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Abstract. We investigate a connection between distance-regular graphdgst(2)), the quantum universal
enveloping algebra of the Lie algetsk?2). LetI" be a distance-regular graph with diameder 3 and valency
k > 3, and assumE is notisomorphic to thd-cube. Fix a vertex of I, and let7 = 7 (x) denote the Terwilliger
algebra ofl” with respect tox. Fix any complex numbey ¢ {0, 1, —1}. Then7 is generated by certain matrices
satisfying the defining relations bfy (sl(2)) if and only if I is bipartite and 2-homogeneous.

Keywords: distance-regular graph, Terwilliger algebra, quantum group

1. Introduction

We investigate a connection between distance-regular graphdgati2)), the quantum
universal enveloping algebra of the Lie algelsi@2). It is well-known that there is a
“natural” sl(2) action on thed-cubes (see Proctor [9] or Go [4]). Here we describe the
distance-regular graphs with a similar natusg{s!(2)) action. We show that these graphs
are precisely the bipartite distance-regular graphs which are 2-homogeneous in the sense
of [7, 8], excluding thed-cubes. To state this precisely, we recall some definitions.

LetU (sl(2)) denote the unital associati@ealgebra generated B, X, andZ subject
to the relations

ZX  —X"Z=2X", ZXT-X'Z=-2XT, X XT-X*X" =2Z. 1)

U (sl(2)) is called theuniversal enveloping algebra of @). For any complex number
satisfying

let Uq(sl(2)) denote the unital associati¥&-algebra generated by—, X*, Y, andY!
subject to the relations

YYi=VY1ly=1 )

YX =@g?X7Y, YX'=g7?X'Y, X XT XX = ——. (4)
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Uq(sl(2)) is called theyuantum universal enveloping algebra of3l For more ot (s1(2))
and its relation tdJ (sl(2)) see [5, 6].

Let I' = (X, R) denote a finite, undirected, connected graph without loops or multiple
edges and having vertex sét edge seR, distance functiold, and diameted. T is said to
bedistance-regulamhenever for all integers, i, j (0 < ¢, i, j < d) there exists a scalar
pi; such that for alk, y € X with a(x, y) = ¢, [{z € X[3(x,2) =i,d(y,2) = j}I = pf;.
Assume thatl” is distance-regular. Seh = 0, ¢ = p;; ; 1 <i < d), & = py
O<i<d,b = p‘1i+1 (0O <i =<d-1),andby = 0. T is regular with valency
k=bo = p?,andc +a +b =k (0 <i <d). I'is bipartite precisely wheg; = 0
O<i<d.

LetI" = (X, R) denote a bipartite distance-regular graplis said to be znhomogeneous
whenever for all integers(1 < i < d) there exists a scalaf such that for allx, v,
ze Xwitha(x,y) =i,0(X,2) =1i,9(y,2 =2,{w € X|da(X,w) =i —1,3(Y,w) =
1,0(z, w) = 1}] = y. I may be 2-homogeneous despite the fact that some structure
constanty, is not uniquely determined: This occurs when there are,ng, z € X with
axX,y) =i, 0(x,2 =i, d(y,2 = 2. Itis known thatyy is not uniquely determined
whenT is 2-homogeneous [8]. Tha-cubeis the graph with vertex set = {0, 1}¢ (the
d-tuples with entries if0, 1}) such that two vertices are adjacent if and only if they differ in
precisely one coordinate. Tliecube is a 2-homogeneous bipartite distance-regular graph
with y = 1 (1 <i < d —1). The 2-homogeneous bipartite distance-regular graphs have
been studied in [3, 8, 11].

Let Maty (C) denote theC-algebra of matrices with rows and columns indexedkby.et
A € Matx(C) denote the adjacency matrix Bf For the rest of this section fix € X. For
alli (0 <i <d), defineE" = E(x) to be the diagonal matrix iMaty(C) such that for
ally € X, Ef has(y, y)-entry equal to 1 ib(x, y) = i, and O otherwise. Lel = 7 (x)
denote the subalgebra bfatx (C) generated by, Ej, Ef, ..., EJ.

