportion
of the Plicker coordinates. (Our proof of this result exhibits a surprising connection with
coding theory.) In Section 8, we demonstrate that the situation changes radically if we only
allow genericpoints in each cell. With this assumption, knowing the vanishing pattern of
polynomially many Riicker coordinates (namely, the ones corresponding tbakeof W,
as defined by Lascoux and Sthénberger [13]), suffices to recognize a cell.

1.3. Comments

For the purposes of this paper, all the relevant information about any point on a flag variety
can be extracted from afinite binary string—the vanishing pattern ofitkBf'coordinates.
No explicit description is known for the set of all possible vanishing patterns. For the
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type A, a combinatorial abstraction of these patterns is provided by the notion of a matroid;
for a general Coxeter group, such an abstraction was given by Gelfand and Serganova [9].
All results of the present paper can be directly extended to generalized matroids of [9]
(irrespective of their realizability), and in fact to a more general combinatorial framework
of “acceptable” binary vectors introduced in Definition 5.2.

Note that the “cell recognition” problem becomes much simpler if its input is an element
gB represented by a matrix @f in some standard representation®f For instance, if
G = SL,, then the Bruhat cell of a given matrixcan be easily determined via Gaussian
elimination. The reader is referred to [11], where an even more general problem of clas-
sifying an arbitrary matrix (not necessarily invertible) is solved. (This was generalized to
the classical series in [10].)

2. Example: G = SlL3

To illustrate our problems, let us look at a particular case of #p&hereG = SlL;. In
this case, aflag = (0 c F1 ¢ F, ¢ F3 = C% e G/B can be represented by ax32
matrix whose first column spaig and whose first two columns sp&g. The homogeneous
Pliicker coordinates of are:

(1) the matrix entrieg:, p2, andpz in the first column of the matrix;
(2) the 2x 2 minors on the first 2 columngsz, P13, P2s-

The complete set of restrictions satisfied by the icRér coordinates consists of:

(a) theGrassmann-Rlcker relation ppzs — p2piz+ Pspiz = 0;
(b) non-degeneracy conditiongps, pz, ps) # (0, 0, 0), (P12, P13, P23) # (0, 0, 0).

The Weyl group here is the symmetric groSip with generators; = (1, 2) ands, =
(2,3) and relations? = 2 = 1 andw, = $19% = $S1%. In Table 1, we show which
Pllcker coordinates must or must not vanish on each particular Schubert cell. In the table,
0 means “vanishes oX;,,” 1 means “does not vanish anywhere Xj),” and the wildcard
x means that both zero and nonzero values do occur.

Table 1 Schubert cells and Btker coordinates in typA,.

w p1 P2 P3 P12 P13 P23 Xo

e 123 1 0 0 1 0 0 P3=p2=pP13=0
S1 213 * 1 0 1 0 0 pPiz3=pP23=0,p2 #0
S 132 1 0 0 * 1 0 p2=p3=0,p13#0
S 231 * 1 0 * * 1 p3 =0, p23#0

S 312 * * 1 * 1 0 p23=0,p3#0

wo 321 * * 1 * * 1 p3 #0,p23#0
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Figure L Vanishing patterns of Btker coordinate®y, ps, P13, P23-

Concerning Problem 1.1, we see that each Schubert cell can be described in terms of the
4 Plicker coordinateg,, ps, P13, P23 (these are exactly the “bigrassmannian” coordinates
discussed in Section 8). Moreover, 3 equations/inequalities suffice to describe every single
cell, as shown in the last column of Table 1.

Altogether, there are 11 possible vanishing patterns for thelkiel'coordinate®,, ps,
P13, P23. The classification of points on the flag variety according to the vanishing patterns
of these coordinates provides a refinement of the Schubert cell decomposition. In figure 1,
we represent this stratification by a graph (actually, the Hasse diagram of a poset) whose
11 vertices are labelled by the vanishing patterns and whose edges show how the subcells
degenerate into each other when a condition of the fprmg 0 is replaced byp, = 0.
The dashed boxes enclose the subsets making up individual Schubert cells. See Section 8
for further discussion of this poset.

The Schubert varietieX,, are defined by thequalitiesappearing in the last column of
Table 1. Thus in this case the minimal number of equations of the fgr(r) = 0 that
define a Schubert variety,, as a subset d&/B is equal to its codimension. In general,
however, such a statement is grossly false (see Section 6).

Turning to Problem 1.2, the best recognition algorithm is given in figure 2; it requires
3 questions. Notice that each branch of the tree provides a short description of the corre-
sponding Schubert cell.

3. Preliminaries

In this section, we review basic facts about generalizedk&r coordinates, the Bruhat or-
ders, and Schubert varieties. For general background on these topics, see, e.g., [9, Section 4],
[1], and [6, §23.3, 23.4].
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Figure 2  Cell recognition algorithm for the typ#;.

3.1. Generalized Ricker coordinates

Our approach to this classical subject is similar to the one of Gelfand and Serganova
[9, Section 4.2]. Let us fix some linear ordering, ..., o, of fundamental weights;

the choice of this ordering will later become important. We will call the weightsWw;
Plucker weights of level Recall that the orbits of fundamental weights are pairwise disjoint,
so the notion of level is well defined.

