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Abstract. We generalize work of Lascoux andzEfiak-Pragacz-Weyman on Betti numbers for minimal free
resolutions of ideals generated bk 2 minors of generic matrices and generic symmetric matrices, respectively.
Quotients of polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and
we compute the analogous Betti numbers for some natural modules over these Segre and quadratic Veronese
subalgebras. Our motivation is two-fold:

® \We immediately deduce from these results the irreducible decomposition for the symmetric group action on
the rational homology of althessboard complexesd complete grapmatching complexeas studied by
Bjorner, Lovasz, Vreica andZivaljevi¢. This follows from an old observation on Betti numbers of semigroup
modules over semigroup rings described in terms of simplicial complexes.

® The class of modules over the Segre rings and quadratic Veronese rings which we consider is closed under
the operation of takinganonical modulesand hence exposes a pleasant symmetry inherent in these Betti
numbers.
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1. Introduction and main results

Hilbert's Syzygy theorem says that every finitely generated moliutever a polynomial
ring A = K[xy, ..., Xp] has a finite resolution by freA-modules, i.e. an exact sequence

0> A ... A Ao M 0. (1.1)

In the case where eagh is as small as possible, this is calledhaimal free resolution
and the numbers; are called theBetti numberof M over A. If M is a graded module
overAitis known thatg; = dimg ToriA(M, k), wherek is regarded as the trivigh-module
kK= A/(X1, ..., Xn).

In a seminal work, Lascoux [19] computed ToM, k) in the case wheré = K[z;]is
the polynomial ring in the entries of a genemick n matrix (z;), k is a field of characteristic
zero, andM is the quotient ringA/1 wherel is the ideal generated by alix t minors of
the matrix(z;j). In this situation, there is an action 6L, (k) x GLy(k) on To™ (M, k)
which is crucial for Lascoux’s analysis, and his result actually describes the decomposition
of Tor®(M, k) into GLm(k) x GLs(K)-irreducibles. dzefiak, Pragacz, and Weyman [17]
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used similar methods to compute oM, k) whereA is the polynomial ringk[z;] in the
entries of a generin x n symmetrignatrix (z; = z;i), | is the ideal generated by alk t
minors, andM is the quotientA/| (againk has characteristic zero). Their results also rely
heavily on the inherersL, (k)-action, and describe the irreducilii., (k)-decomposition

of Tor®(M, k).

The main results of this paper will generalize the results far2minors from [17, 19],
as we now explain. Let[x,y] := K[X1, ..., Xm, Y1, - - - » Yn] D€ @ polynomial ring in two
sets of variables of siza®, n respectively. TheSegre subalgebr&egrém, n, 0) is the
subalgebra generated by all monomialg; with 1 <i <mand 1< j <n. Letting Am
be the polynomial ring[z;] in the entries of a generim x n matrix (z;) as above, there
is a surjection

¢ Amn — Segrém, n, 0)
Zj = XiYj

The kernel of this surjection is well-known to be the idégl, generated by the 2 2
minors of the matrixz;), and hence Seg@@, n, 0) = Ann/Imn. ldentifyingxy, ..., Xm
andy;, ..., yn with the bases of twé-vector spacey = k™ andW = k", thenk[x, y]
may be viewed as the symmetric algebra

SymV @& W) = @ SynfV ® SynPw.
a,b>0

If we define

Segrém, n,r) = @ SynfV ® SynPw

a,b>0,a=b+r

for any integer, then it is easy to check that Se¢re n, 0) agrees with our earlier def-
inition, and in general Segt, n, r) is a finitely-generated module over Segnen, 0).
Therefore the surjectiopp endows Segr@n, n, r) with the structure of a finitely-generated
Amn-module. Furthermore, if we identif; with x; ® y;, thenAm n = Sym(V @ W). As

a consequence, the product of general linear gr@lgy) x GL(W) = GLn (k) x GLp(K)
acts compatibly oM, , and Segrém, n,r) and hence also acts on Tor(Segreém, n,

r), k). The results of [19] for Z 2 minors therefore describe the irreducible decomposi-
tion of Torfmﬁ(Segrem, n, 0), k) whenk has characteristic zero, and our first main result
generalizes this to Sedra, n, r). Recall that the irreducible polynomial representations
V* of GLy(k) = GL(V) are indexed by partitions = (Ay > A» > .-+ > Ay > 0),
and|A|:= )" A;j. Similarly, we denote byV* the irreducible representation GfL,(k)

