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Abstract. We study the four-weight spin modelgv{, W>, W3, W) introduced by Eiichi and Etsuko Bannai
(Pacific J. of Math, to appear). We start with the observation, based on the concept of special link diagram, that
two such spin models yield the same link invariant whenever they have the sam@/paiv4), or the same pair

(W2, Wy). As a consequence, we show that the link invariant associated with a four-weight spin model is not
sensitive to the full reversal of orientation of a link. We also show in a similar way that such a link invariant is
invariant under mutation of links.

Next, we give an algebraic characterization of the transformations of four-weight spin models which preserve
Wi, W5 or preservé,, Wy. Such “gauge transformations” correspond to multiplicatiowgf\W, by permutation
matrices representing certain symmetries of the spin model, and to conjugathn \8f by diagonal matrices.

We show for instance that up to gauge transformations, we can assunié, t{has are symmetric.

Finally we apply these results to two-weight spin models obtained as solutions of the modular invariance
equation for a given Bose-Mesner algeBrand a given duality oB. We show that the set of such spin models
is invariant under certain gauge transformations associated with the permutation matBcbstime case where
B is the Bose-Mesner algebra of some Abelian group association scheme, we also show that any two such spin
models (which generalize those introduced by Eiichi and Etsuko Bandaidity. Combin.3 (1994), 243-259)
are related by a gauge transformation. As a consequence, the link invariant associated with such a spin model
depends only trivially on the link orientation.
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1. Introduction

Spin models are basic data for a certain construction of invariants of oriented links in
3-space. They are given in terms of matrices (satisfying certain equations) which are used
to compute the link invariant on link diagrams. The original construction by Jones [18]
involved a pair of symmetric matrices, which we call here a symmetric two-weight spin
model. This was generalized by the two-weight spin models of Kawagoe, Munemasa,
Watatani [21] which consist of a pair of not necessarily symmetric matrices. Finally Eiichi
and Etsuko Bannai [2] introduced the much more general four-weight spin models which
involve four matricedVy, Wo, Ws, W

So far, research on spin models has been mostly devoted to two-weight spin models,
which exhibit nice connections with association schemes: the spin model matrices belong
to some Bose-Mesner algebra and define a duality on this algebra via the so-called modular
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invariance equation (see [3, 14, 16, 24]). We study here four-weight spin models, also
obtaining some new results on two-weight spin models whose proof apparently involves
the concept of four-weight spin model in an essential way.

The content of this paper can be summed up as follows.

In Section 2 we give the necessary preliminaries on link diagrams, link invariants and
spin models.

Then Section 3 deals with special link diagrams. Our starting point is the observation that
for such link diagrams, the computation of the link invariant associated with a four-weight
spin model can be done using only the matridésWs, or only the matriceS\V,, W,. Every
link can be represented by a special diagram, and hence if two four-weight spin models
have the same matricé¥;, Ws, or the same matricedh, Wy, they yield the same link
invariant. This is used to show that the link invariant associated with any four-weight spin
model is invariant under simultaneous orientation reversal of all components. We also use
the concept of special link diagram to show that link invariants associated with four-weight
spin models are invariant under mutation of oriented links. This is a strong restriction on
such invariants, since for instance many quantum group invariants (as defined for instance
in [25]) can distinguish mutant links [23].

In Section 4 we describe algebraically the transformations of four-weight spin models
which preservdVy, Ws or preservé\,, W,. We call them gauge transformations to point out
their similarity with transformations of spin models as considered in statistical mechanics
(they have also been considered independently in [10] under the same name). These gauge
transformations belong to the following two types: multiplicatiogf W, by permutation
matrices representing certain symmetries of the spin model, and conjugatan 6k by
diagonal matrices. We show for instance that up to gauge transformations, we can assume
thatW, W5 are symmetric. We have no similar result #b, W,;. However, some power
of W, must be symmetric (and likewise fY,).

In Section 5 we consider two-weight spin models obtained as solutions of the modular
invariance equation for a given Bose-Mesner algébeand a given duality oB. We show
that the set of such spin models is invariant under certain gauge transformations associated
with the permutation matrices iB. In the case wher8 is the Bose-Mesner algebra of
some Abelian group association scheme, we also show that any two such spin models
(which generalize those introduced in [1]) are related by a gauge transformation. As a
consequence, since one of these spin models is symmetric, the link invariant associated
with such a spin model depends only trivially on the link orientation.

We conclude in Section 6 with some directions for future research.

2. Spin models for link invariants

For a more complete survey on this topic, see [12].

2.1. Links and link diagrams

For more details on this section the reader can refer to [7, 8, 20].
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Figure 1

A link consists of a finite collection of disjoint simple closed curves smoothly embedded
in R® (these curves are ttmponent®f the link). If each component has received an
orientation, the link is said to bariented (Oriented) links can be represented byiénted
diagrams A diagram of a link is a generic plane projection (there is only a finite number
of multiple points, each of which is a simple crossing), together with an indication at each
crossing of which part of the link goes over the other. For oriented diagrams, the orientations
of the components are indicated by arrows. See figure 1 for examples. An oriented diagram
L has two kinds of crossings, characterized Isygmas shown on figure 2. THe&it number
(or writhe) of L, denoted byT (L), is the sum of signs of its crossings.

A diagram L will be considered as a graph embedded in the plRfiewith sets of
vertices and faces denoted BY(L), F(L) respectively. The vertices df correspond to
the crossings, the edges are the connected componehts-o¥ (L), and the faces are
the connected components®f — L. We allow a special kind of edge calledrae loop

N /
N/

+1 -1

Positive crossing Negative crossing

Figure 2
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which is embedded as a simple closed curve disjoint from the remaining part of the graph.
All edges of an oriented diagram will be directed in agreement with the orientation of the
corresponding link component.

(Oriented) diagrams are considered up to isomorphism of (directed) plane graphs (pre-
serving the crossing information at each vertex).

2.2. Linkinvariants and Reidemeister moves

Two links areambient isotopid there exists an isotopy of the ambient 3-space which carries
one onto the other (for oriented links, this isotopy must preserve the orientations). This
natural equivalence of links is described in terms of diagrams by Reidemeister’s Theorem,
which asserts that two diagrams represent ambient isotopic links if and only if one can
be obtained from the other by a finite sequence of elementary local transformations, the
Reidemeister moveShese moves belong to three basic types described for the unoriented
case in figure 3.

A move is performed by replacing a part of diagram which is one of the configurations of
figure 3 by an equivalent configuration without modifying the remaining part of the diagram.
For the oriented case, all local orientations of these pairs of equivalent configurations must

be considered.

Type |

A

l

—~—
TN

XX

Figure 3 Reidemeister moves.



ON FOUR-WEIGHT SPIN MODELS AND THEIR GAUGE TRANSFORMATIONS 245

Reidemeister's Theorem allows the combinatorial definition ¢ifila invariant as an
assignment of values to diagrams such that the value of any diagram is preserved by
Reidemeister moves. As shown in [18], one may use partition functions of statistical me-
chanical models, and in particular of spin models, to define such assignments.