Let V,, be the fundamental representation®@fwith highest weightv;. The Plicker
weightsy of leveli are precisely the extremal weights\df,. The corresponding weight
subspace¥,, (y) are known to be one-dimensional. Let us fix an arbitrary nonzero vector
v, € V, (y) for each sucly. In particular,v,, is a highest weight vector i¥,, , and thus
an eigenvector for the action of abye B; we will write bv,, = b“v,,.

Definition 3.1 Thegeneralized Ricker coordinate passociated to a Btker weighty of
leveli is defined as follows. Far € G, let p, (g) be the coefficient of,, in the expansion of
gu,, into any basis o¥,, consisting of weight vectors. It follows that, (gb) = b“ p, (g)
foranyg € G andb € B. Thus we can think op, as a global section of the line bundle
on G/B corresponding to the character— b” of B. It then makes sense to talk about
vanishing or non-vanishing qf, at any poin = gBofthe generalized flag manifolé/ B.

Although the definition o, depends on the choice of normalization for the vectgrs
this dependence is not very essential: a different choice of normalizations only changes
eachp, by anonzero scalar multiple. In particular, the set of zeroes of patha uniquely
and unambiguously defined hypersurfac&inB.

We note that one natural choice of normalization is the following: defipes the
“generalized minor'A, ,,, in the notation of [5, Section 1.4].

For the typeA,_1, the notion of a RIcker coordinate specializes to the ordinary one (see,
e.g., [7]), as follows. Let us use the standard numeration of the fundamental weights, so



42 FOMIN AND ZELEVINSKY

thatV,, = V = C" is the defining representation &= SL,, andV,, = A'V. Plicker
weights of level are naturally identified with subselts™ [1, n] of cardinalityi: under this
identification, the weight subspad, () is the one-dimensional subspat&C' c A'V.

The varietyG/B is identified with the manifold of all complete flags= (0 c F; C --- C

Fn=V)inV: for x = gB € G/B, the subspacg; is generated by the firstcolumns of
the matrixg. The Plicker coordinate, (x) is simply the minor ofy with the row set and
the columnset [1li] = {1, ..., i}. It follows that p; doesnotvanish at a flag if and only
if /i NClk-1 = 0)}.

3.2. Bruhat orders

The Bruhat order can be defined for an arbitrary Coxeter giWugEven though it seems
to be well established that the Bruhat order is actually due to Chevalley, we stick with the
traditional terminology to avoid misconceptions.) [t {s;, ..., s} be the set of simple
reflections inW, and¢(w) be the length function. The Bruhat order @his the transitive
closure of the following relationw < wt for any reflectiort (that is, aw-conjugate of a
simple reflection) such thd{w) < £(wt).

For every subsel of [1, r], let W; denote the parabolic subgroup\Wfgenerated by the
simple reflections; with j € J. Each coset itW/W; has a unique representative which
is minimal with respect to the Bruhat order. These representatives are partially ordered by
the Bruhat order, inducing a partial order @y W;. This partial order is also called the
Bruhat order o'W/ W;.

We will be especially interested in the coset spaces madabkimalparabolic subgroups
We = Wi1,r1—(;. The following basic result is due to Deodhar [2, Lemma 3.6].

Lemma3.2 Foru,v e W, we haveu < v ifand only if uWy < vW: for all i.

From now on we assume thet is the Weyl group associated to a semisimple complex
Lie group G. Then the stabilizer of a fundamental weight is the maximal parabolic
subgroup/:. Thus the correspondenge— ww; establishes a bijection between the coset
spaceW/W: and the seWWw; of Pliicker weights of level. This bijection transfers the
Bruhat order fromW/W: to Ww; . Note that ify ands are two Plicker weights of the same
level, withy < § with respect to the Bruhat order, then the weight § can be expressed
as a sum of simple roots. The converse statement is true forAyms false in general.

A counterexample for the typB; is given in [16, pp. 176, 177]; see also Deodhar [3] (we
thank John Stembridge for providing this reference).

The Bruhat order on the Weyl gro)fy also has the following well-known geometric
interpretation in terms of Schubert cells and Schubert varieties:

U<v<<= X;C Xy <= Xy CX,. (3.1)

A similar interpretation exists for the Bruhat order on any coset spdc@/;: if P; is
the parabolic subgroup i® corresponding tdV; then the correspondenee — wP;
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establishes a bijection betwe®y W; andG/P;, and we havetW; < vW; if and only if
the “cell” (BuP;)/P; is contained in the closure 6BvP;)/P;.

Toillustrate the above concepts, consider the case ofaypewhereG = SL,,, andW is
the symmetric group,. We have already seen thatiPkér weights of level are in natural
bijection with thei-subsets of [1n]. The Bruhat order on the-subsets of [1n] can be
explicitly described as follows: for two subsels= {j; < --- < jj}andK ={k; < --- <
ki}, we haved < K ifand only if j; < kg, ..., ji < k. Letu andv be two permutations
in S,. By Lemma 3.2u < v (in the Bruhat order) if and only ifi([1,i]) < v([1,i]) for
anyi, in the sense just defined. (This is the original Ehresmann’s criterion [4].)

3.3. Set-theoretic description of Schubert varieties

The following proposition is well known to experts although we were unable to find it
explicitly stated in the literature.