= GL(W) indexed by the partitiop. The representatiovi* corresponds to a Ferrers shape
in which Ay, ..., Ay are the row lengths.

Theorem 1.1 For fields k of characteristic zero and all€ Z, as a Gln(k) x GL,(k)-
representation Tor’» (Segrém, n, r), k) is the direct sum of irreducible representations
V* @ W* where(i, 1) runs through all pairs of partitions pictured in figute with
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Figure 1 The pairs of partitiongx, 1) indexingV* @ W* which occur in To?m'”(Seger, n,r), k.

® s arbitrary,

¢ ), u having at most mn parts respectively

and with the pair(A, ©) occurring in homological degree(s — r) + |«| + |B], i.e.
in Tor:g‘j,HlalHﬁl(Segrem, n, 0), k). Herea, B are as shown in the figur@nd o™, g7
represent their conjugate partitions.

Similarly, if we let k[x] := K[X1,...,Xs] then the dth Veronese subalgebra
Veronesén, d, 0) is the subalgebra ¢ x] generated by all monomials of degré:eletting
A, be the polynomial ring[z;] in the entries of a generic symmetricx n matrix (z;)
(sozj = z;) as above, there is a surjection

¢ . An — Veronesén, 2, 0)
Zij = X Xj

The kernel of this surjection is well-known to be the idgajenerated by the:22 minors of
the symmetric matrixz;; ), and hence Veronege 2, 0) = A,/In. [fwe identifyxy, ..., Xx
with the basis of thé-vector space/ = k", thenk[x] may be viewed as the symmetric
algebra

SymV = @ synfv.

a>0
Defining

Veronesén, d, r) := @ Synfv

a=r modd

foranyr € Z/dZ, itis easy to check that Verone&sed, 0) agrees with our earlier defini-
tion, and in general \Verone@e d, r) is a finitely-generated module over Verongsel, 0).
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Therefore the surjectiop endows Veronesga, 2,r) forr = 0, 1 mod 2 with the structure
of a finitely-generated\,-module. FurthermoreA, = Sym(SyntV) so thatGL(V) =
GLy(k) acts compatibly onA, and Veronesg,2,r), and hence also acts on
Tor’ (Veronesén, 2, r), k). The results of [17] for % 2 minors describe the irreducible de-
composition of Tof~(Veronesén, 2, 0), k) whenk has characteristic zero, and our second
main result generalizes this to Veron@se, r).

Theorem 1.2 For fields k of characteristic zerand forr = 0, 1 mod 2,as a GL(V)-
representationiTor’™ (Veronesén, 2, r), k) is the direct sum of irreducible GV )-represen-
tations\** where runs through all self-conjugate partitioris as shown in figur@, with
e r = |\ mod 2,

¢ ) having at most n parts

and with \V* occurring in homological degree (3) 4+ Ja| (e in
Torg”)Hal(Veronesen, 2,1),k)). Here s is the size of the Durfee squareirpfand « is
as shown in figure.