SetL =Y ") E*AEf, andR= Y{_, E*AE" ;. Proctor [9] showed that if is iso-
morphic to thed-cube, then the matrice$™ = L, X* = R, andZ = Y? ,(d — 2i)E?
satisfy the relations of (1) (see also Go [4]). We must slightly relax the form of these
matrices to admit &4(sl(2)) structure. Specifically, we consider matrices of the form:

d d

d—1
X" = in_ E'AEL, X'= in+ EFAE.,. Y= Z 1= ®)
e . _

i=1 i=0

wherex; (0 <i <d-1), xi+ (l<i=<d),andy (0<i < d)are arbitrary complex
scalars. isinvertible ifand only ify; # 0(0 <i < d), inwhich case¢/ ! = Zid:O yflEi*.

Theorem 1.1 LetI" = (X, R) denote a distance-regular graph with diameterd3 and
valency k> 3. Assume thal® is not isomorphic to the d-cube. Fix & X, and write
Ef =E(x) (0<i <d)and7 =7 (x). Let X~, X*, and Y be any matrices of the form
(5), and let g be any nonzero complex number. Then the following are equivalent.

(i) Y isinvertible X—, X*, Y, Y~ generateZ, and (2)—(4) hold.

(i) T is bipartite and2-homogeneousq + q—1)? = c3b,*(k — 2)(c; — 1)~%, and there
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existse € {1, —1} such that

yi=eq®? (0<i=<d),
X XI-:_l_ —2i+l(qd+q2i)(qd+q2i+2)(qd+q2)—2 (OEI S d_l)

The condition (i) of Theorem 1.1 means that the Terwilliger algébia a homomorphic
image ofUq(sl(2)). The factor ok appearsin (ii) because the defining relationd gis|(2))
are invariant under changing the signs of any twof, X*, andY.

2. Background

Throughout this section, I8t = (X, R) denote a distance-regular graph with diameter
Let Matx (C) denote theC-algebra of matrices with rows and columns indexedXbyFor
alli (0 <i < d), defineA to be the matrix inMatx(C) such that for ally, z € X the
(y, 2-entry of A is 1 if a(y, 2) = i and 0 otherwise. Observe thay = | (the identity
matrix), A := A; is the adjacency matrix df, and Z, A = J (the all 1's matrix).
Observe thaA. Aj = AjA = Zz o PiA: (0 <i, j <d). Itfollows that the linear span
Mof Ag, Ay, ..., Ag is a commutative subalgebra lfaty (C). The algebraM is called
the Bose—Mesner algebraf I'. It is known thatM is generated byA. See [1, 2] for more
on distance-regular graphs and their Bose-Mesner algebras.

For the rest of this section fix € X. For alli (0 < i < d), defineE" = E’(x)
to be the diagonal matrix iMatx(C) such that for ally € X, the (y, y)- entry of Ef
is Ef(y,y) = Ai(X,y). Observe thakE Ej =6 E" (0= i,j<d andZI oE =1
Itfollows thatthe linear spat* = M*(x) of ES, El,.. EJ |sacommutat|vesubalgebra
of Matx (C). The algebravi* is called thedual Bose-Mesner algebrf I" with respect to.
Let7 = 7 (x) denote the subalgebra bfaty (C) generated byM U M*. The algebra/
is called theTerwilliger algebraof I with respect tax. See [10] for more on Terwilliger
algebras.

Fix ¢,i, ] (0<¢, i, j <d). Observe that for al, z € X, the(y, 2)-entry of EF A E
isOorl,anditis equalto 1ifandonlydfix,y) =i, d(y, z) = £ andd(x, z) = j. Thus,
considering the positions of the nonzero entries,

{EfACE] #0]0 < ¢,i, ] < d}islinearly independent, (6)
E*AE} # 0if and only if pf; 5 0. (7)
Observe thapIJ = 0if one of¢, i, j is greater than the sum of the other two, epfd;ﬁ 0

if one of ¢, i, j is equal to the sum of the other two. It follows tHEtAES = Ef AE" =
wheneveti — j| > 1. HenceA = Y_¢ OZJ oEAEf=L+F+R where