2.3. Spin models: Generalities

Link invariants associated with spin models are defined as follows. Given a link diagram
L, we first color its faces with two colors, black and white, in such a way that adjacent
faces receive different colors and the unbounded face is colored whitexX beta finite
non-empty set oépins Let B(L) be the set of faces df colored black. A state of is a
mapping fromB(L) to X. Loosely speaking, spin modelwill be a certain prescription for
associating with every stateand vertexv of L a complex numbefv, o) called thelocal
weight ofc at v. Then theweightof a state will be the product of local weights over all
vertices (this product will be set to 1 if there are no vertices). Finally#rétion function

Z(L) will be the sum of weights of all states. Thus

zb= > ] wo. 1)
o:B(L)—X veV(L)

One can write down natural conditions on the spin model (catieariance equations
which will guarantee that the partition function, multiplied by a suitaibdemalization
factor, is not modified by Reidemeister moves and hence defines a link invariant. This nor-
malization factor consists of two terms. The first one (needed to accomodate Reidemeister
moves of type 1) necessarily involves an orientatiorLofand is equal tg.~ ™", where
u is some non-zero complex number called thedulusof the spin model. The second
one is, assuming that is connected as a graph; 'BW!, whereD is some square root of
the number of spins (this connectivity restriction is not significant since every link can be
represented by a connected diagram).

To sum up, if a spin model satisfies the invariance equations, the assignment of the
quantity T D~IBLIZ(L) to every connected oriented diagrandefines an invariant of
oriented links.

Clearly the link invariang~ T D~1BLIZ(L) takes the valud® if L consists of one free
loop, andD is called thdoop variableof the spin model.

2.4. Spin models: Definitions

Let us now describe spin models more precisely.

The initial definition of [18] was given in terms of a pair of symmetric matrices. Then
it was generalized to non symmetric matrices in [21]. Finally it was further generalized
in [2] under the name dbur-weight spin modelby using four matrices. To simplify the
exposition we shall begin with this last generalization, which will be the main topic of the
present paper.

A four-weight spin model is given by four matric&d;, W, W3, W, with rows and
columns indexed by the set of spiKs Given a stater and vertex of the oriented diagram
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Figure 4 Local weights of a four-weight spin model.

L, the local weightv, o) is defined on figure 4, whereandy denote the values a@f on
the black faces incident to andW; (x, y) denotes the entry of the matri& (i = 1..4)
corresponding to row and columny. Note thatx andy are distinguished by reference to
the orientation of the upper part of the linkat We shall say that the vertexis of type
W (i = 1..4) if figure 4 prescribes the use @f; to computev, o).

Let us now present briefly the invariance equations (see [2]).

The study of Reidemeister moves of type Il (there are four oriented versions of the
unoriented move depicted on figure 3, and two local black and white face-colorings for
each of these) forces the introduction of the normalization @mf®! (whereD? = | X|)
and leads to the equations (to be satisfied foad in X):

YW@, x)Ws(x, b) = |X|8(a, b), @
xeX

Wi (a, b)Ws(b,a) = 1, 3
YW@, x)Wa(x, b) = |X|8(a, b), @
xeX

Wz(a, b)W4(b, a = 1, (5)

wheres is the Kronecker symbol.

Note that (3), (5) imply that the matric&¥ (i = 1..4) have non-zero entries.

A similar study of Reidemeister moves of type Il leads in [2] to sixteen equations (in
that paper the mirror image of the Reidemeister move of type Il depicted on figure 3 is also
considered, but this is unnecessary since both versions are equivalent under Reidemeister
moves of type Il). However it is shown in Theorem 1 of [2] that, assuming (2), (3), (4), (5),
these sixteen equations can be separated into two groups of eight in such a way that all equa-
tions in one group are mutually equivalent. Thus, to obtain the invarianBe &Yz (L)
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under oriented Reidemeister moves of types Il and Ill, it is enough to impose one equation
in each group, together with (2), (3), (4), (5). There is another way to see this: it is shown
in [26] that any oriented version of the Reidemeister move of type Il depicted on figure 3
(there are eight of them) can be replaced by any other one combined with suitable oriented
Reidemeister moves of type II. Thus, assuming invariance under oriented moves of type Il,
we can reduce the invariance under oriented moves of type Il to the case of one arbitrarily
chosen such move. For reasons which will become clear later, we shall choose the following
invariance equations for Reidemeister moves of type Ill, to be satisfied farkalt in X:

D Wa(a, x)Wa(b, X)Wa(x, ) = DWa(b, 8)Ws(a, ¢)Ws(c, b) (6)
xeX
D Wa(x, )Wa(X, b)Wa(c, X) = DWi(a, b)Ws(b, ©)Ws(c, &). 7
xeX

These correspond to the two local black and white face-colorings of the move of type Il
depicted on figure 3, oriented in such a way that the triangle in the left-hand side becomes
an anticlockwise circuit. In the terminology of [2], (6) and (7) are equatiogsahid 111,
respectively.

We observe that the exchangeao&ndb in (6) does not modify the left-hand side and
transforms the right-hand side into the right-hand side of (7). Thus we may replace (6),

(7) by

> Wa(a, x)Wa(b, X)Wa(x, ¢) = DW (b, 8)Ws(a. ©)Ws(c, b)

XeX

= sz(x, a)Wa(x, b)Wa(c, X)
xeX

= DWi(a, b)Ws(b, c)W5(c, a). (8)
Finally, takingc="b in (6), (7) and using (3), (5), we obtain:

ZWz(a, X) = ZWQ(X, a) = DWs(b,b) foralla, bin X.

XeX XeX

Hence there exists a non-zero complex numbstch that

Ws(@a, a) = L, > W@ x) =) Wap(x,a)=Dup' forallainX. (9)

xeX xeX

It then easily follows from (3) and (4) that

Wi(a, a) = 4, ZW4(a, X) = ZW4(X, a)=Du forallain X. (10)

xeX xeX

Egs. (9) and (10) imply the invariance @f "™ D~IB(MW! Z(L) under oriented Reidemeister
moves of type |. Moreover, assuming (2), (3), (4), (5), (8), this quantity is still invariant
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under oriented Reidemeister moves of type Il and Ill, since the Tait number is also invariant
under these moves.
We now sum up the above discussion in the following definition.

Definition 1 A four-weight spin modedn a finite non-empty seX is a 5-tuple Wy, Ws,
Ws, Wy, D), whereD? = |X| and Wy, W, W5, W, are complex matrices with rows and
columns indexed by which satisfy the following equations for &l b, cin X:

D Wia, x)Wa(x, b) = [X|8(a, b, )
xeX
Wi(a, byWs(b, a) = 1, (3)
Y Wa(a, )Wa(x, b) = |X|5(a, b), @
xeX
Wa(a, b)Wa(b, @) = 1, (5)
>~ Wa(a, x)Wa(b, X)Wa(x, ©) = DWa(b, a)Ws(a, c)Ws(c, b)

xeX

= Z W (x, a)Wa(Xx, b)Wa(c, X)

xeX

= DW;(a, byWs(b, c)Ws(c, a). (€]

These equations imply that there exists a non-zero complex nymloatled themodulus
of the spin model, such that, for @lin X,

We@a)=p", ) Wo(@x) =) Wa(x,a)=Du ", ©)
xeX xeX
Wi@a)=pu, Y Wa@x)= ) Ws(x,a)=Dp. (10)
xeX xeX

Theassociated link invarianis defined for every connected oriented diagratmy .~
D~BMI Z(L), where

zv= Y, ][I wo

o:B(L) > X veV(L)
and the local weightév, o) are defined on figure 4.
We shall be interested in the following special cases.