Our original motivation for performing these computations comes from an old observation
(Proposition 3.1) that has been re-discovered many times (see e.g. [24, Theorem 7.9], [7,
Proposition 1.1], [8]). The observation says that in the case wWésea finitely generated
semigroup module over an affine semigroup ri@ndA is the polynomial ring in the
generators 0§, the groups Tdt(M, k) are isomorphic to direct sums of homology groups
with coefficients irk for certain simplicial complexes derived frafy M. As will be shown
in Section 3 (and was alluded to briefly in [7]), this result applies to both $egre r) and
Veronesén, 2, r). Furthermore, the relevant simplicial complexes include as special cases
them x n chessboard complexas, » and thematching complex , for the complete graph

T

A

7]

T

Figure 2 The self-conjugate partitionsindexingV* which occur in Tof*""n (Veronesén, 2,r), k) forr =0, 1.
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onn-vertices, as defined and studied in [5]. Our computations of Tor allow us to compute
the rational homology (Theorem 3.3) for ahessboard complexes with multiplicities

as defined in [7, Remark 3.5], and for the class of complexes generalizing the matching
complexe\, which we calbounded-degree graph complexés special cases, we deduce

the following result about the complexes, , and A,,. For its statement, recall that the
irreducible representatior®" of the symmetric groufx,, are indexed by partitions with

|| = n.

Theorem 1.3 Forfields k of characteristic zeras aXm, x X,-representationthe reduced
homologyI:L (Amn; k) is the direct sum of irreducible representatio§$ ® S* where
(A, w) runs through all pairs of partitions pictured in figuewith

e s arbitrary,

e [Al=m,|u| =n(sothatr=m—n),

and with the pair(1, 1) occurring in HS(S,,)HO,‘HM(Am,n; k). Herea, B are as shown in
figure 1.

Also for fields k of characteristic zeras a X,-representationthe reduced homology
H. (An; k) for r = 0, 1 is the direct sum of irreducible representatiofs where runs
through all self-conjugate partitions, as shown in figurd, with
* [Al=n,

e [Al=r mod 2
and withS* occurring in I—Nl(g)ﬂm,l(An; k). Here s is the size of the Durfee square.of
anda as shown in the figure.

We should point out that although we were not originally aware of it, the results in The-
orem 1.3 are not new. In a recent preprint [11], Friedman and Hanlon obtain exactly the
same description as in Theorem 1.3 for the rational homology of the chessboard complex
Am.n, USing a beautiful, but entirely different method involving the spectral decomposition
of discrete Laplacian®n A, . Their method uncovers further information about the ir-
reducible decompositions of eigenspaces for these Laplacians. Also, the same description
as in Theorem 1.3 for the rational homology of the matching complgxvas obtained
independently by Bouc [6], and also independently by Karagueusian [18].

There is another recent motivation for the computation of the rational homology of the
complete graph matching compley,, ensuing from work of Vassiliev, which is discussed
in [4]. In particular, Table 3 of that reference lists homology calculationsi¢f , n; k)
for small values of, chatk) and Theorem 1.3 (or the results of [6, 18]) accurately predict
all of the non-torsion data which occurs in this table.

The paper is structured as follows. Section 2 discusses the canonical modules of
Segrém, n,r) and Verones@, 2,r), and explains how Theorems 1.1 and 1.2 respect
canonical module duality. Itthen uses this duality to prove Theorems 1.1 and 1.2. Section 3
sketches the proof of the old observation on Betti numbers of semigroup modules over semi-
group rings needed to deduce Theorem 1.3. This section also gives the result (Theorem 3.3)
generalizing Theorem 1.3, about rational homology of chessboard complexes with multi-
plicities and bounded-degree graph complexes. Section 4 is devoted to remarks and open
problems.
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2. Canonical modules and the proof of Theorems 1.1, 1.2

The goal of this section is two-fold. First we review the definition of Cohen-Macaulayness
and canonical modules. A general reference for some of this material is [24]. Then we
determine when Segm®, n,r) and Verones@, d,r) are Cohen-Macaulay and identify
their canonical modules. We then explain how Theorems 1.1 and 1.2 respect canonical
module duality and show how this implies the theorems.