[=%
[y

d d
L=> E'AE,,. F=) E'AE, R=) EAE .
i=0 i=1

I
o

Observe thaE* AE* = 0 if and only ifa; = 0, soT" is bipartite if and only ifF = 0.
We wish to emphasize the following combinatorial interpretatioh agind R. For all
i 0<i<dandforally € X, letTi(y) = {z € X|d(y,z) = i}. Identify each
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vertex with its characteristic column vector, and note Maty (C) acts on the vertices by
left multiplication. For alli (0 <i < d)andally € I'i(X), LY = >, cr,ynr 00 W
RY = > eryynr 0 W, aNAEfy = §jy (0 < j < d). Fixi (0 <i < d). Forally,
ze T (x), set

B(Y.2) =T'(y) NT1(2 NTia(X)],  y(Y,2) = [T1(y) NT1(2) NTi_1(X)].  (8)
Observe that for aly, z € T (x),
(LRE")(Y, 2) = B(Y,2), (RLE)(Y,2) = y(y, 2. 9)

In particular,(LRE")(y, y) =bi, (RLE")(y, y) =G, and wherd(y, z) > 2, (LRE")(y, 2) =
(RLE")(Y,2)=0

3. Construction of U(sl(2)) and Uq(sl(2)) structures

In this section, we constructi(sl(2)) structure on thd-cubes and By (sl(2)) structure on

the remaining 2-homogeneous bipartite distance-regular graphs. Throughout this section,
letI' = (X, R) denote a distance-regular graph with diameter 3 and valenck > 3.

Fix x € X, and writeE{" = E(x) (0 <i < d), M* = M*(X), T =T (X).

Lemma 3.1 Let z, z, ..., zg denote distinct complex scalars. Then:ZZid:0 Pl =
generatesM*.

Proof: Observe thaTZl = Z, Oz| E* (0 < j < d), where thej = 0 equation is
interpreted ad ZI E* Viewing E§, Ef, ..., Ej as unknowns, this is a system
of linear equations W|th Vandermonde (hence invertible) coefficient matrix. Hiug
span{Zi|0< j <d} (0<i <d), soZ generates\*. O

Lemma 3.2[4, 9] Supposd" is isomorphic to the d-cube. Them X% L, X* = R and
Z=Y" ,(d—2i)EF generateT and satisfy(1).

Proof: Observe thaZ generatesM* by Lemma 3.1. Observe th& = 0 sincel is
bipartite, soA = L + R. Agenerates\, soL, R, andZ generateZ .

The relationsZL — LZ = 2L andZR — RZ = —2R are easily verified using the
definitions ofL, R, andZ and the fact thaE*E* = §iE" (0 <i, j <d). Itremains to
verify LR— RL= Z. SlnceZI o Ef=1,itis enough to show that for alld<i <d)

LRE — RLE = (d — 2i)E;. (10)

Fixi (0 <i < d), and picky, z € T'j(x). Letr, s, t denote they, z)-entries ofLRE’,
RLE', andE?, respectively. From (8), (9) we find the following. Suppdsy, z) > 2.
Thenr = s =1t = 0. Supposeé(y,z) = 2. Thenr = ¢, —y =1,s=y =1, and
t = 0. The casé(y, z) = 1 does not occur sincg = 0. Finally suppose = z. Then
r=b=d-i,s=¢ =i,andt =1. Inallcases —s = (d — 2i)t, so (10) holds. O
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Theorem 3.3([3, Theorem 35]) Supposd is not isomorphic to the d-cube. Thénis
bipartite and2-homogeneous if and only if there exists a complex scalar @, 1, —1}
such that

c=el[i], b=e[d—-i] (O<ic<d), (11)
where
e=9Q@"+9d@"+¢*)Y [il=@ -9 Hg-gH? (12)

for all integers i. Suppose the above equivalent conditions hold. Then
n=e66Y (1<i<d-1. (13)

Corollary 3.4 ([3, Corollary 36]) Supposd” is bipartite and2-homogeneoysbut not
isomorphic to the d-cube. Then any complex scalar{®, 1, —1} satisfying(11) and(12)
is real and

@+gH2=cb (-2 (- Hn (14)

The set ofq satisfying (14) is of the formix, A1, —x, —A~1} for some real number
A > 1.Whend is even, all sucky satisfy (11). Wheuwlis odd, onlyq € {1, A~1} satisfy (11)
sinceq +q~! = ¢y, > 0, wherer = (d — 1)/2 (see [3, Corollary 36]).