Definition2 A two-weight spin mod@n a finite non-empty set is a triple W, , W_, D),
where D?=|X| and W,, W_ are complex matrices with rows and columns indexed by
X, such that W, , W, W_, W_, D) is a four-weight spin model. It is callesymmetric

if the matricesW,, W_ are symmetric. The modulus o\, , W_, D) is the modulus of
(W,, W, W_, W_, D), and similarly for the associated link invariants.
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It can be shown that the above definitions are equivalent to the definitions given for
“generalized spin models” in [21] or for “two-weight spin models of Jones type” in [2].
Moreover, symmetric two-weight spin models are exactly those introduced in [18]. These
symmetric models have the property that the corresponding partition function can be com-
puted on unoriented diagrams (see figure 4) and hence the associated link invariant depends
only trivially on the link orientation via the normalization tepat ™1,

We shall make use of the following immediate consequences of (2), (3), (9), (10). For
every two-weight spin modelW,, W_, D) on X of modulusu, and for alla, b in X:

Y Wi@ )W (x, b) = |X| 5@, b), (12)
XeX
W, (a,b)W_(b,a) =1, (12)
W_(a,a) = n L, D> Wi x) =) Wi(x.a)=Du", (13)
xeX xeX
W, (a,a) = u, ZW_(a, X) = ZW_(X, a) =Du. (14)
XeX xeX

2.5. Exchanging black and white

Recallthatto define the link invariant associated with a spin model we have chosen arbitrarily
to color the unbounded face of every connected oriented diagram white (and then the color
of every face is determined). If we had chosen to color the unbounded face black (then
black and white are exchanged for all faces), we would also have obtained a link invariant.
We shall need the basic (and not surprising) fact that this link invariant is the same as the
first one. The proof for four-weight spin models is an immediate extension of the one given
for symmetric two-weight spin models in [18] (Proposition 2.14). So from now on we shall
choose freely the black and white face-coloring to evaluate the link invariant associated
with a four-weight spin model.

2.6. A remark on normalization

It is clear from Definition 1 that if W1, W>, W3, Wy, D) is a four-weight spin model, the
same holds forAWy, A~*Ws, A~Ws, AW, D), wherex is any non-zero complex number.
We shall say that these spin models pr@portional Given a connected oriented diagram
L, replacing the first spin model by the second one multiplies the weight of each state, and
hence the partition function, BY  (see figures 2 and 4). On the other hand, if the first spin
model has modulug, the second one has modulug. Hence proportional four-weight
spin models yield the same link invariant.

Thus the concept of modulus for four-weight spin models might appear to be redundant.
However it is essential for the study of two-weight spin models.
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K== X

Figure 5

3. Special diagrams and applications
3.1. Special diagrams

LetL be an oriented link diagram. If we “smoothe out” each crossing as shown on figure 5,
we obtain an oriented link diagram consisting only of free loops. These free loops are
called theSeifert circlesof L and can be identified with some directed circuits of the
directed grapt.. Clearly every vertex off is incident to exactly two distinct Seifert circles.
The diagranil will be calledspecialif no Seifert circle lies in the interior of another.

We shall give the proof of the following Proposition 13.15 in [7] since we shall need later
some extension of it.

Proposition 1 Every oriented link can be represented by a connected special diagram.

Proof: Let us start with some connected oriented diagiarof the given linkL. For

every Seifert circleC of L we introduce a disk with boundai@, and for every vertex
incident with the two Seifert circle€1, C, we introduce an appropriately twisted band
with ends attached to the disks correspondin@€icand C,, thus obtaining a connected
surfaceSwith boundaryL. This surface is easily seen to be orientable. We enSiadR3

in such a way that the disks are disjointly embedded in the @&nehe twisted bands are
pairwise disjoint, and the projection of each band drfds disjoint from all disks except

for its two ends. We may assume that the projection of the bourldarfyS onto R? is
generic and hence yields a diagrdrhof L. We may arrange so that all crossingsLof

occur either between two opposite sides of the same band, or in groups of four according to
the two situations depicted on figure 6 or to the oppositely oriented ones (these situations
correspond to the crossing of two distinct bands, or of two separate sections of the same
band). We replace all configurations depicted on figure 6(i) by the configuration of figure 7,
and perform similar replacements for the oppositely oriented configurations. It is then easy
to see that the resulting diagramlofs special. O

3.2. Four-weight spin models with the same associated link invariant
Let us call a special diagraeven(respectively:odd) if it is endowed with a black and

white face-coloring such that the unbounded face is white (respectively: black). Clearlyinan
even special diagram the interior of every Seifert circle is a black face, and consequently
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Figure 6. Crossings ol.’ as in Proposition 1.

Figure 7.  Link diagram modification as in Proposition 1.

to compute orl the partition function of a four-weight spin modéN(, W,, W3, Wy, D)
only the matriced\V,, W, are used (see figure 4). Similarly, in an odd special diagtam
only the matrice$V;, W5 are used.

Proposition 2 Let (W1, Wo, W5, W, D) and (W], W3, W;, W,, D) be four-weight spin
models on the same set of spins X. if WW,, W, = W,, these two spin models have the
same associated link invariarand similarly if W = W], W5 = W;.

Proof: By Proposition 1, we may represent any oriented link by a connected even (re-
spectively: odd) special diagram. The partition functions/sf,(\W., W5, Wy, D) and (V;,

W, W3, Wi, D) (respectively: Wy, W, W3, W,, D)) will coincide on this diagram. The
same holds for the associated link invariants since by (9) the modulus of a four-weight spin
model Wy, W>, W3, Wy, D) is determined either bWw; or by W, andD. O
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Remark By (3), (5) the two equalitie8V, = W, W, = W, are equivalent, and similarly
for W, = W]/_, W3 = WS/

3.3. Invariance under orientation reversal

Thereverseof an oriented link is obtained by reversing the orientations of all its components.
So far the following result was only known for the trivial case of symmetric two-weight
spin models.

Proposition 3 A link invariant associated with a four-weight spin model does not distin-
guish between an oriented link and its reverse.

