;“ Journal of Algebraic Combinatorid® (2000), 73-84
“ (© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

The Structure of Automorphism Groups
of Cayley Graphs and Maps

ROBERT JAJCAY jajcay@laurel.indstate.edu
Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA

Received April 16, 1998; Revised May 14, 1999

Abstract. The automorphism groupsut(C(G, X)) andAut(CM(G, X, p)) of a Cayley graplC(G, X) and a
Cayley mapCM(G, X, p) both contain an isomorphic copy of the underlying gr@ipcting via left translations.

In our paper, we show that both automorphism groups are rotary extensions of theGtmughe stabilizer
subgroup of the vertexgl We use this description to derive necessary and sufficient conditions to be satisfied
by a finite group in order to be the (full) automorphism group of a Cayley graph or map and classify all the finite
groups that can be represented as the (full) automorphism group of some Cayley graph or map.
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1. Introduction and preliminaries

The only graphs considered in this paper are fi@itgley graphd™ = C(G, X) which are
finite simple graphs defined for any finite groGpand a set of generatoks C G with the
property & ¢ X andx~! e X for eachx € X. The setV(I") of vertices of the Cayley
graphT” = C(G, X) is the set of elements @& and any two verticea andb of " are
adjacent if and only ib=! - a € X. Itis easy to see that Cayley graphs defined in this way
are simple loop-less non-oriented regular graphs of valgdgy

The (full) automorphism group AdF) of a graphl” with the vertex seV (I") and edge
setE(T") is the group of all permutations of the 9étI") preserving the edge structure
E(T), i.e., the subgroup of the full symmetric group of all permutatipns Sy sat-
isfying the property thap(u) is adjacent tap(v) if and only if u is adjacent tow, for
all pairs of verticess, v € V(I'). In the case wheir = C(G, X), the automorphism group
Aut(I") can be alternately described as the subgroufzobf all permutationsy with the
propertyg(a) lp(a-x) € X for alla € G andx e X. It easily follows that the set déft
translations A defined for each elemenate G by A;(b) = a - b constitutes a subgroup
of Aut(T") isomorphic to the underlying grou@. As this subgroup acts transitively on
the set of vertice¥ (I"), every Cayley grapk (G, X) is a vertex-transitive graph. Due to
their inherent abundance of automorphisms as well as their “compact” description, Cayley
graphs have been intensely studied over the last hundred years, and have played an important
role in many interesting problems ranging from combinatorial group theory through alge-
braic combinatorics, extremal graph theory, and, especially lately, applied and theoretical
computer science.
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Our aim in Section 3 is to describe the structure of the automorphism gxoip) of
any Cayley grapl = C(G, X) in terms of aotary extensioifi7] of the groupG. This will
allow us to characterize all finite groups representable as the full automorphism group of
some Cayley graph. Related problems have been studied especially in the relation to the
classification of thgraphical regular representatiorsrepresentations of abstract groups
as regular (full) automorphism groups of graphs (which all turn out to be Cayley, due to the
regularity requirement). Among the many articles devoted to this problem, let us mention
at least the following few: [3, 5, 12, 13].

All the relevant theory concerning rotary extensions of groups will be developed in
Section 2.

Section 4 of our paper is devoted to automorphism groups of combinatorial structures
closely related to Cayley graphs—the Cayley maps. Automorphism groups of Cayley maps
are isomorphic to subgroups of the automorphism groups of their underlying Cayley graphs,
and so the problem of characterizing the automorphism groups of Cayley maps is closely
tied to the above mentioned problems concerning Cayley graphs.

LetI" be an arbitrary graph. A 2-cell embeddiNgof I" in an orientable surface is called
amap and can be simply thought of as a drawing’adn an orientable surface with all faces
homeomorphic to the open disc. Each of the original edges of the graph be endowed
in M with two opposite directions and gives thereby rise to two oppositely orieartex!
of M. We denote the set of all arcs df by D(M); note that D(M)| = 2|E(T")|. The
arc-reversing involutioracting on the seld (M) by sending an arc to its oppositely oriented
mate is denoted by . Further, given an arbitrary vertexof M, the cyclic permutation of
the set of arcs emanating franinduced by the chosen orientation of the underlying surface
will be denoted byp, and the product of all cyclic permutatiops which is a permutation
of D(M) called therotation of M will be denoted byR. It is well-known [4] that each
mapM is completely determined by its underlying graptogether with the permutations
R andT, and we shall use this fact freely throughout our paper. Thi)(automorphism
group AutM) of a mapM is the group of all permutations of the d8tM) preserving the
faces ofM, namely, the group of all permutatiogse Spv, that commute with botfiR
andT.