Lemma 3.5 Supposé is bipartite and2-homogeneous but not isomorphic to the d-cube.
Letqg ¢ {0, 1, —1} be any complex scalar such th@tl), (12) hold, andletge (0 <i < d)
be as in(12). Then the matrices

d-1 d d

- [ [— * + _ —1 % % _ d—2j zx*

X =) oej EJAE/ ;. X'=) - EfAE; ;, Y= Oq 'E]
i= i= =

J

generate7 and satisfy(4).

Proof. Observe thal generates\{* by Lemma 3.1. Now. = (Z?z’ole. E) X~ and
R= (Zid:l e E)X™ are in the algebra generated By X~ and X*. Observe thaF = 0
sincer is bipartite, soA = L + R. A generates\, soX—, X', andY generate7Z .

The relationsy X~ = g2X~Y andY X+ = q~2X™Y are easily verified using the defini-
tions of X~, X*, andY and the fact thakE} E; = §; E* (0 <1, j < d). Itremains to verify
X=Xt = X*X" = (Y -Y/(@—qg}). Observe thatforall (0 <i < d), X" XTE* =
e 'e LLRE, X* X Ef = g 4e 'RLE", and(Y — YY) /(g — g HE; = [d -2 ]E.
Thus, sincd = Zidzo E?, itis enough to show that for all(0 < i < d)

& 'q4LRE — g i 'RLE = [d -2 ]E/. (15)
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Fixi (0 <i <d), and picky, z € T'j(x). Letr, s, andt denote they, z)-entries ofLRE",
RLE', andE?, respectively. From (8), (9) we find the following. Suppdsy, z) > 2.
Thenr = s =1t = 0. Supposé(y, z) = 2. Then by the definition of 2-homogeneous,
r=c,—%,S=y,andt = 0. It can be verified by a direct computation using (11)—(13)
thate e} (c2 — 1) — 6461y = 0. The cas@(y, z) = 1 does not occur sincg = 0.
Finally supposey = z. Thenr = b;, s = ¢, andt = 1. It can be verified by a direct
(albeit long) computation using (11), (12) treat'e b — e g7'c = [d —2i ]. Inall
cases ‘e ir —e e 's= [d - 2i]t, so (15) holds. O

The U (sl(2)) structure on thel-cube is very similar to th&l,(sl(2)) structure on the
remaining 2-homogeneous bipartite distance-regular graphs. In the sequel, we exploit this
similarity to prove the following result and Theorem 1.1 simultaneously.

Theorem 3.6 LetI' = (X, R) denote a distance-regular graph with diameterd3 and
valency k> 3. Fix x € X, and write E* = Ej*(x) (0 <i <d), 7 = T(x). Let X~, X*,

and Z be of the form X = Y% x~ EfAE" , X = Y OXTEFAE . Z=Y"  ZE;

for some complex scalarg x0 <i <d — 1), xi+ (1<i<d),z 0<i<d). Thenthe
following are equivalent.

(i) X—, X*, and Z generatd and satisfy(1).

(ii) T isisomorphic to the d-cubend

X x',=1 0<i=<d-1),
z=d-2 O<i<d.

As in Theorem 1.1, The condition (i) of Theorem 3.6 means that the Terwilliger al@ebra
is a homomorphic image &f (sl(2)).

4. Combinatorial structure

We show that théJ (sl(2)) andUq(sl(2)) structures of Lemmas 3.2 and 3.5 can only occur
on a 2-homogeneous bipartite distance-regular graph. Specifically, we show the following.

Theorem 4.1 LetI’ = (X, R) denote a distance-regular graph with diameterd3 and
valency k> 3. Fix x € X, and write B = Ef(x) (0 <i <d), 7 = T(x). Suppose
that 7 is generated byX~, Xt} U M* and that X Xt — X* X~ = Z, where X and
X+ are of the form(5) and Z is of the form Z= Zid:o z E; for some complex scalars z
(0 <i =d). Thenr is bipartite and2-homogeneous.