Proof: We denote byM the transpose of a matrid. Let (W;, Wa, Wa, W, D) be a
four-weight spin model. We claim thatfy, Wa, 'Ws, Wy, D) and Wy, 'Wa, Ws, 'W;, D)

are also four-weight spin models. Indeed Egs. (3), (5), (8) are obviously invariant under
transposition ofV;, Ws or of W,, W,. The same holds for Egs. (2) and (4) since they can
be written asV;Ws = | X|I andW,W, = | X|| respectively, wheré denotes the identity
matrix. Hence ¥V, 'Ws, 'Wa, 'W;, D) is a four-weight spin model which by Proposition 2
has the same associated link invariant\ag, \W», W3, W,, D). But on the other hand it is
clear from figures 2 and 4 that computing the link invariant associated With ¥\,, 'Ws,

"W, D) on some oriented link amounts to compute the link invariant associatedWith (

Wa, W3, Wy, D) on the reverse of that link. O

3.4. Changing signs

Proposition 4 Let (Wy, Wa, W3, W,, D) be a four-weight spin model. ThérW;, W,,
—Wjs, Wy, —D) and (W, —Wh,, W3, —W,, — D) are also four-weight spin models. For any
oriented linkL, the link invariant associated with any of these two models differs from the
link invariant associated witliw,, W», W5, Wy, D) by a sign factor—1)*%), where ¢L)
denotes the number of componentd_of

Proof: Itis clear from Definition 1 that-t Wy, W,, —W3, Wy, —D) and Wy, —W5, W3,

—W,, —D) are four-weight spin models (see also Proposition 3 of [2]). Since they are pro-
portional, they have the same associated link invariant. Let us represent the oriented link
by the connected even special diagranThe partition functions ofWy, Wa, Ws, W,, D)

and Wy, W, —W3, Wy, —D) on L are equal. Since these two spin models have oppo-
site moduli and opposite loop variables, the associated link invariants differ by a factor
(=1~ TL=BLI — (—pVOHBLI It is well known (and easy to prove by induction
using the smoothing operation of figure 5) that, for any oriented diagram, the numbers of
components of the corresponding link, of crossings, and of Seifert circles, add up to an even
number. Since is an even special diagram, it hg&(L)| Seifert circles, and this shows
that(_l)\V(L)\HB(L)\ — (_1)C(L)_ O
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Remarks

(i) The above result shows that in the definition of spin models we could ask without loss
of generality thaD be positive.

(i) Let i? = —1andletW;, W, W, W,, D) be afour-weight spin model. TheiV{y, i W,
—iW3, —iW,, —D) is also a four-weight spin model proportional 8/, —W5, W5,
—W,, —D). Hence we obtain a new proof of Proposition 12 of [15]. Note as a spe-
cial case that if (V,., W_, D) is a two-weight spin modelj\,, —iW_, —D) is also a
two-weight spin model, and the two associated link invariants differ by the sign factor
(—1)°® for every oriented link..

3.5. Invariance under mutation

The following definitions are essentially taken from [22].

Let L be a link inR® such that there is a 2-sphere which mdetsansversely in ex-
actly four points. Up to ambient isotopy, we may assume that this 2-sphfpe ig 2)
R3/x? + y?2 4+ 72 = 2}, that its intersection with. consists of the four points (1, 0),
(-1,1,0), (-1, -1,0), (1 —1, 0), and thaL is orthogonal to the sphere at each of these
points. We now apply to the interior of the sphere a rotation through angleout one of
the coordinate axes. The union of the part. dfituated outside the sphere with the rotated
part of L situated inside yields a new link’. If L is oriented, we keep its orientation
outside the sphere, and inside the sphere either we keep it or we reverse it in order to obtain
a consistent orientation f&r'. The new linkL’ is said to be obtained froin by amutation
If we assume that the projection bfonto the &, y)-plane is generic, the same holds for
L’, and we can easily describe mutations in terms of the corresponding diagrams: rotations
through angler about thex- or y-axis are replaced by plane reflections with respect to
the same axis, rotation about thexis becomes rotation about the origin (0, 0), and the
indications of crossing structure at vertices are transferred in the obvious way. See figure 8
for an (unoriented) example.

The following result generalizes Proposition 5 of [14].

Proposition 5 Any link invariant associated with a four-weight spin model is invariant
under mutation.

Proof: We consider a four-weight spin mod&\V(, W, W5, W,, D) and we want to show

that the associated link invariant takes the same value on two oriented_ljnKsrelated

as above by a mutation. We may assume that this mutation corresponds to a rotation
about thex- or y-axis since the composition of these two mutations will yield a mutation
corresponding to a rotation about th@xis. We consider diagranis, L’ which we may
assume to be connected, obtained from generic projectionslofonto the &, y)-plane.

The plane reflection (restricted to the digk, y) € R?/x? + y? < 2}) which transforms

L into L’ defines a bijection from the set of vertices (respectively: faces) tof the set

of vertices (respectively: faces) bf and we denote by’ (respectively: f') the image of

the vertexv (respectively: face ) of L under this bijection. We choose a black and white
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K-axis y-axis

Figure 8 Examples of mutation.

face-coloring forL. such that the points of intersection of the reflection axis with the circle

C = {(x,y) € R?/x? + y? = 2} lie inside black faces which we denote lfy, f,. We

have a similar black and white face-coloring torsuch that for every facé of L, f and

f’ have the same color. Drawing the reflection axis as vertical and exchanging the roles
of L, L’ if necessary we can restrict our attention to one of the three situations depicted in
figure 9(i) and (ii) or (iii) (this figure describes symbolically the effect of the plane reflection
on the relevant part of the diagraim to obtainL’ all orientations must be reversed in the
right-hand sides of (ii) and (iii)).

We define a bijection between the statek @ind the states df’ by associating with every
stateo of L the states’ of L’ such that’'(f’) = o (f) for every black facef of L. Let us
consider a state and a vertex of L. Clearly, ifv lies outside the circl€, (v', ') = (v, o).
Onthe other hand, if lies inside the circl€, examination of figure 4 shows that (ikifs of
typeW fori =1ori =3,andif(v, o) =W (X, y), then(v’, 6’) = Wi (y, X) ifthe orientation
of the part ofL insideC is reversed to obtaibh’ from L, and(v’, ¢’) = W (X, y) otherwise;

(i) if visoftypeW; fori =2ori =4,andif(v, o) =W (X, y), then(v’, ') = Wi (X, y) ifthe
orientation of the part of insideC is reversed to obtaib’ from L, and(v’, o) = W (y, X)
otherwise.
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(i)

{ii)

{iii)

Figure 9 Reflections in the proof of Proposition 5.

Hence if in the situation of figure 9(i) all verticesof L lying insideC are of typeW;
or Wz, thenZ(L) = Z(L’). The same holds in the situations of figure 9(ii) and (iii) if all

verticesv of L lying insideC are of typeW, or W,. Since clearlyL andL’ have the same

number of black faces and the same Tait number

associated withWy, Wa,

this will imply that the link invariant

D) takes the same value anandL’.

Wa, Wy,

Thus to finish the proof it is enough to show that if we complete the configurations

appearing in the left-

hand sides of figures 9(i)—(iii) into link diagrams by the addition of

(iiif) respectively, we can obtain

two edges in the exterior &€ as shown in figures 10(i)

special diagrams representing the same links without modifying the exter@r ©his is
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).

(iif)

(i)

Figure 10 Complexing the proof of Proposition 5.

clear from the following adjustment of the proof of Proposition 1. Let us call a Seifert circle
externalif it meets the exterior o€ and let us call iinternal otherwise. Clearly there are

at most two external Seifert circles and if there are two of them,

no one lies in the interior

of the other. Thus we may embed disjointly in the plane some disks whose boundaries are
the Seifert circles without modifying the external Seifert circle(s) and in such a way that

internal Seifert circles lie in the interior &f.