Proposition 3.3 Apointxe G/B belongstothe Schubertvariety, Xand onlyif p,(x) =
0 for any Plicker weighty (say, of level i) such thaty £ ww; in the Bruhat order.

We note that the much stronger results in [12, 15] provide a scheme-theoretic description
of Schubert varieties.
We will show that Proposition 3.3 is an easy corollary of the following lemma.

Lemma 3.4[12, 17]

1. A point x on the Schubert variety,Xbelongs to the Schubert cell;Xif and only if
Puwe; (X) 7~ Ofor alli.

2. A Plucker coordinate p of level i identically vanishes on Xif and only ify £ ww;.

Lemma 3.4 can be extracted from [17, Lemmas 3 and 4] and [12, Corollary 10.2]. (We
thank the anonymous referee for providing these references.) To keep our presentation
self-contained, and to spare the reader from the trouble of reconciling the notation and
conventions of [17] with the ones in this paper, we provide short proofs of Lemma 3.4 and
Proposition 3.3 below.

Proof: We begin by proving Lemma 3.4. Let us first show tipat, vanishes nowhere
on X° . Recall the definition o, (gB): up to a nonzero scalar, this is the coefficient of
v, in the expansion ofv,, in any basis olV,, consisting of weight vectors. Hekg, is
the fundamental representation®fwith highest weighty;, andv, € V,, is a (unique up
to a scalar) vector of weight. It follows that ifg € BwBandy = wwj, thenp, (gB) is
a nonzero scalar multiple of the coefficientgfin the expansion dbv, for someb € B.
This coefficient is clearly nonzero, as desired.

Let us now assume thatis a Plicker weight of levell suchthayy < wwj. Theny = uw;
for someu < w. We have just proved that, vanishes nowhere oXg. But X; C X,, by
(3.1); thereforep, does not identically vanish oX,,.
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To complete the proof of Part 2, we need the converse statemgntddes notidentically
vanish onX,, theny < wawj. (The following argumentwas shown to us by Peter Littelmann;
it closely follows the proof of Proposition 1 in Gelfand and Serganova [9, Section 5].) Let
P(V,,) denote the projectivization of the vector spatg, and let p] € P(V,,) denote
the projectivization of a nonzero vectore V,,. Then the stabilizer ofif,] in G is the
maximal parabolic subgroup;, so the mam — g[v,,] identifies the coset spadg/ P;
with the orbitG[v,,] € P(V,,).

We shall use the following well-known fact: the convex hull of all weights of the rep-
resentatiorV,, is a convex polytope whose vertices are precisely thek” weights of
leveli. It follows that, for every Ricker weighty of leveli, there exists a one-parameter
subgroupy : C.o — H such that

Jim x®°/x®)” =0 (3.2)

for any weights # y of V,, .

Now supposep, does not identically vanish oK,,. By definition, this means that,
appears with nonzero coefficient in the expansiogwf for someg € BwB. Using (3.2),
we see that

[U)/] = tan;o X(t)g[vwi]~

It follows that [v, ] lies in the closure ofBwB)[v,,]. We havey = uw; for someu € W.
Identifying as above the orb[v,, ] with the coset spac&/P; we conclude that the coset
uP; is contained in the closure @BwP;)/P;. As explained in Section 3.2, this implies
thaty = uw; < wwj, and Part 2 is proved.

To complete the proof of Part 1, it remains to show the followinge & X,, \ X, then
Puwe, (X) = 0forsome. Any x € X, \ X¢ belongs taX,, for someu < w. By Lemma 3.2,
we haveuw; < waw; for somei. We have just proved that this implies thaj,, vanishes
on Xy. In particular,p,., (x) = 0, completing the proof of Lemma 3.4.

To deduce Proposition 3.3 from Lemma 3.4, wedett G/B denote the variety defined
by the equationg, (x) = 0 for all Plticker weights, of any leveli such thay £ ww;. The
inclusionX,, C X follows from Lemma 3.4.2. Now assume thag X,,; say,x € XS with
v £ w. By Lemma 3.2, there existsuch thabw; £ ww;. By Lemma 3.4.1p,,, (X) # 0.
Thereforex ¢ X, as desired. O

4. Short descriptions of Schubert cells

This section is devoted to set-theoretic descriptions of Schubert cells. Such a description
of X° can be obtained by combining Lemma 3.4 (1) with the set-theoretic description of

w

Xy in Proposition 3.3. However, the following proposition shows that we can do better.

Proposition 4.1 An element xe G/B belongs to a Schubert cell;Xf and only if, for
everyie [1,r], the following conditions hotd
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(1) Puw (X) # 0;
(2) py(x) =0 forall y € wW; rjwi such thaty > waw;.

Proof: Inview of Lemma 3.4, these conditions are certainly neccesary. Let us prove that
they are also sufficient. Suppose that (1)—(2) hold, and letX;. Our goal is to show
thatu = w. First, by (1) and Lemma 3.4, we hauey; < uw; for all i, hencew < u by
Lemma 3.2. Now suppose that < u. Then at least one of the inequalities; < uw; is

strict; take the minimal indexsuch thatwew; < Uw;. The equalitiesvw; = uw; for j < i

imply thatwu e ﬂ'j;ll W:. Using the equalityVy, N --- N W, = Wi,y valid in any
Coxeter group (see [1]), we conclude that

i—1
(\W; = Wi (4.1)
j=1

Itfollows that the weigh{ = uw; satisfies both conditionsin (2), so we must hayg (x) =
0. But this contradicts the last statement in Lemma 3.4, and we are done. O

Notice that condition (2) in Proposition 4.1 depends on the choice of ordering of funda-
mental weights. We will introduce a special claseobnomicabrderings that lead to the
minimal possible number of equations in (2).