In our paper we focus on maps whose underlying graph is a Cayley grapH. tet
C(G, X), the arc seD(M) of any embedding of a Cayley graph can then be represented
as the set of all ordered paifg, x), g € G andx € X, with (g, X) representing the arc
emanating from the vertexand terminating at the vertex- X. Thus,|D(M)| = |G| - | X|,
the arc-reversing involutiofi can then be defined by meansTofg, x) = (g - x, x 1), and
each of the local cyclic permutations ordering the arcs emanating from a ggirtexces
a cyclic permutatiorpg of the setX defined by the formul®(g, X) = (g, pg(X)).

One special case of a Cayley graph embedding into an orientable surface that has received
particular attention is the case of an embedding for which all the local permutgcrs
equal inits action oiX to a fixed cyclic permutatiop of X. Such Cayley graph embeddings
are calledCayley mapsnd are denoted lgM(G, X, p). The main reason for the attention
they receive, beside the obvious fact that they are easy to describe, is the richness of their
automorphism groups. Each elemgnif G induces a map automorphisAy defined on
the setD(M) via left translation by means of the formukg(a, X) = (g - &, x), for all
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g € Gandx € X. ThatAgis indeed a map automorphism follows easily from the following
identities:

RAy(@, x) = R(g-a,x) = (g-a, pgalX)) = (g-a, p(X)) = Ag(a, p(x))
= Ag(@, pa(X)) = AgR(a, x),
TAy@, X) =T(g-a,x)=(g-a-x,x 1) =Ag@-x,x 1) = AgT(a, x),

where the first sequence of identities also clearly indicates why left translations do not
induce map automorphisms for arbitrary embeddings of Cayley graphs. Thus, the (full)
automorphism grouput(M) of a Cayley mapM = CM(G, X, p) acts transitively on the set

of vertices ofM viaa copy ofG, and|G| < |Aut(M)|. Moreover, itis well-known [2] that the

group of orientation preserving automorphisms of any map in an orientable surface (not just
of a Cayley map) acts semiregularly on the set of arcs of the map, i.e., the stabilizer of each of
the arcs is a trivial group. This implies the upper boihat(M)| < [ID(M)| = |G|-|X]. In

the case when the upper bouddit(M)| = |G| - | X| is achieved andut(M) acts regularly

on D(M), we say that the mal! is regular. Hence, regular Cayley maps are Cayley maps
with the richest automorphism group possible and have an eminent position among the class
of Cayley maps. For further results on regular Cayley maps see, for instance, [2, 6, 8, 9, 15,
16]. The paper [6] also contains a description of the automorphism groups of Cayley maps
in terms of rotary extensions which will allow us in Section 4 to characterize automorphism
groups of Cayley maps, and classify the abstract finite groups that can be represented as
(full) automorphism groups of Cayley maps.

2. Rotary extensions

The concept of arotary extension first occurred in relation to automorphism groups of Cayley
maps in [6], where it was proved that the automorphism grawgM ) of any Cayley map
CM(G, X, p) is a rotary extension of the underlying groGpoy a group(o) generated by

a special graph-automorphisgrstabilizing the identity & and called a “rotary mapping”.

The main idea behind rotary extensions is a generalization of the semidirect extension of a
groupH by a subgroufK < Aut(H) where the group of automorphisst(H) is replaced

by the group of all permutations di stabilizing the identity {4, denoted bystaly,, (1y).

Rotary extensions of groups form a special case of a much more general group extension
discussed in [14].

Most of the preliminary definitions and ideas for rotary extensions can be found in the
article [7], and we include them in this section for the sake of completeness. Also, the
paper [7] does not go beyond stating the basic definitions and properties. Although rotary
extensions can be defined for both finite and infinite groups, we will mostly restrict ourselves
to the finite case.