4. Gauge transformations

In this section we give a more intrinsic description of transformations of four-weight spin

models V1, Wo, W,

D). Itturns out that

Wy,

D) which preserve\;, Wz, D) or (W,

Wy,

these transformations are analogous to sgaugje transformationsonsidered in statistical

mechanics and also introduced independenty for 4-weight spin models in [10].

In this section all spin models are defined on a givengeaind My denotes the set of

complex matrices with rows and columns indexedXy

Odd gauge transformations

4.1.

weight spin model and let;\W\; be

Proposition 6 Let (Wy, Wa, W3, Wy, D) be a four-

matrices in M. The following properties are equivalent
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(i) (W}, Wo, W;, Wy, D) is a four-weight spin modegl
(i) there exists an invertible diagonal matrix in Mx such that W = AW AL W; =
AWzA™L,

Proof: Assume first that (ii) holds. As already observed, Eq. (2) can be written as

W;W; = | X|I and hence is preserved by the replacemewt dfy W/ = AW, A~1(i =1, 3).

Eq. (3) isalso preserved by this replacement siige, b) = A(a, a)Wi(a, b)(A(b, b))~ 1,

Wj;(b, @) = A(b, byWs(b, a)(A(a, a))~l. One sees similarly thawV; (b, a)Wj(a, c)W;

(c, by =W (b, a)Ws(a, c)Ws(c, b) andWj(a, byW;(b, c)Wj(c, a) = Wi (a, b)Ws(b, c)Ws

(c, @), sothat Eq. (8) is preserved. Hen¥&[( W, W3, W, D) is a four-weight spin model.
Conversely, assume thatV{, W>, W3, W;, D) is a four-weight spin model. Then by

(8), Wi (a, byWy(b, c)Wj(c, a) = Wi(a, b)Ws(b, c)Ws(c, &) for everya, b, cin X, or

equivalently

W, (a, b) = Wa(c, a)(W4(c, a)) "*Wi(a, b)Ws(b, c)(Ws(b, ©))~*. (15)

Let us fix the element of X and define the diagonal matricas A’ in Mx by A(X, X) =
Wi(c, X) (Wj(C, X)), A(X, X) = Wa(X, €)(W}(X, )~ for everyx in X. Then (15) can
be written as the equalityy; = AW, A,

For everya in X we haveW;(a, a) = A(a, a)Wi(a, a)A’(a, a) and this together with
(10) shows thatA and A’ are inverse matrices. ThW, = AW;A~! and the equality
Wj = AW;A L follows from (2). |

When the equivalent properties (i), (ii) of Proposition 6 hold we shall say that the two
four-weight spin models\W:, W,, W5, W, D) and V], Wo, W3, Wy, D) are related by an
odd gauge transformatiorin this case they have the same associated link invariant by
Proposition 2. Actually one can easily see directly that a stronger property holds (see
[10]). Consider a state of an oriented link diagranh.. Replacing Wi, W», W3, Wy, D)
by (W;, Wo, W;, Wy, D) multiplies the weight ofo by a product of terms of the form
Ao (fy), o (f) Ao (), o (f2))~t (with A as in (i) of Proposition 6). There is one such
term for each vertex of typ@/; or W5 where the two incoming edges are incident with the
black facef; and the two outcoming edges are incident with the black fa¢see figure 4).
Then clearly for every black face the total exponent ok (o (f), o (f)) in this product of
terms is zero. Thus an odd gauge transformation preserves the weight of each state.

Proposition 7 Let(Wy, W>, W3, Wy, D) be a four-weight spin model.

(i) There exists an invertible diagonal matixin My such thafW, = AW; AL W, =
AWsA T,

(i) There exists a four-weight spin mod&/;, W>, W;, W;, D) such that W, W; are sym-
metric.

Proof: We have seen in the proof of Proposition 3 tHs;( W», "W, W;, D) is a four-
weight spin model, and hence (i) is an immediate consequence of Proposition 6.

To prove (i), we look for an invertible diagonal matrix’ in Mx such thatwW; =
A'W; A1 is symmeric (then by (2, = A’'W3A'~1 will also be symmetric). This can be
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written asA’ "MW, A’ = A’'Wy AL, or equivalentlyW; = A’?W; A2, which will hold
by (i) wheneverA’? = A. |

Thus to classify four-weight spin modelgV(, W>, W5, Wy, D) up to odd gauge trans-
formations we may restrict our attention to the case wgreWs; are symmetric. Then,
by Theorem 1 of [28], the problem can be reformulated in terms of symmetric two-weight
models, for which some general classification results are known (see [14, 16, 24] and
Section 5.1 of the present paper).

We also note that the number of four-weight spin mod@g, (\., Wj, W,, D) which
appear in Proposition 7(ii) is finite. Indeed, sindg has non-zero entries, any diagonal
matrix which commutes withW, is a scalar multiple of the identity. Hence the equation
"Wy, = A’2W; A2 (with notations as in the proof of Proposition 7) defia€$up to scalar
multiplication.

4.2. Even gauge transformations

Proposition 8 Let (W, W», W3, Wy, D) be a four-weight spin model and let;)V\WV, be

matrices in M. The following properties are equivalent

(i) (Wi, W;, W5, W, D) is a four-weight spin modegl

(i) there exist permutation matrices B in My such that W = PW, = W,Q, W, =
W,tP = 'QW,,

(i) there exist a permutation matrix P and an invertible diagonal matyiin My such
that PWP~1 = AW;A~tand W, = PWs, W, = W,'P,

(iv) there exist a permutation matrix Q and an invertible diagonal matiin My such
that Q71W1Q = AW1A71 and V\é =W,Q, W, = tQW4.

Proof: (i) implies (ii): Four everya, b,cin Xlet pg, = ", .« Wa(X, @) Wa(X, b)Wa(c, X)
=D wex WX, @) W5(X, b)W,(c, x) (this is well defined by (8)). LeA be a complex vector
space with basifAy, x € X} indexed byX. Define a bilinear product oh by the following
rule for basis elements: for eveaybin X, AgAp = ) . x P5,Ac. We introduce for every
i in X the elemenE; = |X| 2 D acx Wa(a, i) Ay of A. SinceW, is invertible by (4) (which
can be written a®\,W, = | X|1), {Ej, i € X} is a basis ofA. Then

EE; = |X|—4(ZW4(a, i)Aa> (ZW4(b, j)Ab>

aeX beX
= |X|_4Z ZW4(a, Wi (b, j)(z PaCbAC>
aeX beX ceX

= IXIT*D 0 )Y Waa, )Walb, j)(sz<x, 2)Wa(X, b)Wa(C, x)) Ac

ceX aeX beX xeX

=IXIT*PY YD Walx, a)Waa, D) Wa(x, b)Wa(b, [)Wa(c, ) Ac

ceX xeX aeX beX
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= IXI72) 0 Y 80618, HWa(e, ) A (by (4)
ceX xeX

=80, PIXI2)_ Walc, DA = 8(, ) Ei.

ceX

HenceA is a semisimple commutative associative algebra with basis of orthogonal idem-
potents{E;,i € X}. LetE/ = |X|~2 D aex Wi(a, i) A, for everyi in X. The same proof
shows that{E{, i € X} is a basis of orthogonal idempotents Af But such a basis is
unique and hence there exists a permutatiosf X such thate] = E,, or equivalently
Doacx Wi@, D) Aa =D o x Wa(a, (i) Aq for everyi in X. ThenW,(a, i) = Wa(a, w(i))
foreverya,i in X. Let P be the permutation matrix iy defined byP (X, y) = §(y, 7 (X))
for everyx, y in X. We obtain the equatiow;, = W,'P, and the equatiolV, = PW is
then obtained from (4). To establish the existence of the permutation n@asixch that
W, = W,Q, W, = 'QW,, we transpose the matrice%, W), W,, W, in the above proof.