For anyi, let R(i) denote the set of positive roots whose expansion into the sum of simple
roots contains the simple roet.

Proposition 4.2 The correspondence— s,w; is an embedding of {R) into Ww; — {w; }.
Proof: Leta be a positive root. We have
i — S = (o, o), (4.2)

where(, ) is aW-invariant scalar product of weights, and = 2«/(«, @) is the dual root.

By definition of fundamental weightsgw;, «¥) is the coefficient ot in the expansion of

«" into the sum of dual simple roots. Clearly this coefficient is nonzero precisely when
a € R(i). Since no two positive roots are proportional to each other, the vaetare™ )«

for @ € R(i) are distinct nonzero vectors, proving the proposition. O

Definition 4.3 We say that an indexe [1, r] (or the corresponding fundamental weight
wi) is economicalfor W if the correspondence in Proposition 4.2 ibigection between
R(i) andWw; — {w;}. This is equivalent to

14+ R = Wai| = [W[/|W]. (4.3)
Here is a classification of all economical fundamental weights in irreducible Weyl groups.

Proposition 4.4 Let W be an irreducible Weyl group of rank r with the set of simple
reflections ordered as if1]. Anindexi is economical for W precisely in the following three
cases
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() r <2, and i is arbitrary.
(2) W isoftype pforr > 2, andi=1ori =r.
(3) Wisoftype Bor C; forr > 2, andi = 1.

Proof: Firstlet us show that an indéxs indeed economical in each of the cases (1)—(3).
The statement is trivial for typéy. If r = 2 thenW is of type Az, B, or Gy, i.e., is a
dihedral group of cardinality@whered = 3, 4 or 6, respectively. We havy@V|/|W:| =d

for anyi sinceW: is the two-element group. On the other hashds the number of positive
roots in each case which implies th&t(i)| = d — 1 (the only positive root not ifR(i) is

the simple root different frory; ). Thus our statement follows from (4.3).

In case (2), we have/ = S, 1 andW: = S; fori = 1 ori =r. Therefore|W|/|W:| =
(r +D!/r! =r 4+ 1. On the other handR(1) (resp.R(r)) consists of rootse; — ej11
(resp.ej — &r41) for j = 1,...,r, in the standard notation of [1]. Thus batk= 1 and
i =r are economical.

Similarly, in case (3), the index= 1 (in the usual numeration) is economical because
[WI[/[Wzr| = (211 /(2 ~Y(r —1)!) = 2r, while R(1) (say, for typeB;) consists of 2 — 1
roots:e1 £¢&j (j =2,...,r)ande;.

To show that cases (1)—(3) exhaust all economical indices, we use the following obser-
vation: ifi is economical folV then, in particular, we have

o — wow; = (v, o)

for some positive roat (cf. (4.2)), whereaw, is the maximal element &. Sincew, sends
positive roots to negative ones, it follows thab,w; is also a fundamental weight (possibly
equal taw;), and sax must be a dominant weight. W is simply-laced, i.e., all roots are of
the same length, then it is known thAt acts on the seR of roots transitively. Therefore,
there is a unique root which is a dominant weight: the maximal #ggt. The tables in

[1] show that ifW is simply-laced but not of typd\, thenomax iS proportional to some
fundamental weight;, so only this fundamental weight has a chance to be economical.
But then we have

IWai| = [Wamad = IRl = 2[Ry | > [R()| + 1,

so, for a simply lacedV not of type A, there are no economical indices.

If W is not simply-laced then there are precisely two roots which are dominant weights:
the maximal long root and the maximal short root. Leaving aside cases (1) and (3) that we
already considered, this leaves only three more possibilites for an economicaliindéx:
for W of type B; withr > 2; andi = 1 ori = 4 for W of type F4. Since the root system of
type F4 is self-dual, we havWw;| = |Ww4| = |Ry|, while |R(i)| < |R.| — 3 for anyi
(sinceR(i) does not contain three simple roots different freih As for W of type B, and
i = 2, the seWw, consists of B(r — 1) weights of the formt=(¢; £¢j), 1 <i < j <r,
and we have

IR +1<|R | —r+2=r( —1)+2<2r(r —1) = [Way|.
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We see that, in each of the three ca$&®j)| + 1 < |Wuwj|, i.e.,i is not economical, and
we are done. O

Proposition 4.5 If a fundamental weight; is economical for W then the Bruhat order
on Wuwj; is linear.

Proof: Lety = ww; ands be two distinct Rliicker weights of level. Thenw ™18 # wj,
which by Definition 4.3 implies thab~18 = tw; for some reflection. Sincewt andw are
comparable in the Bruhat order, the same is trué ferwtw; andy = wow;. O

According to V. Serganova (private communication), the converse of Proposition 4.5
is also true: the Bruhat order OWw; is linear precisely in one of the cases (1)—(3) in
Proposition 4.4.