Let H be a finite group, and I&taly,, (1) be the subgroup of the full symmetric group
Sy of all permutationsy of the setH with the propertyy(1n) = 1. For eachh € H,
define a binary operatiop, on Staly,, (1n) as follows:

(@ony)@ =Mt o(h-y@), @
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forallae H, where all the multiplications are to be carried ouHnAlternately,p On ¥ =
Ay 19 Anr, whereA, -1 and A, are left translations by the indicated elements, and the
compositions are to be taken from the right. It is easy to verify that each of the operations
On is a non-associative binary operation 8taly,, (14) with a left identityidy and a
right inverse for each elemeute Staly,, (14), namely the elemert=1 - p=2(¢ (h) - idp).
Moreover, in the case when baftandyr are group automorphisms bf, the operatiormy,
is the operation of composition of group automorphisms.

Now, instead of extendingl by a subgroup afut(H), we shall extend it by special sub-
groups ofStaly, (1n) closed under all binary operatiog@s,. A subgroupK < Staly, (1n)
is said to beotary closedf ¢ On v € K, for all ¢, ¥ € K and allh € H. The simplest
possible examples of rotary closed groups are the trivial gr8tady,, (1) and any sub-
group ofAut(H), but we shall see soon that there are many more examples of rotary closed
subgroups related to automorphism groups of Cayley graphs.

Let H be afinite group, and lé be a rotary closed subgroup®faly,, (14). Therotary
extensiorof H by K, H x o K, is the set of all ordered paith, k) € H x K together with
the binary operation

@ @)« (b, y) =(@-¢0), ¢ O ¥). @

Note that the product operation in the first coordinate is the “usual” semidirect product
multiplication, while the second coordinate multiplication is defined by formula (1). This
defines a group structure ¢t x K:

Theorem 1 Let H be a groupand let K be a rotary closed subgroup of Sgalily).
Then the rotary extension K K is a group.

Proof. Although the proof of this theorem is not particularly hard, itis relatively technical,
and we shall just state here that the identity elememd of,; K is the pair(1y, idy) and

the inverse of the elemer, ¢) is the pair(p (@), ¢ @) - ¢~1(@*-idy)) (where

the element oH upon which the second coordinate mapping acts has been omittéd).

We have already mentioned that in the cEse: Aut(H), the rotary extensioil x o K
is a semidirect product dfi by K, and in this sense, the rotary extension defined here is
a generalization of the concept of a semidirect product. It is well-known that any group
productG = H - K with the propertyH N K = {1} is a semidirect product dfl by K
if and only if H is a normal subgroup d&. To characterize rotary extensions in a similar
vein, consider a grouf that can be expressed as a product of two of its subgrblygs,
G =H K andH NnK = {1g}. ThenG is also equal to the produtt - H, and, moreover,
for every pair of elements € H andk € K there exists a unique pdik € H andk;, € K
such thakh = hyk,. Let ¥ be the mapping fronK to Sy sending elements € K to
permutationsly defined by the equatiow,(h) = hy, for allh € H. We can easily see
that W is a homomorphism fronK to Staky, (1n). The following is a characterization of
rotary extensions in terms of the homomorphi¥m

Theorem 2 Let G be a group and HK be two subgroups of G such that& H - K
and HNK = {1g}. If the homomorphisn¥ : K — Staly, (14) is injective and the image
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W (K) is rotary closed in Stad), (1), then G is isomorphic to a rotary extension of H
by K.

Converselylet G = H x,; K. Then G contains two subgroups &hd K’, isomorphic
to H and K respectivelysuch that HN K’ = {1g}, G = H’ - K’, the homomorphism
¥ : K’ — Staly,, (14) is injective and¥ (K') is rotary closed in Sta®, (14).

Proof: The proof of this theorem follows along the same lines as the usual proof of the
characterization of semidirect products. a

We close this section with a simple observation that immediately follows from the injec-
tivity of W:

LetG = H xt K be arotary extension ¢i by K < Staly, (1n). ThenK NCg(H) =
{1} andH £ Z(G), whereCg(H) is the centralizer oH in G and Z(G) is the center
of G.

3. Automorphism groups of Cayley graphs

The first theorem of this section relates rotary extensions of groups to the structure of
automorphism groups of Cayley graphs.

Theorem 3 Let I'=C(G, X) be a Cayley graphand let K= Stabyyr)(1c) be the
stabilizer of the identity vertex in Adt). Then K is a rotary closed subgroup of
Staly, (1g) and AutT") = G x K.