Recall that for a finitely generated graded modie over the polynomial ring
A=K[Xy, ..., Xy], the homological dimension k= hda(M) is the length of a minimal
free resolution folM, i.e. it is the largest indek such that Tq?(M, k) #£ 0. If we denote
by d theKrull dimensionof the quotientA/AnnaM, thenA is said to beCohen-Macaulay
if hda(M) = n—d. If M is a module over a finitely generated gradedlgebraR which
is not a polynomial ring, then one usually takkto be a polynomial ring in indeterminates
which map to a minimal set of algebra generatordRpand say thaM is a Cohen-Macaulay
R-module if it is Cohen-Macaulay as a&module.

When M is Cohen-Macaulay, the groups E((M, A) are known to vanish for < h,
and thecanonical module2 (M) is defined to be thé-module Exﬁ(M, A). Because of
the vanishing of the lower Ext groups, applying the functor HomA) to the minimal free
resolution (1.1) gives an exact sequence (and hence a minimal free resolution)

0« Q(M) « (A ... « (AYr « (AP <0

of Q(M). We conclude from this resolution that TgM, k) and Tof* ; (2(M), k) are dual
ask-vector spaces for alil

Proposition 2.1 For an arbitrary field k Segrém,n,r) is a Cohen-Macaulay
Am.n-module if and only if either

e 0<r<n-1,or

e O0<-r<m-1or

e m=n=1andr is arbitrary.

Proof: We observe that Segim, n, r) is thek-linear span of monomiabe® y** such that
S B — Z’j‘zl Bj = r. The depth and Cohen-Macaulayness of such modules constructed
from solutions of linear Diophantine equations were studied by Stanley [23]. In particular,
his Corollary 3.4 (withs = m,t = n,« =r anda = b; = 1foralli, j) exactly gives the
proposition. O

We must also address the Cohen-Macaulayness of the modules Vemriksg( and
furthermore identify the canonical modules of Segre{, r) and Veronese(, d, r). A
convenient approach is to use some facts from the invariant theory of finite (or compact)
groups which we now review (see [22] for a nice survey).

Recall that ifG is any subgroup dBL(V) = GL,(k), then identifyingR = K[xa, . . ., Xn]
with Sym(V) defines aG-action onR. For the remainder of this section, assume that
k = C, and we will assume tha® is a compact subgroup @&L,(C). WhenG is com-
pact, the subringR® of G-invariant polynomials is finitely generated and Cohen-Macaulay
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by the methods of Hochster and Eagon [16]. More generally, for any irreducible char-
acter x of G, one can define the module gf-relative invariants X to be they-
isotypic component ofR. It is shown in [22, Theorem 3.10] that f@ finite, R is

a finitely generated Cohen-Macaulay module oR, (although Proposition 2.1 shows
that Cohen-Macaulayness can fail for compact groBpand non-trivial characterg).

One can furthermore identify the canonical mod@eR® %) in the cases wherB®* is
Cohen-Macaulay.

Lemma 2.2[22, Remark on p502] Let G ¢ GL,(C) be compact x an irreducible
character of G det the determinant character of,@nd x the conjugate character tg,
i.e. x(9) = x(g). Assume R is a Cohen-Macaulay ®module. Then we have the
following isomorphism of graded Rmodules

Q(R®¥) = ROx et
up to an overall shift in grading.
We now apply these facts to Segme n, r), Veronesén, d, r). LetS?! be thecircle group
St = {€)per 20

embedded as a subgro@—> GL(V & W) = GL,;m(C) as follows:

eigH<é9.|V 0 )
0 e_i0~|w ’

Here |y, lyw denote the identity matrices acting &h W respectively. If we letR =
Sym(V @ W) and lety, denote the character(¢?) = €'? of G, then it is clear that
Segrém, n, 0) is the invariant subrindR®, and Segrém, n, r) is the module of relative
invariantsR®-x,

Similarly, embed the cyclic groufg/dZ as a subgrous € GL(V) = GL,(C) as
follows:

27
(H>ed -y

where¢ is a generator oZ/dZ. If we let R = Sym(V) and lety, be the character
x() = e’i" of G, then it is clear that Veronege d, 0) is the invariant subringR®, and
Veronesén, d, r) is the module of relative invarian®C .