Definition 4.6 Alinear ordering of fundamental weights is callstbnomicaif, for eachi,
the indexi is economical for the groudy; ;.

This definition can be restated as follows. For a positive tgdet () denote the
smallest index such thatx € R(i). (In other words, the expansion efdoes not contain
the simple rootsyy, ..., j_1 but does contair;.) The ordering of fundamental weights
is economical if and only if, for every € [1, r], the mapx — S,wj is a bijection between

() the set of positive roots with u(e) =i and
(i) the setW nwi — {wi}.

Repeatedly using Proposition 4.4, we obtain the following corollary.

Corollary 4.7 Anirreducible Weyl group possesses an economical ordering of fundamen-
tal weights if and only if it is of one of the types, A, , C;, or G,. In each of these cases,
the standard ordering of fundamental weights givefiinis economical.

For an economical ordering, Proposition 4.1 can be refined as follows.

Theorem 4.8 Suppose the fundamental weights are ordered in an economical way. Then
an element x G/B belongs to a Schubert cell)Xf and only if

Puwe; (X) £ O for all i such that there exists a positive ragtwith p(a) =i

4.4
andwa negative (4.4)

Pus,w.@ (X) = O for all positive rootsx such thatwa is also positive. (4.5)

Proof: Recall that, forx > 0, the rootw« is positive if and only ifws, > w. In view of
this, Proposition 4.1 shows that conditions (4.4)—(4.5) are indeed necessary.
Assume that (4.4)—(4.5) hold. To prove tha¢ X¢ , it suffices to show thap,,, (x) # 0

foralli € [1,r]. Suppose otherwise, and iebe the minimal index such that,., (x) = 0.
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By (4.4), we havewa > 0 (thusws, > w) for all positive rootse with u(a) = i. In
view of the definition of economical ordering, the weighd; is the minimal element of
wWi rjwi. Now (4.5) implies thap, (x) = O for all y € wWj jwi — {ww; }.

Suppose € X. The same argument as in the proof of Proposition 4.1 showsitkat
wWi r1. Sincepye, (X) # 0, the weighuw; must coincide withwew; , which contradicts the
assumptiom,,,, (x) = 0. O

The number of equations in (4.5) is equal to the number of positive tostsch that
we is also positive; this is precisely the codimension @8yiB) — ¢(w) of X¢, in the flag
variety. Furthermore, the number of inequalities in (4.4) is at mostmitw)). Applying
Corollary 4.7, we obtain the following solution of Problem 1.1 for typesB, C, andG..

Corollary 4.9 For each of the typesAB;, C,, and G,, conditions(4.4)—(4.5)(with the
standard ordering of fundamental weightiescribe an arbitrary Schubert cell;Xusing
dim(G/B) — ¢(w) equations and at mostin(r, £(w)) inequalities.

As a special case, we obtain the following enhancement of [5, Proposition 4.1].

Corollary 4.10 For the type A_1, an element x G/B belongs to the Schubert celf X
if and only if it satisfies the following conditions

Pw(,ip(X) # O for all i such that there exists $ i with w(j) < w(i); (4.6)
Puwri-1uijp(X) = 0wheneved <i < j <nandw(i) < w(j). 4.7)

Thus X, can be described by at mag) equations and inequalities of the form g 0 or
pi # 0.

We conclude this section by addressing Problem 1.1 for Bypé/Ne note that for > 4,
there are no economical indices. The index 1 (in the standard numeration) is “one root
short” of being economicalW|/|Wpy,1| = 2r while R(1) consists of 2 — 2 rootse; + ¢
(j =2,...,r). Asaconsequence, we have to add extra equations to those in (4.5) in order
to describex;,. To minimize the number of these equations, we use the following ordering
of fundamental weights, which is somewhat different from the one in [1]:

Theorem 4.8 and Corollary 4.9 then have the following analogues (with similar proofs).

Proposition 4.11 Let G be of type B r > 4, and let the fundamental weights be ordered
as above. Then an elemen&xG/B belongs to a Schubert cell;Xf and only it satisfies
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conditions(4.4)—(4.5) along with the condition
p, (X) = Owhenevely = w(er+---+e_1—&) > w(er+---+¢&),i <r-3.
(4.8)

Thus X, can be described using at maBn(G/B) — £(w) +r — 3 equations and at most
min(r, £(w)) inequalities.

We note thaty = w(e1+ -+ &i_1— &) in (4.8) is indeed a RIcker weight of level,
sincey = wsswj, Wheres ands’ are the reflections corresponding to the ragts- ;41
ande; + &1, respectively.

5. Cell recognition algorithms

Our approach to the cell recognition problem (Problem 1.2) will be based on Proposition 4.1
and Theorem 4.8.

Suppose that the binary stririlg, ) is the vanishing pattern of all étker coordinates at
some poink € G/B:
0 if p,(x)=0;
1 if p,(x) #0.

The following lemma is a reformulation of Lemma 3.4.

b, =b,00 = | (5.1)

Lemmab5.1 Forany xe G/B andanyie [1,r], the set of all Plicker weightg of level

i such that b (x) = 1 has a unique maximal element with respect to the Bruhat order on
Woa;. Furthermore if x belongs to the Schubert cell)X= (BwB)/B, then this maximal
elementis equal tow; .