Proof: Recallthat is the subgroup afg of all permutationg satisfying the properties

() p(1g) = 1g and (i) p(@)~*- p(ax) € X, foralla € G andx € X. Thus,K is clearly a
subgroup ofStaly, (1), and to prove the first statement of our theorem it remains to prove
thatK is rotary closed. Lep, v € K anda be an arbitrary element @&. The mapping

¢ Oa ¥ stabilizes the vertexd, asStaly, (1) itself is rotary closed. Now, leb be any
element ofG andx be any element oK. The following series of identities verifies that

¢ Oa ¥ also satisfies the condition (ii).

(¢ @2 ¥)(D) - (¢ @a Y)(bX) = (P(@) P @y (b)) - ¢ (@) ‘g @y (bx))
= ¢(ay (b)) ‘o (@9 (@) ¢ @y (bx))
= ¢(ay (b)) ¢ (ay (bx))
= ¢(ay (b)) ‘g @y (b)y) € X,

whereyr (b) "1y (bx) = y € X follows from the fact that) satisfies (ii).

Since¢ ©4 Y satisfies both (i) and (ii}p ©a ¥ belongs toK which is therefore rotary
closed.

Now, let us prove thafAut(T") is isomorphic to the rotary extensidd x,; K. Let p
be any graph automorphism &f Thenp(1g) € G, and so the composition qgf with
the left translationA, ;) is a graph automorphism df that stabilizes the identity:
Aot p(Le) = p(le) ™t p(lg) = 1g. Thus,A, 1)1 - p belongs toK and the map-
ping ® sending any graph automorphigmto the pair(o(lc), A,uq)1 - 0) is a bijective
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mapping fromAut(I") onto G x o K. It remains to prove thab is a homomorphism of
groups.

Let p and ¢ be two graph automorphisms &f. Then ®(p o ¥) = ((p o ¥)(1c),
Apopyaen - (P oY) = ((p o ¥)(de), ((p 0 ¥)(1e)) !+ (0 o ¥)). On the other hand,
D(p) *» 2(Y) = (pLe). Apaeyt - ) * (W (Le), Ayaeyt - ¥) = (p(1e), p(de)t -
p)* (W(1e), v(de) ™t y) = (p(Le)- (p(e) ™t p(¥(1e)), (p(1e) ™ p(¥(1e))t-
pLe) ™ p(Y(Le) - ¥(le) ™t ¥) = (p(¥(1e)), p(¥ (1)t ple)-p(le) - (poy)) =
((p o ¥)(Ag), ((p o ¥)(1e)) ™t - (p o)), which completes the proof of our theoremi]

The above theorem asserts that the full automorphism group of any Cayley graph has
the structure of a rotary extension of the underlying group. This result allows for a nice
extension of the well-known Cayley theorem.

Corollary 1 Let G be a finite group of order n. Then G is a rotary factor of the full
symmetric groudy, i.e., Sp is a rotary extension of G

Sn = G x ot Staly, (1c).

Proof: This is a direct corollary of the previous theorem based on the factShat
Aut(C(G, X)), whereX is the set of all non-identity elements @f and thusC(G, X) is
a complete graph. O

Itis not hard to see that Theorem 3 is true for any vertex-transitive automorphism group
of a Cayley graph—not just thielll automorphism group. The connection between auto-
morphism groups of Cayley graphs and rotary extensions goes even deeper.

Theorem 4 A finite group G can be represented as a vertex-transitive subgroup of the
full automorphism group of a Cayley graph if and only if6H x o K and there exists a
family of orbits{O; |i € Z} of the action of K on H satisfying the propertigs ¢ | O,
Uon=t=UO0 and(JOi) = H.