The hypotheses of this result are met by both Theorems 1.1(i) and 3.6(i). Throughout
this section, we adopt the notation and assumptions of Theorem 4.1 as we prove this result
in a series of lemmas. The first step in our proof of Theorem 4.1 is to shove;tkatO
(1<i <d-1). Todo so, we consider certain matrices in the left idea} of 7

Ki=EJE (O<i<d),
No =0, Ni = EFA1E] (1 <i <d).
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Lemma4.2 LKo=0, LK;j =b_1Ki_1 (1 <i <d),RKi =¢1Kj;1 (0<i<d-1),
RKy = 0,and X Ko = 0, X"K; = x_;b1Ki_1 (1 <i < d), XTKj = x%, 16 11Ki1
O<i<d-1), XtKg=0.

Proof: ClearlyLKy = LE{Ko = 0. Fixi (1 <i < d). Fixy, z € X, and letr ands
denote thegy, z)-entries ofLK; and K;_1, respectively. Observe that= s = 0 unless
y € Ti_1(X) andz € I'1(X), so supposg € I'i_1(X) andz € I'1(x). Then

r = (E,AEJE) (Y, 2 = Y E' (Y, VAW, PE(p, PI(p, 2Ef(z 2)
peX

=Y A, PE{(p, p) = IT1(y) N T ()| = by 1,
peX

s= (E"JED(Y, 2 = E _1(y, ) I(Y,2DE(z,2) = L

In all cases = bj_1s, sOLK; = bj_1K;_;. The equations foRK; are proved similarly.
The equations involving<~ and X follow since X"E;" = x_;LEf (1 <i < d) and
XTEF =%, RE(0<i <d-1). O

Lemma 4.3 x~ # O0andx,, # 00 <i <d-—1). Inparticular, 5 := X %%, # 0

O<i<d-1).

Proof: Suppose;” = O0forsome (0 <i <d—1), and set/ = sparfK, |i +1<h
< d}. Theni/ is closed under left multiplication by the generat¥rs, X+, andM* of T
by Lemma 4.2 and construction. Heri¢és a left ideal of7. HoweverLK; 1 = b K; #0
andK; ¢ U, a contradiction. Hence™ # 0 (0 <i < d —1). A similar argument shows
thatx’,, #0(0 <i <d—-1). O

Lemma4.4 X*Nj =x%,6GNi1 (1<i=<d-1)and X*Ng =0.

Proof: Fixi (1 <i <d-—1). Picky, ze X, and letr ands denote they, z)-entries of
XTN; andNj, 1, respectively. Observe that= s = 0 unlessy € I'j;1(x) andz € I'y(x),
S0 supposg € INi11(x) andz € I'1(x). Then

r=x"(E L AE ALED(Y, 2)
Xt D Efa (V. A, PE (P, PA_1(P. DE] (2. 2)
peX

= x4 IT1(Y) NTi(x) NTi_1(2)],

s= (E,AED(Y.2) = A(Y. 2.

Observe that = s = 0 whena(y, z) # i, andr = xi“;lci, s =1whend(y,z) =i. Inall
cases = X’ ,Cis, SOXTN; = x* ;G Ni ;1. ClearlyX™Ng = X*E;Ng = 0. O

Lemma4.5 X~N; e sparfNi_1, Ki_1} (1 <i <d).
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Proof: It is easy to show thak~N; = X, Ko by entry-wise computation. We proceed
by induction: Fixi (2 <i < d), and assum&~N;_; = gN,_» + hK;_, for some scalars
g, h. We compute

X" XFNi1 = X~ (¢ 61N = x 61 (XN,
XTX"Ni1 = XT(gNi_2 + hKi_2) = g% ;6 _oNi_1 + hx' ;6 _1Ki_1,
ZN_1 =17 1Ni1.

Now we may apply the relatioX =X+t — X* X~ = Z to Nj_; and solve to findX™N; €
sparfNi_1, Kij_1} sincex"c_1 # 0. The result follows by induction. O

Lemma4.6 g =0 (1<i=<d-1.

Proof: ByLemmas 4.2-4.5 and constructiéh= spaniK; |0 <i < d}+sparfN; |1 <

i < d}is aleftideal of7. Infact,i/f = TE] sinceE} = N;. Now fixi (1 <i <
d—-1). ThenETE] = EU = sparfE’K;, E*N;}, so dint E*TE; < 2. Observe
that the subspack;'7E; containsEfAjEY (j =1 — 10,1 +1), andEfA1E] # 0,
E’Ai+1E] # 0 by (7). If EFA E] # 0, then these three matrices are linearly independent
by (6), contradicting dig E/7E; < 2. ThusEA Ej = 0, sog; = 0 by (7). O

We show thaby = 0 by showing that there is a unique vertex at distashé®m x.