Corollary 2.3 When k= C, theVeronesén, d, 0)-modules/eronesén, d, r) are always
Cohen-Macaulay. Furthermoyravhen k= C and whenever the modul&ggrém, n, r),
Veroneseén, d, r) are Cohen-Macaulaytheir canonical modules are describhedp to a
shift in grading as follows

Q(Segrém, n,r)) = Segrém,n,n—m —r)
Q(Veronesén, d,r)) = Veronesén,d, —n —r)
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Proof: As noted above, VeroneSe d, r) is a module of relative invariants for a finite
group, and hence is Cohen-Macaulay by [22, Theorem 3.10]. Then Lemma 2.2 and our
previous discussion identifies the canonical modules. O

As aconsequence, the duality between the opposite Tor groupsfidy andM manifests
itself in a combinatorial/representation theoretic duality inherent in Theorems 1.1 and 1.2.
The next result is the combinatorial manifestation of that duality.

Proposition 2.4 ForO <r <n—1o0r0 < —r < m— 1, consider the operation of
complementing the shapés, 1) within the rectangular shapegn — 1)™, (m — 1)") and
then rotating both shapek80degrees. This operation gives an involution which pairs the
shapes predicted by Theordni to occur in

.AmAﬂ

Tor,

(Segrém, n,r), C)

with those predicted to occur in

.AmAﬂ

TorJ

(Segrém,n,n—m—r),C)
wherei+ j=(m—-1((n-1).
Forr = 0, 1 mod 2 consider the operation of complementing the self-conjugate shape

A within the square shape"n and then rotatingl80 degrees. This operation gives an
involution which pairs the shapes predicted by Theote?rto occur in

ToriA" (Veronesén, 2,r), C)
with those predicted to occur in

TorJA" (Veronesén, 2, —n —r), C)
where i+ j = ().
Remark We note that sincé = Segrém, n,r), Veronesén, d, r) are torsion free mod-
ules over the subalgebras Segnen, 0), Veronesén, d, 0) respectively, in both cases the
quotientA/Anna(M) is isomorphic to the corresponding subalgebra. Since we can com-
pute the Krull dimensions of these subalgebras from the known dimensions of the Segre

and Veronese varieties, we conclude from Cohen-Macaulayness that

hdAm,n(Seger’ n, r)) =mn-— (m+ n— 1) = (m — 1)(['] — 1)
hda, (Veronesen, 2, 1)) = (n;—l) —n= (2)

Therefore in the dual pairing we should expect; Toor; to pair wheni + j = h, with
exactly the values di as stated in the Proposition.
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Proof of Proposition 2.4: Figure 3(a) and (c) depict the relevant shapesu) and

along with their complementary partners within the appropriately sized boxes. As shown,
the complementary shapes also fit the format of figures 1 and 2, with their parameters related
to the original parameters as follows. Fgr, 1) with parameters, s the complements

(A, u") have parametens = n—m—r,s = n—1—s, as shown in figure 3(a). For
self-conjugate. with Durfee square of sizg the complement’ has Durfee square of size
n—s, as shown in figure 3(c). To see that the homological degrgesf the original shapes

and their complements, respectively, add up to the appropriate homological dimbnsion
one has two alternatives. One can either do a direct calculation in the two cases, or one can
note that in both cases+ j is the same as the total number of shaded squares depicted
in figure 3(b) or (d), and count that the number of shaded squares is the appropriate value
(m—1(n—1)or(3). O

The pairing of shapes inside rectangular boxes as in the previous propositiorigeally
pairing of dual vector spaces, and in fact a pairingafitragredientepresentations, due
to the following well-known result.