Proof: One of the implications of the theorem follows from the discussion preceding the
theorem. The other implication follows from the simply verifiable fact {&at a vertex-
transitive subgroup of the full automorphism group of the grépHl, | O;). O

Knowing the structure of the (full) automorphism groups of Cayley graphs, we can finally
address the problem of classifying all finite groups that are the full automorphism groups
of some Cayley graphs, i.e., we will classify all the finite gro@fr which there exists
a Cayley grapi® = C(H, X) such thatG = Aut(I") (note that dropping the requirement
thatG has to be théull automorphism group would make our task trivial: any finite group
G is asubgroupof the automorphism group of any Cayley graph base@Gpn

Let G be an (abstract) finite group.@ = Aut(I") for some Cayley graph = C(H, X),
thenH has to be isomorphic to a subgroup®f To simplify our notation, let us simply
assume thaH is a subgroup o6 itself. In the case whehl = G, the action ofG on the
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vertices ofl" is regular, and the Cayley gragh(G, X) is called agraphical regular repre-
sentationof G. Graphical regular representations (GRR’s) have been extensively studied
in the 70’s and 80’s and the concentrated effort of several authors resulted in a classification
of all finite groups possessing graphical regular representations. A nice overview of these
results can be found in [3]. Here, we are particularly interested in the following complete
list of finite groups that do not have a graphical regular representation originally introduced
by M. Watkins.

Let G be afinite group that does not have a GRR. T@da an abelian group of exponent
greater than 2 0B is a generalized dicyclic group @ris isomorphic to one of the following
13 groups

(1) 23, 23, 25

(2) Ds, Dg, D10

(3) As

(4) (a,b,c|a?=Db?=c?=1, abc= bca= cab)

(5) (a,b]|a® =b?=1, b~lab=ad)

(6) (a,b,cla®=b>=c?>=1, ab=ba, (ac)? = (bo)> =1)
(7) (a,b,cla®=b3>=c®=1, ac=ca, bc=ch, b-lab=ac)
(8) Q x Z3, Q x Z4, whereQ denotes the quaternion group.

Clearly, any group possessing a GRR can be represented as the full automorphism group of
some Cayley graph, namely, the full automorphism group of its GRR. Thus, the only groups
for which the question of whether or not they can be represented as the full automorphism
group of some Cayley graph needs to be decided are the groups from the above list. Since
these groups do not have a GRR, the only way they can possibly be represented as the
Aut(T") of some Cayley graph is via a transitive action on a Cayley graph of some proper
subgroup of theirs. These observations lead to the following classification.

Theorem5 Let G be afinite group. Then G is isomorphic to the full automorphism group
Aut(T") of a Cayley grapii” = C(H, X) ifand only if G is not an abelian group of exponent
greater thar?, a generalized dicyclic groupr one of the groupél), (3), (4), (5), (6), (7),

(8) from the above list.

Proof: The dihedral group®s, Dg, andD; are well-known to be the full automorphism
groups of the Cayley grapis(Z,, {1, —1}), n = 3,4, 5, of their cyclic subgroups. To
prove the theorem we only need to show that none of the groups listed in the theorem can
be isomorphic to somaut(T"), I' = C(G, X).

First, suppose thaG is an abelian group that does not have a GRR. Tl@s=
Aut(C(H, X)) would imply |[H| < |G| andG would have to act transitivelgut not regu-
larly on the elements dfl. This contradicts the well-known theorem that transitive actions
of abelian groups have to be regular (see e.g. [18]). Another way of arguing this statement
is to observe that if5 does not have a GRR ar®l = Aut(C(H, X)) thenG must be a
non-trivial rotary extension o, but no non-trivial rotary extension is abelian as one can
deduce from the last note of the previous section.
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Next, letG be a generalized dicyclic group. Théhis generated by an abelian group
A and an elemenlb ¢ A satisfying the relation®* = 1, b>c A andbtab = a=* for
all a € A. Suppose (by means of contradiction) tiat= Aut(C(H, X)). G, being a
generalized dicyclic group, does not admit a GRR and must be therefore a nontrivial rotary
productG = H xt K with both H and K nontrivial andK N Cg(H) = (1g). First,

K C Aas any elemertta, a € A, that would belong td& would also force the element
bababelong toA, howeverbaba= baa b = b? € Z(G) € Cg(H). Also, any involution
ae A a® = 1g, belongs taZ(G), and thusK contains no involutions. It follows that there
exists an elemerk € K, k # k=1, Consider now the mappingg and W, defined in our
characterization of rotary products in the previous section. ClebglyA = V-1 | AasAis
abelian and, k=1 € A. Furthermore, leba be any element dfi not belonging toA. Then
k-ba = ba - ks implies the identityk—1-ba = k=?baksa = bk?ackpa = bay - k?kpa.
ThusWy = W1 on all of H which contradicts the injectivity ob.