In view of Lemma 5.1, any vectds, (x) is “acceptable” according to the following
definition.

Definition 5.2 A binary vector(b,), wherey runs over all Ricker weights, is called
acceptabldf

foranyi € [1,r], the set{y € Wuw; : b, = 1} is nonempty, and has a unique
maximal elemeny; with respect to the Bruhat order; (5.2)
there existsv € W such thaty = waw; for anyi. (5.3)

It is immediate from Lemma 3.2 that the elemanin (5.3) is unique.
We will now study the following purely combinatorial problem that includes Problem 1.2
as a special case.

Problem 5.3 For a given acceptable vectdr, ), compute the element in (5.3) by testing
the minimal number of bits,,.
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Fory € Wwj, letus denot&V(y) = {u € W:uwj = y}. ThusW(y) is a left coset il
with respect to the stabilizer of; (i.e., with respect t&V:). Our approach to Problem 5.3
will be based on the following lemma, which follows from (4.1).

Lemma 5.4 Let(b,) be an acceptable binary vector. In the notation of DefinitioR
for every i we have

W) N NW(yim) = wWin;

alsq, y; is the maximal element afW; 1jw; such thath = 1.

The following algorithm for Problem 5.3 is based on Lemma 5.4; it successively computes
the weightsyy, y», ..., and in the end obtain® as the sole element in the intersection
Wy NN W(p).

Algorithm 5.5
Input:  acceptable binary vectgb, ).
Output: the elemeniw € W given by (5.3).
U =W,
for i from 1tor do
fix a linear ordetd wj ={n < --- < nm} compatible with the Bruhat order;

Ji=m;
while b, =0do j :=j —1;0d;
comment: n; =y =maxy e U : b, =1}
U:=UnW(,);
od;
return (U);

In particular, this algorithm can be used to solve Problem 1.2: if the input véxtpis the
vanishing pattern (5.1) for a poirte G/ B, then the algorithm returns the elemane W
such thatx € X?,.

The algorithm depends on the choice of the ordering of fundamental weights. As in
Section 4, the best results are achieved for economical orderings. In this case, Proposi-
tion 4.5 implies that the set of weightsw; = wW; jw; appearing in Algorithm 5.5 is
linearly ordered by the Bruhat order, making the third line of the algorithm redundant.

In particular, in the case of typ&,_1, the standard ordering of the fundamental weights,
and an acceptable vector defined by (5.1), Algorithm 5.5 takes the following form. (As

before, we identify the Ricker weights with subsets in,[f].)

Algorithm 5.6
Input:  vanishing pattern of BEker coordinates of a complete flagn C".
Output: permutationw € S, such thaix € X¢,.
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| :=0;
for i from 1tondo
K:=n;
while k > min([1, n]—1) and (k € | or pyyu;(x) = 0) dok := k—1; od,;
w() :=Kk;
| :=1U{k};
comment: | = w([1,i])
od;

To convince oneself that Algorithm 5.6 is a specialization of Algorithm 5.5, it suffices
to observe the following: the weights inW; rjwi correspond to the-subsets of the form
w([1,i —1]) U {k}, and the Bruhat order an\W; ;jw; corresponds to the usual ordering of
the valuek.

In the special case of typ&,, we recover the algorithm presented in figure 2.

Algorithm 5.6 agrees completely with the description of Schubert cells given in
Corollary 4.10: to arrive at anyw, we need to check exactly the sameidkér coordi-
nates that appear in (4.6)—(4.7). We thus obtain the following result.

Proposition 5.7 For a complete flag x if©", Algorithm5.6 recognizes the Schubert cell
x is in by testing at mosb) bits of the vanishing pattern of its ®tker coordinates.

We omit the typeB (or C) analogues of Algorithm 5.6 and Proposition 5.7, which can
be obtained in a straightforward way.

6. On the number of equations defining a Schubert variety

Problem 1.1 is closely related to the classical problem of describing Schubert vaxigties
as algebraic subsets Gf/ B.

Problem 6.1 Short descriptions of Schubert varieties) Define an arbitrary Schubert vari-
ety X, (as a subset 0&6/B) by as small as possible number of equations of the form
p, =0.

The aim of this section is to demonstrate that, for a certain Schubert vatigtyf
type A,_1, one needs exponentially many (as a function)asduch equations to defing,
(set-theoretically).

Throughout this sectiorG = SL, andW = S,. Any Schubert cellX? has the special
representativer,,: it is a complete flag irC" formed by the coordinate subspad@&®iD
fori = 1,...,n. The following obvious observation will be useful in obtaining lower
bounds.

Lemma 6.2 For w € S, a Plucker coordinate pdoes not vanish at,, if and only if
= w(1, [1]D.
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Proposition 6.3 Suppose that B= 4k is divisible byd. Letw € S, be the maximal element
of the parabolic subgroup Yy = Sx x S C Sp (thusw puts the elements in each of the
blocks[1, 2k] and[2k + 1, 4k] in the reverse ordgr Suppose the sétis such that

Xy ={xeG/B: p(x)=0forl €7}

Then

17| > (zkk>. (6.1)

Note that the right-hand side of (6.1) grows &§2,/n, while the codimension of this
particular Schubert varieti,, equals(n/2)2.