Lemma 4.7 Set $ = xi‘xi’fFl O<i<d-1lands; =5 = 0. Then for all i
O<i=<d),

SLRE' —s_1RLE" = 7 E/, (16)
SBY,2) —S_1v (Y, 2) =68y:z (Y, Ze Ti(X)), (17)

wheres(y, z) andy (y, z) are asin(8). In particular, 8(y, z) = O ifandonlyify(y,z) =0
for any distinct y z € T (X).

Proof: Fixi (0 <i < d). Apply the relationX~X* — X*X~ = Z to E} to get (16).
Fix y, z € T'j (). Computing they, z)-entry of (16) gives (17) by (9). Itis clear from (17)
and Lemma 4.3 thai(y, z) = 0 if and only if y (y, 2) = 0 wheny, z are distinct. O

Lemma 4.8 |I'4(X)| = 1landr is bipartite.

Proof: By adown-up walkof length Z (1 < ¢ < d), we mean a sequence of vertices
vo, V1, ..., Uy Such thaty; andvj, 1 are adjacentO < i < 2¢ — 1), vj, vy_j € I'q_i(X)
(0 <i <¥¢),andvg # vy. Assumgly(x)| > 2. For all distincty, z € I'y(x) there exists
a down-up walk of length@ (takingvg = Y, vg = X, voq = 2), but there is no down-up
walk of length 2 sincel'y_1(x) N T1(y) N T'1(2)] = 0 by Lemma 4.7.

Fix a down-up walkvg, vy, . . ., v2, Of minimal length 2. By minimality of the length of
this down-upwalky,_1 andv,1 € Tq_,1(X) aredistinct. Ley (vg_1, vet1), B(Ve—1, Ver1)
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be as in (8). Observe that(v,_1, ve11) > 0, SOB(ve_1, ver1) > 0 by Lemma 4.7. Fix
w € Tg_pi2(X) NT'1(ve_1) NT1(vey1). Fix a pathwy_ g2 = w, wy_¢y3, ..., wq such that
w; € T (x) (such a path exists sind® > 0 (0 <i < d—1)). Supposevq # vo. Then
VO, ...y Ug—1, Wg—ga2s ---, Wq IS @ down-up path of lengthe2— 2, contradicting the
minimality of length Z. Thuswg = vo. Similarly, v, = wyg, contradictingug # vy. It
follows that|T'4(x)| = 1, soag = 0. Hencel is bipartite in light of Lemma 4.6. O

Lemma 4.9 T is2-homogeneous.

Proof: By [3, Theorem 16] it is enough to show that for alj1 < i < d) and for ally,

z € I () with 3(y, 2) = 2, the numbey (y, 2) of (8) is independent of the choice pf z.
Fixi (1 <i <d-1), and pick anyy, z € T(x) with d(y, 27 =2. By Lemma 4.8,

[ is bipartite, soB(y, 2) + y(y,2) = c;. By (17),sB8(Y,2) — S_1y(y,2) = 0. Thus

(§ +s-1)v(Y,2) = c5. Sinces # 0 by Lemma 4.3, the right side is nonzero and hence

the left side is also nonzero. Thus we may solve this equatiop(prz) independent of

andz. Observe that when= d there is nothing to show by Lemma 4.8. O

5. Proof of Theorem 1.1

In this section we prove Theorems 1.1 and 3.6. We continue with the notation and assump-
tions of Theorem 4.1 throughout this section. We begin by considering the uniqueness of
theU (sl(2)) andUq(sl(2)) structures.

Lemmab5.1 Sets= xi‘xﬁjrl O<i<d-1. Thenthescalarsgs0<i <d-1) and

z (0 <i < d) are uniquely determined up to the same scalar multiple.