Since the paragraph about the abelian case applies also to the groups from line (1) of
the list, all that is left to prove is that none of the groups from lines (3) through (8) are
isomorphic to a full automorphism group of a Cayley graph. Using the packages “GAP”
and “nauty”, we have constructed all Cayley grafh#1, X) satisfying the property that
H is a proper subgroup of some group from (3) to (8), and all their automorphism groups.
None of the groups listed in lines (3) through (8) appeared on our list. We conclude that
none of these groups is isomorphic to the full automorphism group of a Cayley graph. This
completes the proof of our classification. O

4. Automorphism groups of Cayley maps

As mentioned in the introduction, automorphism groups of Cayley maps are isomorphic
copies of special vertex-transitive subgroups of the automorphism groups of their underly-
ing Cayley graphs. Using Theorem 3, it follows that the automorphism groups of Cayley
mapsAut(CM(G, X, p)) are rotary extensions of the underlying gro@pThis has been
first observed in [6], where one can also find the following results relevant to the theory
developed further in this section.

Let M = CM(G, X, p) be a Cayley map, and letbe a bijection of the grou® onto
itself. We say thap is arotary mappingof M if p satisfies for ala € G andx € X the
following three properties:

(i) p(le) =1g
(i) p(@tp(ax) e X
(i) p@to(@p(x)) = p(p@tp(@x))

(i.e., p is a graph automorphism @& (G, X) stabilizing the identity, and “commuting”

with p on X). For each Cayley mam = CM(G, X, p), there exists a positive integky

1 < k < |X| and a rotary mappingy such that the restriction @i to X is equal top. Let

k be the smallest integer with this property, anddebe the rotary mapping associated with

K (ox | X = pY). Thenk divides|X| andAut(M) = G x o (px), i.€., automorphism groups

of Cayley maps are rotary extensions of the underlying group by a cyclic subgroup of order
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|X|/k. The paper [6] also provides us with a useful formula defining the rotary mapping
ok . Leta be an arbitrary element &, and leta = x;Xo, ..., X, be any expression @fin
terms of the generators froX. Then

Iok(a‘) = pk(XlX27 ceey Xn) - blb27 ceey bn7 (3)

whereb; = p(x1), biy1 = p' (b 1), for1 <i < n—1, and the exponenksare the natural
numbers determined by the equations; = p' (x%).

In what follows, we shall use the above results from [6] to classify the finite groups
isomorphic to some full automorphism group of a Cayley map.

First we state an analogue of Theorem 4 the proof of which follows from the above stated
description of the automorphism groups of Cayley maps and from an argument similar to
the one in the proof of Theorem 4.

Theorem 6 A finite group G can be represented as a vertex-transitive subgroup of the full
automorphism group of some Cayley map if and only EG x o (¢) and there exists a
collection of orbits{O; |i € Z} of ¢ acting on H such that all orbits are of the same size
their union X= (JO; is closed under taking inverseh, ¢ X, and X generates all of H.

Next, consider the following analogue of the concept of a GRR for a gBuf Cayley
map CM(G, X, p) is said to be anapical regular representatigrMRR, for a groupG
if Aut(CM(G, X, p)) = G. Thus, an (abstract) group is said to possess an MRR if it
can be represented as a vertex-regular full automorphism group of some Cayley Gap of
Naturally, a question arises which finite groups allow for an MRR.

The following theorem provides a complete answer to this question together with a
classification of all finite groups representable as full automorphism groups of Cayley
maps.

Theorem7 Let G be afinite group. Then G is isomorphic to thik automorphism group
Aut(M) of some Cayley map M CM(H, X, p) ifand only if G is not one of the two groups
Zzand Z2.

Moreover each finite group not isomorphic t8; or Z2 also possesses an MRR.

Proof: LetG be afinitegroup. If' = C(G, X) isagraphical regular representation@r
thenAut(C M(G, X, p)) = G, for all cyclic permutationg of X. This is due to the fact that
Aut(C M(G, X, p)) is isomorphic to a vertex-transitive subgroupAaft(C(G, X)) = G.
Thus, any finite grougs that has a GRR has also an MRR and is isomorphic to the
automorphism group of some Cayley map. Once again, we only need to focus on the
groups that do not have a GRR. We shall, however, adopt a different approach this time,
and we shall prove the theorem for all sufficiently large finite groups at once, regardless of
whether they have a GRR or not. The proof will be slightly different for groups of even
and odd order.