Proof: Our lower bound folZ| is based on the following idea. Suppose a permutation
u € S, is such thatt £ w. Then the flagr, does not belong to the Schubert variety, so
there mustexist € 7 suchthap, () # 0. ByLemma6.2, this meansthat= u([1, |1 ]]).

In view of Lemma 3.4, the membersHig Z also impliesthat £ w([1, |I|]). We conclude
that, in order to prove (6.1), it suffices to construct a subset Sy, satisfying the following
three properties:

(1) u £ wforanyu € U;

(2) U] = GO%

(3) foreverysubsdt c [1, n]suchthal £ w([1, |l|]), there are atmossf(k) permutations
u € U suchthatl = u([1, |11]).

DefineU to be the set of all permutationghat send [1k] U [2k+1, 3k] onto [1, 2Kk], and
increase on each of the blocks K, [k+ 1, 2k], [2k+ 1, 3Kk], and [¥ + 1, 4k]. Eachu € U
is uniquely determined by twio-subsetA = u([1, k]) C [1, 2k]andB = u([k+1, 2k]) C
[2k 4+ 1, 4K]; we writeu = ua g. Now (2) is obvious. Sinceias([1,2k]) = AUB >
[1, 2k] = w([1, 2Kk]), we haveu £ w for anyu € U, soU satisfies (1).

It remains to prove &3). Let c [1, n] be such that £ w([1, |I]]). We need to show
that there are at mosf() permutationsia g € U such thatl = uag([1, |1 ]]). First of
all, we haveua g([1,i]) < w([1,i]) fori < kori > 3k. Therefore, we may assume that
k < |l < 3k. Let us consider two cases.

Case 1.|1| = k + | for somel € [1,K]. The equalityl = ua g([1, |I]|]) means that is

the union ofA and the set df smallest elements @&. ThusA = [1, 2k] N | is uniquely

determined byt , while the number of choices fd@ is (*,\"™"), which is less thai}").
Case 2.]l1| = 2k 4| for somel € [1, k — 1]. Now the equality = ua g([1, |I|]) means

that | is the union ofA, B, and the set of smallest elements of [Pk] — A. Thus

B =[2k + 1, 4k] N | is uniquely determined by, while the number of choices fak is
¢h < GO,

This concludes the proof of (6.1). O
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Corollary 6.4 There exist elements d v in W = Sy such that X has codimensiof
in X,, while defining X inside X, requires at Ieastz%(zkk) equations of the form p= 0.

Proof: Consider a saturated chain = vg < v1 < -+ < vy = wg In the Bruhat
order, wherew is the same as in Proposition 6.3. (thds= 4k?). If M(u, v) denotes the
minimal number of equations of the forpy = 0 defining X, inside X, , then obviously
M(w, wo) < > M(vi, vit1) < N-max(M(vi, vi+1)). Combining this with the lower
bound onM (w, we) obtained in Proposition 6.3 completes the proof. O

7. On cell recognition without feedback

In this section, we examine the following problem.

Problem 7.1 Cell recognition without feedback) Find a subset aidkér coordinates of
smallest possible cardinality whose vanishing pattern at any poiat G/B uniquely
determines the Schubert cell xf

Notice that, unlike in Problem 1.1, the Schubert cell is not fixed in advance; and in
contrast to Problem 1.2, we have to present the entire listumi@l ‘coordinates right away
(i.e., there is no feedback).

Example 7.2 Consider the special case 6f = SLz. Analyzing Table 1 in Section 2,

we discover that the list in question must contain thecREr coordinateps (to distinguish
between vanishing patterns of generic elements of Schubert cells labekes} byndw,),

p2 (same reason, f@ands,), pi13 (for eands,), and p,3 (for ;s andw,). The vanishing
pattern of these 4 Btker coordinates does indeed determine the cell a point is in (see last
column of Table 1). Hence this 4-element collection aidkEr coordinates provides the
unique solution to Problem 7.1 for the type.

The following result shows that for the tyge the subset asked for in Problem 7.1 must
contain an overwhelming proportion of alllRKer coordinates.

Proposition 7.3 For the type A_1, any subset satisfying the requirements in Probfein
contains at least thﬁ;—i proportion of all Plicker coordinates.

Note that there are"2- 2 Plicker coordinates altogether in this case.

Proof: We will actually show more: that this manyWRKer coordinates are needed to
distinguish between the vanishing patterns of any two different elements of therfgrm
forw € W = S, (we use the notation introduced at the beginning of Section 6) lbeta
collection of subsets C [1, n] such that the vanishing patterns of theiékér coordinates
pi (ry), for | € Z, are distinct for all elements € W. In view of Lemma 6.2, this means
that for any distinc, v € W, there exists an indéxe [1, n] such that the subsetg[1, i])
andv([1, i]) are distinct, and at least one of them belongs.to
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Let | be a nonempty proper subset of fil of cardinalityi. Chooseu € W so that
u([1,i]) = I, and letv = us. Thenu([1, j]) = v([1, j]) unlessj =i, implying thatZ
must contain eithar([1,i]) = | orv([1,i]) = I \{u(@i)} U {u(i+1)} (or both). We conclude
that for any two subsets J c [1, n] of the same cardinality which are Hamming distance 2
from each other (i.e., one is obtained from another by exchanging a single element), the
collectionZ has to contain either or J.