Proof: Observe that for ali (0 < i < d) and for ally € TI'j(x), B(y,y) = b and
v (Y, y) = ¢, whereB(y, y) andy (y, y) are as in (8). Thus applying (17) with= z gives

so=2byt, shi—s 6 =2z (1<i<d-1), 5164 =—7. (18)

Applying the relationX =X+ — X*X~ = Zto K; (1 <i < d — 1) and simplifying with
Lemma 4.2 gives

shicyi—s_ibic =z (1<i<d-1). (19)

Fixi (1 <i <d—1). Subtracting (18) from (19) giveshi (¢i;11 — 1) = 516 (bj_1 — 1).
Sinces, 5_1 are nonzero by Lemma 4.8, 1 = lifand onlyifci.; = 1. Supposé;_; =
CGy1=1 Thenl<b <b_; =1land1< ¢ < ¢,1 = 1sincethe; formanondecreasing
sequence and the form a nonincreasing sequence by [2, Proposition 4.1.6]. Khas; +
by = 2, a contradiction. Thus we may solve ®rass = ¢ (bj_1 — D)s_1/(bi (G11 — 1)).
In particular, sincesy = zobgl, the numbers; (0 < j < d — 1) are determined by the
intersection numbers argy. The numberg; (1 < j < d) are determined by (18). In
these formulagy is a factor ofs; (0 < j < d—1) andz; (1 < j < d), so the result
follows. O
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Lemmab.2 Suppose thaf is isomorphic to the d-cube. Theafter multiplying X" and
Z by some same scalaZ = Zidzo(d — 2i)Ef and X, X*, Z satisfy(1).

Proof: By (16),sLRE —s_1RLE'=zE (0 <i <d), and by (10)LRE" — RLE' =
(d —-2i)E" (0 <i < d). One possibility iss = 1 (0 <i < d-1), and in this case
zz=d—-2i (0<i <d). Thus by Lemma 5.1, there exists a scalasuch thatxsg = 1
(O<i<d-1andaz =d -2 (0<i <d). Hence, after replacini* with « X and
Z with «Z, we find thatZ = Y% (d — 2i)E; andX~, X*, andZ satisfy (1). O

Lemmab.3 Supposé is notisomorphic to the d-cube. Theadter multiplying X" and Z
by some same scalaZ = Y% ,[d — 2i |Er and X~, X*, Y = % q¢2 E satisfy(4)
for some real number ¢ {0, 1, —1}.

Proof: By (16),SLRE" — s_;RLE' = z E} (0 <i < d), and by (15)g ‘e LRE" —
e e 'RLE = [d—-2i]E (0 < i < d), wheree; and [j] are as in (12) for all
integersj. One possibility is = ¢ 'e .} (0 <i <d — 1), andinthis casg = [d — 2i ]
(0 < i < d). Thus by Lemma 5.1, there exists a scalasuch thates = e ' }
O<i<d-1andaz =[d—-21](0<i <d).HenceaZ = Zid:o[d —2i ]Ef, and,
after replacing<* with « X*, we find thatX—, X*, andY = " q~2 E7 satisfy (4).

m

Lemma 5.4 The conclusions of Lemm&a3 do not hold wherT" is isomorphic to the
d-cube and the conclusions of Lemn&e2 do not hold wherT" is not isomorphic to the
d-cube.

Proof: If this is not the case, then arguing as in Lemmas 5.2 and 5.3, we find that there
is a scalaw such thaw(d —2i) = [d—2] (0O<i <d),where [d—2]isasin (12)

for some real numbey ¢ {0, 1, —1}. Whend is odd, this equation dt = (d — 1)/2

andi = (d — 3)/2 routinely impliesq € {1, —1}, and whend is even, this equation at

i =d/2—-1andi =d/2— 2routinely impliesg € {1, —1}, a contradiction. i

We are ready to prove Theorems 1.1 and 3.6.
Proof of Theorem 3.6:

(i)=(ii): Observe that" is isomorphic to thel-cube by Theorem 4.1 and Lemma 5.4.
Applying the relationZX — X~Z = 2X~ to K; (1 < i < d) and simplifying with

Lemma 4.2, we find that _1x_;bi_1Ki_1 —ziX_;bi_1Ki_1 = 2x_ b 1K1 (1 <1 <
d). Thusz =z_,—-2(1<i<d),soz =+d—-2 (0<i <d),whereg =2zy—d.
By Lemma 5.2, there exists a scatasuch thavzy = d — 2i (0 <i < d). Comparing
these formulas fog;, we find thate = 1 andg = 0. It follows from Lemma 5.2 that
Zz=d-21(0<i<d)ands =10<i<d-1).