First, letG be a finite group of an odd order greater than or equal to 13.XLe¢ the
set of all non-identity elements @3, X = {a|a € G,a # 1g}. We will construct a
cyclic permutationp = (p1, P2, - - ., Pix;) of X such thatAut(CM(G, X, p)) = G. Since
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|X| > 12 and|G]| is odd, we can find two distinct elementsandy from X such that all
five elementx, x~1, y, y~ andx - y are different. Now, lepp be any cyclic permutation
of X with the first five elements defined as follows; = X, pp =X, p3 =Yy, pa =y *
and ps = X - Yy, that satisfies the property that each elemenXd§ listed in p next to

its inverse (i.e.,pi‘l is equal to either the predecessor or the successgx)ofSuch a
cyclic permutation ofX clearly exists asX contains no involutions. Recall now that the
results from [6] yield thalAut(CM(G, X, p)) = G if and only if the smallest divisor of
|X| associated to a rotary mapping|$| itself in which case the rotary mappingy is
simply equal tadg andAut(CM(G, X, p)) is a rotary extension d& by a trivial group.
We are going to alter the permutatignin such a way that will guarantee that none of
the bijectionspy defined by formula (3) and associated with a divikaf | X]|, k # | X],
will be equal top* on X. Thus, the automorphism group of the resulting Cayley map will
be a rotary extension a& by a trivial group and will therefore be isomorphic@ Let

J = {1k, ko, ..., kj} be the list of divisors of X| smaller than X| listed in an increasing
order. First, we are going to “disable” the rotary mappjing Consider the image of - y
under the mapping, defined by formula (3) p1(x - y) = pt(x) - p*((pt(x))~1), where

I, is the solution ofy = p'l(x;l), i.e.,l; = 1 (sincey follows immediately aftex 1 in p).
Hence,p1(x - y) = p(x)- pL((p(x))"H) =x71- p((x H ™) =x71- p(x) =x~*-x1.On
the otherhandp(x-y) = ps. Inthe casewheps # x~1- x1, we obtaino; (x-y) # p(x-y),
hence,p1 | X # p and therefore the smallest divisor [0f| for which the corresponding
ok equalspX on X is not 1 (and|Aut(CM(G, X, p))| < |G| - |X|/1). A more interesting
situation occurs wheps = x~1 - x 1. In this case there is a chance far| X to be equal
to p, which would cause the automorphism group to be too big. To avoid that, we will alter
the permutatiorp by swapping the fifth and sixth elementpfi.e., if ps = x~* . x~* and

ps = b, we will setps = bandps = x~1 - x~1. If we consider the rotary mapping
defined by the new permutatignand formula (3), we still obtaip(x - y) = x~1. x~ (as
the first four elements gb have not been changed!), whiéx - y) = ps = b is not equal
tox~1. x~1 anymore, angh; | X # p. Thus, in both caseg equal tox— - x 1 or not),
we obtain a permutatiop such thajAut(CM(G, X, p))| < |G| - | X|/1.

In order to “disable” all the possible rotary mappings other thgg, we just need to
repeat the above described swapping process for,&le 7. We will do itusing induction.
We have already shown a way to disable the rotary mappingthout changing the order
of the first five elements. Now suppose (the induction hypothesispthpX # pki for all
j < n. We will alter the permutatiop in such a way that will disablg,, ., while at the same
time the alteration will not affect the fact that, | X # pk for j < n. Consider the image
of x-y underpy,, as defined by formula (3)x,,, (X-y) = p(x)- p((pk+1(x))~1). The
exponent; is equal to 1 again (we have not changed the order of the first five elements), and
thus, ok, (X - y) = P1(x) - PP (x) ™. IF Pt (x-y) # pfr(x) - p((p*+2(x)) ™),
thenpy,,, | X # p*+, and we do not need to do any changesp/f:(x - y) = p*+(x) -
p((pk+(x))~1), then we need to swap the elemgaft-(x - y) = px,.,+s With its right
neighbor. Itis obvious that this swap will disalgig,,. Moreover, none of the computations
that disabled the mappings, j < n, will be affected by this change, as all the images
pi(x-y) = pl(x)- p((p!(x))~1) and p! (x - y), as well as all the elements used in their
computation are positioned left of the swap, and are not changed by the swap (notice that
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the fact thatp((p! (x))~1) is to the left of the swap is due to the fact that we have started
with a permutatiorp where elements and their inverses were close one to another).