Let Z; denote the collection of alksubsets of [1n] not in Z. ThenZ; does not contain
two subsets at Hamming distance 2 from each other. Such collections of subsets are called
binary codes of constant weight detecting single erramsl they were an object of extensive
study in coding theory. In particular, various upper bounds on the cardinality of such a code
have been obtained; see, for example, [14, Chapter 17]. (We thank Richard Stanley for
providing this reference.) For our purposes, it will suffice to have a very simple upper bound

7122 ") = ) o

Although this bound is immediate from a sharper [14, Ch. 17, Corollary 5], we will give a
proof for the sake of completeness.

To prove (7.1), note that afl — 1)-subsets contained in variousubsets irf; must be
distinct. Eachl e Z; containg such subsets, implying that |Z;| < G_ l) as desired.

The proof of Proposition 7.3 can now be completed as follows:

-1
|Z| = 2" — ;

1 < 1(n+1>

i=1

>2"N_2

=2"—2—m(2"+1—n—3)

n—-1
=——@2"-1).
n—|—1( ) U

8. Generic vanishing patterns

In the course of the above proof of Proposition 7.3, we have actually shown the following:
assuming there is no feedback, “almost allu&kér coordinates are needed to distinguish
between special representatives of Schubert cells. We will now demonstrate that the
situation changes dramatically if we replace these “most special” representatives by the
“most generic” ones.

In what follows,W is an arbitrary Weyl group. We associate to any: W thegeneric
vanishing patteriib}*"(w)) defined by

1 ify <ww;

0 ify £ wa, 8.1)

b%(w) = {

wherey runs over all Ricker weights of any levél By Lemma 3.4, this is the vanishing
pattern(b, (x)) (cf. (5.1)) of Plicker coordinates for a generic elemant X° .
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Problem 8.1 Recognizing generic points without feedbackind a minimal subset of
Pliicker coordinates whose vanishing pattern distinguishes between the generic patterns
(07 (w)).

Our solution of this problem will be based on the techniques developed by Lascoux and
Schitzenberger [13], and further enhanced by Geck and Kim [8]. Let us first recall the
main definitions and results of these papers.

Let P be a finite poset with unique minimal and maximal elements. We saythaP
is thesupremunof a subseQ C P if a > g for anyq € Q, and moreovea < b for any
other elemenb € P with this property.

Definition 8.2 Thebase B= B(P) of P is the subset oP consisting of all elements
a € P which cannot be obtained as the supremum of a subdetnit containinga.

Proposition 8.3[13] The map a— {b € B : b < a} is an embedding of Ras an
induced subposginto the boolean algebra of all subsets of=-B B(P). Moreover any
other subset BC P with this property contains B.

The following result appeared in [13, &bfeme 3.6]; another proof was given in [8,
Theorem 2.5].

Theorem 8.4[13] For every element u in the base of a finite Coxeter grough&fre are
unique simple reflections and § such that us< u and su < u.

Let B(W) denote the subset of lRlker weights which correspond to the elements of the
baseB(W), as follows:

B(W) = {uw; :u € B(W), us < uj}.

Proposition 8.5 The correspondence — (by° (w)), wherey runs overB(W), is an
embedding of Was an induced subposento the Boolean lattice of all binary vectors of
the corresponding length. Moreoveé (W) is a minimal subset of Btker weights that has
this property.

Thus the set of the Btker coordinateg,, with y € B(W), provides a solution of
Problem 8.1.

Proof: Letu e B(W), and lety = uw; € B(W) be the corresponding weight. Singés
the minimal representative of the cosed, it follows that for anyw e W, the condition
“y < ww;i” is equivalent to i < w.” Therefore, (8.1) becomes

bgen )_{1 if u<uw; (8.2)
0 ifuzw. '
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Thus the set of non-vanishingueKer coordinatep,, y € B(W), at a generic point in
X?, corresponds exactly to the set of elements in the Ba¥¥¢) that are less than or equal
thanw in the Bruhat order. The proposition then follows from Proposition 8.3. O

The base8(W) were explicitly described and enumerated in [13] (for the tydasdB)
and [8] (for all other types). As shown in [8, 13],\¥ is of one of the classical type,
B, and Dy, then the cardinality oB(W) is a cubic polynomial irr. In particular, for
the typeA,_1 whenW = S, the base consists of tr(égl) “bigrassmannian” permuta-
tions: every triple of integers & a < b < ¢ < n gives rise to a such a permutation
that acts identically on each of the blocks &] and [c + 1, n] while interchanging the
blocks p+ 1, b] and b + 1, c]. The correspondingigrassmannian Ricker coordinates
Pr.ajub+1,q.- Proposition 8.5 tells that the vanishing pattern of tr(§§é) Plicker coordi-
nates uniquely determines the Schubert cell of a given completa fla@", provided we
know thatx is generic within its cell. In the special case= 3, the bigrassmannianuriker
coordinates are exactly the four coordinafgs ps, pi13, p23 involved in Example 7.2 and
in the descriptions of Section 2.
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