(i) implies (iii): With the same notations as in the above proof, we Ha§ex, y) =
Wa(r (x), y) andW,(x, y) = Wa(X, w(y)) for all x, y in X. Leté be the permutation oX
such thatQ(x, y) = 8(x, 6(y)) for all x, y in X. We also havé\V,(x, y) = Wa(X, 8(Y)),
W, (X, y) = Wa(8(X), ¥). Then, by (8),for everg, b, cin X,

DW1 (i (2), 7 (0)) Wa(r (b), 7 () Wa(r (€), 7 ()
= Y Wa( (@), X)Wa( (b), X)Wa(x, 7 (C))

xeX

=) W@, x)Ws(b, X)W,(x, ©)
xeX

= ) Wa(@, 6(x))Walb, 6(x)Wa(B(x), C)
xeX

= Z Wa(a, X)Wa (b, X)Wa(X, C).

xeX

LetW, = PW;P~1, W}, = PW;P~1. The above equations, together with obvious verifica-
tions of Egs. (2) and (3), show thatl, W, W3, Wy, D) is a four-weight spin model. The
result now follows from Proposition 6.

(ii) implies (iv): The proof is exactly similar to the previous one.

(i) implies (i): Itis easy to check that Egs. (4) and (5) are preserved by the replacement of
W, by Wé = PW, and ofW, by W, = W4tP. Now IetWi =PW; p-1= AWlAil, Wé =
PW;P~1, so thatW, = AWsA~! by (2). By Proposition 6,\/;, Wa, W;, Wy, D) is a
four-weight spin model. Introducing again the permutatioef X such thatP(x, y) =
3(y, m(x)) for everyx, y in X, we get from Eq. (8):

> W@, x)Wy(b, X)W, (x, ¢)

XeX

= Wa(@), X)Wa(r (b), X)Wa(X, ()
xeX

= DWi(mr (@), 7 (0))Ws( (b), 7 (€)) Wa(r (C), 7 (a))
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DW; (a, byW;(b, c)Wj(c, @)
= Z Wa(a, X)Wa (b, X)Wa(X, C).

xeX

Moreover

D Wi(x, a)W5(x, D)W, (C, X) = Y Wa(rr(x), ) Wa(r (X), D)Wa(C, 7 (X))
xeX xeX
- sz(x, a)Wa(x, byWa(c, X).

xeX

Thus (8) is preserved by the replacement\ (W) by (W, W,) and Wi, W, W3, W,
D) is a four-weight spin model.
(iv) implies (i): The proof is exactly similar to the previous one. O

When the equivalent properties (i) to (iv) of Proposition 8 hold we shall say that the
two four-weight spin models\W,, W,, W3, Wy, D) and Vi, W, Ws, W), D) are related
by aneven gauge transformatioffhen they have the same associated link invariant by
Proposition 2. In contrast with the case of odd gauge transformations, we have no direct
proof of this which would work for arbitrary link diagrams. See however [10] for even
special diagrams (a special case of even gauge transformations is considered there, but the
proof is easily generalized).

Note that the number of even gauge tranformations which can be performed on a given
four-weight spin model is finite. More precisely, such transformations involve certain sym-
metries of the spin model which we consider now in detail.

We denote bySx the group of permutation matrices M.

Proposition 9 Let (Wy, Wa, W3, W,, D) be a four-weight spin model. The groups S
(W2 SxW, ) and S N (W, 1Sc W) are both equal to the set of matrices P ig Such that
PW;P~1 = AW; A~ for some invertible diagonal matrix in My.

Proof: The set of matrice® in Sx such thatt W, P~1 = AW; A1 for some invertible
diagonal matrixA in My forms a group. Indeed PW; P~ = AW, A~ andP'W,P'~1 =

AW AL then(PPY)W,(PP)™1 = (PA'P~HAW,A~Y(PA’P~1)~1. By Proposition 8,
the matrixP in Sx belongs to this group iff\, PW,, Ws, W,'P, D) is a four-weight spin
model iff Wz‘lPWZ is some permutation matri®@. Similarly, the matrixQ in Sx belongs
to this group iff Q! belongs to this group iff\, W>Q, Wa, 'QW,, D) is a four-weight
spin model iﬂWQQW{l is some permutation matriiR. O

Thus an even gauge transformation of the four-weight spin matgl\\,, Ws, Wy, D)
corresponds to a left (or equivalently right) multiplication\d$ by some element of the
group introduced in Proposition 9, together with the corresponding similar transformation
for W,. The “gauge transformations 2" of [10] are an interesting special case.

Note that when\{(/,, W_, D) is a two-weight spin model, Proposition 9 states an inter-
esting property of the matriv/, = W; = Ws.
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For everyM in My, theautomorphism group of Mienoted by Auti1), is the group of
matrices inSx which commute withM. We observe that both AW;) and Aut\,) are
subgroups of the group of Proposition 9.

Proposition 10 Let (W, W,, W3, Wy, D) be a four-weight spin model.

(i) There exists a matrix P iAut(W,) such thatW, = PWs. Hence W'W, = "WoWs,
some power of Wis symmetricand if Aut(W,) is trivial, W, is symmetric.

(i) If Pisasquare irAut(W,), there exists a four-weight spin mod#&¥;, W,, W5, W,, D)
such that W, W, are symmetric.

Proof:

() We have seen in the proof of Proposition 3 thak ("W, Wz, 'W,, D) is a four-weight
spin model. By Proposition 8, there is a permutation ma®rixm My such thatw, =
PW,. Transposing and multiplying b on the right, we obtait\bP ="W,. The
remaining statements are clear.

(i) If P = Q?with Q in Aut(W,), 'W> = Q®W, = QW,Q and hencéW,Q) = W, Q.
We can takeV, = W»Q, W, = 'QW,. O

4.3. Gauge equivalence of spin models
The following result is clear from Propositions 2, 6, 8.

Proposition 11 Let(Wy, W,, W3, W, D) be a four-weight spin model. tB a permuta-

tion matrix in My such that vyl PW is also a permutation matrjxA be an invertible diag-
onal matrix in My, and be a non-zero complex number. THelAW, A1, A~ 1P W5, A1
AWsA™L AW,'P, D) is also a four-weight spin model which has the same associated link
invariant as(Wy, W, W5, Wy, D).