(ii)=(i): The relations are verified exactly as in Lemma 3.2. We may argue as in Lemma
3.5 to show that these matrices genefate O



QUANTUM ENVELOPING ALGEBRA 35

Proof of Theorem 1.1:

(i)=(ii): T is bipartite and 2-homogeneous by Theorem 4.1. Note that it is not isomorphic
to thed-cube by assumption. We apply our result&tg(sl(2)) and usey to denote the
parameter of Theorem 3.3 while showing that the formulas o+ p~*)? and xfxfjrl
hold.

Applying the relationyX~ = p?X~Y to K; (1 < i < d) and simplifying with Lemma
4.2, we find thaty; 1 ;b 1Ki—1 = p?yix_;b_1Ki_1 (1 <i < d). Thusy, =
Vi_ip 2 (A <i<d),soy =8pi? (0<i <d),whereg =yop ¢ BylLemmab5.3,
there exists a scalarsuch thate(y, — y H(p— pHt=(q% % —q4*?)(q—-qgH*
(0 <i =d). Combining these formulas,

a(ﬂpd—Zi _ 1371 p7d+2i)(p _ pfl)fl
=@ —g™@-gH" O=i=d. (20)

Supposel is odd. Then (20) dt= (d —1)/2 andi = (d + 1)/2 routinely implies that
a =p € {1, —1}. Now (20) afi = (d —3)/2 givesp?+ p—2 = q2+q~2. Supposel is
even. Then (20) at= d/2 routinely implies thag € {1, —1}. Now (20)ai =d/2—1
andi = d/2 — 2 routinely implies thatr = g andp? + p~2 = g 4+ q~2. In both cases
(p+ pH?% = (q+ g2, so the formula fop + p~1)? follows from Corollary 3.4.
The formula forx™x*, ; follows from Lemma 5.3 (witke = a).
(if)=(i): Identical to Lemma 3.5 since the expression Xpix", , in (ii) equaISGeflaj_ll
O<i<d-1). O

6. Remarks
The 2-homogeneous bipartite distance-regular graphs are essentially known.

Theorem 6.1[8, 11] LetI’ = (X, R) denote distance-regular graph with diameterd3
and valency k= 3, and assume thdt is not isomorphic to the d-cube. Theris bipartite
and2-homogeneous if and only if it is one of the following

(i) the complement of thex (k + 1)-grid;

(i) aHadamard graph of ordefy for some positive integer;
(iii) a bipartite distance-regular graph with diametgeand intersection array

{bg, by, ..., bs; c1,C, ..., Gt ={kk—L k—p,u, ;L pu,k—pn, k—1,k},
where k= y (y?2+ 3y + 1), u = y(y + 1) for some integey > 2.

Wheny = 2, (iii) is uniquely realized by the antipodal 2-cover of the Higman-Sims graph.
No examples of (iii) withy > 3 are known.

We present some examples of distance-regular graphs reldts@h@)) andUq(sl(2))
which do not satisfy hypotheses of Theorem 1.1.

LetI' = (X, R) denote the @-cycle (d > 2). Fix x € X, and writeE" = E"(x) (0 <
i <d)and7 = 7(x). Observe thar is vacuously 2-homogeneous. lgebe a primitive
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2dth root of unity, and seX~ = Y% [d — i]EfAE",, Xt = > [iJEFAEr ,, and
Y = Y% g2 EF. ThenX~, X*, andY satisfy (4). However, these matrices do not
generateZ . The 4-cycle is exceptional. In addition to thigsl(2)) structure of Theorem
3.6, the 4-cycle has thb,(sl(2)) structure of Theorem 1.1 for any non-zero complex
numberqg such thag® # 1.

LetT" = (X, R) denote the Hamming grapH (d, n), n > 3. Fixx € X, and write
Ef = E'(Xx (0<i<dand7 = T(x). By[10, p. 202, X~ = L, X* = R, and
Z = LR — RL satisfy (1). However, these matrices do not genefasndZ ¢ M*.

It is hoped that some further light will be shed upon the Q-polynomial distance-regular
graphs through our work on the 2-homogeneous bipartite distance-regular graphs. Thus in
a future paper we will relate the algebraic propertieg db those olUq(sl(2)).
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