To complete this proof by induction we just need to argue that the last swap (the one
disablingp;) will not accidentally spill over to the beginning of the permutation and change
the elementp; = x. This follows from our choice of the size of, |X| > 12. The last
two elements that might possibly be swapped @es and py; 16, Wherek; is the largest
divisor of | X| not equal toX. Hence, the swap will not spill over tp; if k; + 6 < | X|.
SinceG is an odd degree groupX| is even, and the largest divisky of | X| is at most
|X]/2. It follows thatk; + 6 < |X]if (|X]/2) +6 < |X],i.e.,[X]| > 12 or|G| > 13, and
this requirement is enough to guarantee that we can perform all the changes.

This completes the proof by induction, and we conclude that any finite géoofodd
order>13 allows for the existence of a cyclic permutatipof the setX = G — {1} such
thatAut(CM(G, X, p)) = G.

Now, suppose thdg is a finite group of an even order greater than or equal to 8 XLet
again be the set of all non-identity elements3f SinceG is of even order, it contains at
least one involutiorx, and sincg G| > 8, it also contains an elemewptdifferent fromx.

Let p= (p1, P2, .- -, Pix)) be again a cyclic permutation &f. There are two possibilities

to define the beginning op this time, depending on whethgrcan be chosen to be an
involution (i.e., whethes contains more involutions than jusj or not. If y can also be
chosento be aninvolution, spt = x, p = yandps = x - y. Ifthere are no more involutions
besidex, choose the elementin such a way so that the four elementsy, y™1, x - y are

all different (this is possible sind&| > 8) and choose the beginning pfto be p; = X,

P =Y, p3 =Yy tandps; = x-y. In both cases, complete the permutatipiso that

the elements that are not involutions stand next to their inverses. Next, starting from the
above described permutatigndisable the non desirable rotary mappings just like we did

in the case of odd order groups. This can be done by induction as long the last swapped
element does not spill over tp;. The last two elements that might possibly be swapped
are py; +3 and pg; +4 Or Py;+4 and py, 15 depending on which of the two possibilities fpr

we are using (wherk; is once again the largest divisor). Thus, the last swap will not effect
p. if kj +5 < |X]. Since|X| is odd,k; is at most X|/3, which finally implies| X| > 7.5

or |G| > 10. Finally, in the case whes| = 8, the seiX is of size 7. The only divisor of 7
smaller than 7 is 1, and so we only need to disahleThere is obviously enough room to

do that, which extends our arguments to all even order gr@upksize at least 8. We will
leave the details of this part of the proof out as they are quite similar to the odd order part.

The above proofs leave us with only finitely many groups that may not be isomorphic to
the automorphism group of any Cayley map, namely, the odd order g@up<s, 23,

Z7, Zs, Z3, and Z1, and the even order grou, Sz, Z4, 222, and Z,. Following the
above ideas about choosing the permutajioone can easily find permutatiomssuch
thatAut(CM(G, X, p)) = G for all the groups in this list bugs andZZZ. Finally, one can
easily construct all the Cayley maps based on the remaining two groups—there is only one
Cayley map forZs (even if we drop the requirement thd&tmust generate the group, we
only obtain one more map that way), and only two isomorphic classesa¢four, if we

drop the requirement foX to be a generating set). None of the maps has efger 22

as its automorphism group. Moreover, none of the two groups can be the automorphism
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group of a Cayley map of a smaller group as that would lead to a non-trivial rotary exten-
sion that is non-abelian. We can conclude that the only groups that are not isomorphic to
the full automorphism group of some Cayley map and that do not have an MRRzare
andz2. m

Itfollows from the above theorem, that each finite gr@igifferent from=3 or 27 allows
for the existence of a Cayley map of a complete graph bas&giwiih the automorphism
group being as small as possible. The opposite side of the spectrum, namely the finite
groupsG that give rise to the existence of a Cayley map based on a complete gréph of
that has aegular automorphism group have been studied by James and Jones in [10] who
have shown that the only regular Cayley maps whose underlying graphs are complete are
balanced Cayley maps of ordpf, p a prime.
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