The two four-weight spin models appearing in Proposition 11 will be said igabige
equivalent Thus two four-weight spin models are gauge equivalent if, up to proportionality,
one can be obtained from the other by a sequence of even and odd gauge transformations.
Similarly, we shall say that the two-weight spin model¥,( W_, D) and W}, W, D)
are gauge equivalent if the corresponding four-weight spin mo@eéls V., W_, W_, D)
and W, W,, W', W’ , D) are gauge equivalent.

Let us illustrate Proposition 11 with a simple example. It is easy to check (see [18]) that
whenD = —a?—a72, W, = aDI +a71J, W. =« 1DI +«J, where all entries of are
equalto 1, ., W_, D) is a (symmetric) 2-weight spin model with modulug?. Up to a
change of variables, the associated link invariant is the Jones polynomial introduced in [17].
Since AutW, ) = S, for every permutation matri and invertible diagonal matria in
My we obtain a four-weight spin modeta AW, A7, —a*PW,, —a®AW_A"L, —¢~3
W_IP, D) = (—a 2Dl —a*AJAL, —a*DP—0a2], —?DIl —a*AJAL, —¢~*D'P —
a=2), D) = (Wi, Wy, W3, Wy, D) of modulus 1 with the same associated link invariant.
The identification of this link invariant can be obtained directly as follows. lLetl
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andL be three oriented link diagrams such that is obtained fromL , by changing the

sign of one crossing from positive to negative (see figure 2) Land obtained from L. by
smoothing out the same crossifsge figure b Then it is easy to show, using the equations
a*Wp — oWz = (@72 — a®) DI, W, — a™*W, = (a2 — «?)J, that, assumind_o
connectedg*D1BLDIZ(L,) —a D 1BEIIZ(L_) = (@ ? — a®) D IBLIIZ(Ly). This

is precisely (for a suitable choice of variable) the defining relation for the Jones polynomial.

5. Gauge equivalence of some two-weight spin models
5.1. Two-weight spin models and Bose-Mesner algebras

Let X be a finite non-empty set. The Jdi of complex matrices with rows and columns
indexed byX is considered as usual as a vector space over the complex numbers. The
Hadamard producbf two matricesA, B in My, denoted byA o B, is defined by(A o
B)(X,y) = A(X, ¥)B(x, y) for everyx, y in X. The identity element for this associative
and commutative product is the mateixwith all entries equal to 1. We shall callBose-
Mesner algebran X any vector subspad& of of My containingl andJ which is closed
under transposition, Hadamard product, and ordinary matrix product, this second product
being commutative oB.

Every Bose-Mesner algebi has a basigA;,i = 0,...,d} such thatA o A; =
8@, j) Ay andAg = |. The matricesd;, called theprimitive Hadamard idempotents B,
can be viewed as the adjacency matrices of some relatioisarich form a(commutative
association schemgsee [4, 6] for definitions). The notions of (commutative) association
schemes and Bose-Mesner algebras are completely equivalent (the proof given in Theorem
2.6.1 of [6] for the symmetric case can easily be extended), but it is more convenient for
our purposes to work in the framework of Bose-Mesner algebras.

A duality of a Bose-Mesner algebBion X is a linear mapV from B to itself which
satisfies the following properties:

For every matrixM in B, W (W (M)) = |X|'M, (16)
For any two matrice$!, NinB, W(MN) = ¥ (M) o W(N). a7

It easily follows that

For any two matriceM, Nin B, ¥ (M o N) = |X| 1w (M)W (N), (18)
w(l) =1, (19)
W) = [X|I. (20)

It is shown in [16] (see also [14, 24]) that W, W_, D) is a two-weight spin model
on X with modulusy, there exists a Bose-Mesner algeBran X which containdV,., W_
and admits a duality given by the expression

W(M) = u'W_ o (W, (W_ o M)) foreveryM in B (21)
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Remarks

() To obtain the expression (21), which we prefer to that given in Theorem 11 of [16]
since itis more convenient for the proof of Proposition 12 below and appears previously
in [3], we consider the two-weight spin mod&\(_, ‘W, , D) instead of \V,, W_, D)
(this is allowed by Theorem 9 of [2] or Proposition 2 of [21]).

(i) (21) implies thaty is the modulus of W, W_, D). To see this, we apply (21) to
M =1, use (13), (12) and compare with (19).

WhenW,., W_ belong toB and (21) holds we shall say thaiv(, W_, D) satisfies the
modular invariance property withespect to the paiB, ) (see [3]).

5.2. A general equivalence result

Proposition 12 Let B be a Bose-Mesner algebra on X which admits a dualitylet

(W,, W_, D) be a two-weight spin model which satisfies the modular invariance property
with respect taB, W), and let P be a permutation matrix B. There is a non-zero complex
numberi such that(A"*PW,, AW_'P, D) is a two-weight spin model which is gauge
equivalent toW,, W_, D) and satisfies the modular invariance property with respect to
(B, V).

Proof:  Afour-weight spin model which is gauge equivalentWé,(, W,., W_, D) is of the
form W AW,A™L ATPW,, A TAW_AL AW_'P, D),whereP is a permutation matrix
in My such thalW;lpwJr is also a permutation matrix is an invertible diagonal matrix
in Mx anda is a non-zero complex number. We fiXin B, so thatW;lPW+ = Pisalso
a permutation matrix, and we look far and as above such thanW, A= = A~PW,.
(the other equality. " AW_A~1 = AW_'P will then follow from (11)).

By (18),¥(P)? = | X|¥ (P o P) = | X|¥(P). HenceE = |X| W (P) is an idempotent
(for the ordinary matrix product). Moreover by (20) and (R|1 = ¥(J) = Y(IP) =
W(J)oW(P) = |X|l o W(P), hence, Trac& = |X|~! Trace¥ (P) = 1 andE has rank 1.
The fact that (P) has rank 1 implies that there exist diagonal matrite®\’ in My such
that¥ (P) (X, y) = A(X, X)A'(y, y) forall x, yin X. Moreover sincd o ¥ (P) = I, A and
A’ are inverse matrices. Henceis invertible andAW, A= = U (P) o W, AW_A"1 =
W(P)oW..

If we expres<P in the basis of primitive Hadamard idempotent8ofve see that exactly
one of the coefficients is equal to 1 while the others are zero. In other weroislongs to
this basis. Les be the coefficient oP in the expression dfV_ in the same basis. Then
W_oP = gP. Now by (21),¥(P) = u'W_ o (W, (W_ o P)) = ButW_ o (W, P). Hence,
by (12), AW, A™1 = W(P) o W, = BuW, P and the required equalityAW, A~ =
A~IPW, is satisfied when? = (Bu) L.

Thus we have shown that, writing}, = A ~'PW, = AW(P) oW, andW’ = AW_'P =
AW (P) o W_, (W, W, D) is a two-weight spin model which is gauge equivalent to
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(W,, W_, D). Let M be a matrix inB. Then

"W o (W (W0 M)) = (AP'W_) o (AW TPW,) (W, o M))

(P'W_) o (P(WL(W. o M)))

P(W_ o (W, (W o M)))

= P(W_ o (W, (A 1W(P) o W_ 0 M)))

= A7IP("W_ o (WL(W_ o (W(P) o M))))
=2"'Pu (W (P)o M) (by (21)

= (Aqw)'PIX|THA(P)W(M)  (by (18)

= (W TPPYM) = () (M) (by (16)).

Hence W, , W', D) satisfies the modular invariance property with respecBtol(). O

The permutation matrices Biform an Abelian group of size at most di&y < | X]. The
extremal case where this group is of sjzg is of special interest and is studied below.

5.3. Equivalence of some two-weight spin models on Abelian groups

In this section we assume th&tis an Abelian group written additively. For everyn X
define the matrixA; in My by Ai(x,y) = 8(i, y — x) for everyx, y in X. The complex
linear sparB of the matriced\; is easily seen to be a Bose-Mesner algebrX pwith basis

of primitive Hadamard idempoten{\;, i € X}. It is also easy to show (see for instance
[3]) that B admits dualities, all of which can be described as follows (a more explicit
classification is given in [5]). It is possible to index the characteps wfith the elements of
X'in such a way that, denoting by the character indexed bythe equalityy; (j) = x; (i)
holds for alli, j in X. Then one defines the linear mépfrom B to itself by the equalities
Y(A) = Zjex xi(J)A;. Itis easy to check thab is a duality. We now assume that such
a duality W is given.

The spin models studied in the next result have appeared in several work: [11, 18]
(symmetric models in the cyclic group case), [1] (general cyclic group case), [3, 13]. See
also [19] for a related construction and [9, 10, 27] for some connections with physics.

The following result was motivated by information received from Eiichi and Etsuko
Bannai and Takashi Takamuki. It is related (this follows from [3]) with the result stated at
the end of [10] on the spin models of [19]. It is also related with the result of [27] that the
link invariant introduced there depends only trivially on link orientation.

Proposition 13 There are exactl®| X| two-weight spin models which satisfy the modular
invariance property with respect t@, V). They are mutually gauge equivalent. One of
them is symmetric and consequently the link invariant associated with these two-weight
spin models depends only trivialliye. via the normalization factqe "), wherey is the
modulus on link orientation.
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Proof: Two-weight spin models which satisfy the modular invariance property with re-
spect to B, W) are described explicitly in [3]. To be as self-contained as possible we shall
only use here the fact that there exists at least one such spin modalysaw(, D). Let

us writeW, = Z <x lj Aj. Note that the; are non-zero by (12) and than(_, W_, D) has
modulugty by(14) By (21), foreveryin X, W (*W, o 'A;) = to"W_ o (W, (W_ o'W, o 'A)).

Using (12) we get

W, 0 W ("W, 0 'A) = toW, A
Now

V(Wi oA) = U(A) =t (A) =t W(A) =t ZX—i(j)Aj

jex
and thus

W, 0 W(tW, 0'A) = " titjx-i () A

jex

On the other hand

WA =W A =) AL =) tu AL

jex jex

It follows that

titjx—i(j) =totir; foreveryi, jin X (22)
Writing s = ity * this becomes

SSjx-i(j) =s+j foreveryi,jinX. (23)

Let now W, , W’, D) be another two-weight spin model which satisfies the modular in-
vaiance property with respect tB,(¥). Let us writeW/ = Zjex ti Aj, where thet; are
non-zero, and/ = t't;~*.

We define a mag from X to the complex numbers by(i) = s{s(l for everyi in X.
We get from (23) the identity(i)¢(j) = ¢(i + j). Hencet is a character oK and there
existsk in X such that = xx. Then

o'W =) S A =) (DA =) (DS A

jeX jeX jeX

= (ZXk(j)Ai> ° (ZSJ AJ) = W (AW o (tg " W,).

jeX jeX
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Thus
W, = toto W (A o W,

From the proof of Proposition 12 (Ax) o W, = BuW, A, whereg is the coefficient of
Ax in the expression dfV_ in the basid A, i € X} andu is the modulus of\V, , W_, D).
We have seen that = tg, and by (12)8 = t:kl. Hence

W, = t5to "W (A o W, = gt Tt AKW, .
If follows that

D=6 o=ttt Y b

ieX ieX ieX

On ther other hand by (13),

>t =Dty and) "t = Dt;".

ieX ieX

Hencet)~* = tit "ty *. It follows thatt;, is one of the two square roots bt, and that we
may writeW,, = AW (A) o W, = A PAW, with A = tity * = t{~t_«. Hence there are
at most 2X| possibilities forw, . SinceW,. is invertible by (11),Ax W, is not a scalar
multiple of Ak W, whenk’ # k, and we have just exhibited 2| distinct possibilities for
W/. Finally it is clear from the proof of Proposition 12 that these possibilities actually
correspond to two weight spin models which satisfy the modular invariance property with
respect toB, ¥) and which are gauge equivalent W{, W_, D).

Finally, let us show that one of the above possibilities\\ is symmetric. We want
to findk in X such thatAx Wy = 3, .y tj Ajik = X cx tj—kAj is symmetric, or equiva-
lently t;_ = t_;_ for everyj in X. Using (22) this can be Writtert'o‘ltjt_kx_,- (=k) =
to 'tk x; (—k), or equivalentlyt; x_; (—k) = t_; x; (—k) for everyj in X.

Thus we want to findt in X such that;t =} = x; (—k)x—j (=k) ™ = x; (—=K)? = x_«(j)?
for everyj in X. In other words, defining the mapfrom X to the complex numbers by
n(j) = tjt:-l for every j in X, we want to show thay is a square in the groug” of
characters oK.

By (22), n()n(j) = titj(tuit-) ™ = x—2(j) " Motij O (=) Moti—) ™ = ni + j)
and hence is acharacter. Let be the endomorphism of defined byp (i) = 2i foreveryi in
X, letG be the subgroup of squaresirt and letH be the subgroup of characterstfvhich
take the value 1 on Kert Sinceyx?(i) = x (¢(i)) for every characteg, G € H. Moreover
G is isomorphic to Imp, andH is isomorphic to the group of charactersXfKerp, so
that|G| = |H|. Now n belongs toH, since for every in Kerg, n(i) = it "> =t = 1,
and hence) belongs taG. O
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6. Conclusion

We hope to have convinced the reader that it is worthwhile to consider two-weight spin
models as a special case of four-weight spin models, because we then have at our disposal
the powerful tool of gauge transformations. However we believe that general four-weight
spin models are also interesting for their own sake. To support this belief it would be nice
to exhibit a link invariant which can be obtained from a four-weight spin model and not
from a two-weight spin model. The main difficulty here is to find a criterion to show that a
link invariant cannot be associated with some two-weight spin model, which does not show
at the same time that the link invariant cannot be associated with some four-weight spin
model. But another difficulty is the lack of known examples of four-weight spin models
(excluding of course those which can be obtained from two-weight spin models by gauge
transformations). See however [2, 15, 28].

Thus more research on explicit constructions of four-weight spin models is needed. How-
ever, some theoretical aspects are worth investigating as well. In particular the present work
paves the way to new axiomatizations of the notion of four-weight spin model, which would
bear on one of the pair®\(;, Ws) or (W>, W,) alone, or even better on the 3-tensors appear-
ing in (8). Maybe such axiomatizations could lead to a better topological understanding of
the associated link invariants.
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