Proposition 2.5[21, §0.2(c)] Let A be a partition with at most n parts and all parts
of size at most m. Let B be a rectangular box with n rows and m coluantslet A’
be the complement of within the box B after rotating 180 degrees. Then as GIC)
representations we have

VY = (VH* @ (deh®"

where (V*)* denotes the contragredient representation tb, ¥nd det = A™(V) is the
one-dimensional determinant representation of\GL

As a consequence of this proposition and from the dimensions of the rectangular boxes
which occur in Proposition 2.4, we can see what shift in grading is necessary to turn some
of the isomorphisms in Corollary 2.3 into graded isomorphisms:

Q(Segrém, n,r)) = Segrém, n.n —m —)[(Xg -+ Xm)" (Y1 y)™ ]
Q(Veronesen, 2,1)) = Veronesén, 2, —n — r)[(X1 ... %n)"]

whereM[x*] indicates the modul® with multidegrees shifted up hy. If r = 0, we can
verify that these conjectural shifts in grading are actually correct: First assume without loss
of generality that < n, and compute the representations

Am,n _1ym-1 _ _1\n
Tor "y 1, (Segrém, n, 0), k) = v (@~ D"mD @ (=1
\VALY if n is even

Tor’™. (Veronesén, 2, 0), k) = "
( @.20.0 vVO"in=Dif nis odd

(2)
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Figure 3 The pairing of partitions which are complementary within rectangular boxes: (a) The pairing for
Segrém, n, r). (b) lllustration for Segrém, n,r) of whyi + j = (shaded area} (m—1)(n—1). (c) The pairing
for Veronesén, 2, r). (d) lllustration for Verones@, 2, r) of whyi + j = (shaded areay (2).
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known from the results of [17, 19]. Then compare these with the easily computable repre-
sentations (recallingh < n)

Torgm‘”(segrem’ n,n—m),k =VvVhmgw’
V% if nis even

Tora" (Veronesén, 2, —n), k) = L
o' o ). K {V<1) if nis odd

with which they are supposed to be paired. As a consequence, we immediately deduce
from Proposition 2.1, Proposition 2.3, and Proposition 2.4 the following:

Corollary 2.6 Theoreml.1 is correct when r= 0 and when n— m —r = 0. Theorem
1.2is correct when r= 0 mod 2and when-n —r = 0mod 2

Finally, from this we can deduce Theorems 1.1, 1.2:

Proof of Theorems 1.1 and 1.2: Since Theorems 1.1 and 1.2 both assert that groups
Torf\(M, C) have certain decompositions @s.(V)- or GL(V) x GL(W)-representations,

we first claim they ar@olynomialrepresentations, and hence it suffices to check that they
have the correctharacters i.e. that the dimensions of weight-spaces/ T, C), are
correct for each weight. To see this claim, we use the fact that

Tor®(M, C) = Tor’(C, M),

and we can compute the latter by tensoring the Koszul resolutidh @a$ anA-module
with M and taking homology of the resulting complex. The terms in the Koszul resolution
are exterior powers of-vector spaces tensored with and hence are polynomial rep-
resentations. Sinchl is always a polynomial representation, tensoring with it preserves
polynomiality. Then the homology groups of the resulting tensored complex are quotients
of submodules of these polynomial representations, and hence also polynomial.

It remains to show that the weight spaces™ o, C), always have the correct dimension
asserted in Theorems 1.1 and 1.2. We start with Theorem 1.2, so that

A = An
M = Veronesén, 2,r)

and the group acting BL(V). If n, r are not already in the cases covered by Corollary 2.6,
thenn is even and is odd. But them + 1 is odd, so we know that Theorem 1.2 is correct
for Veronesén + 1, 2,r). Therefore each weight space ﬁt(Neronesm +1,27r),0C)

for 7 € N1 has the correct dimension predicted by Theorem 1.2. Given a weigh¥",

we can append an extra coordinate at the end equal to zero to obtain a Wweight+2.
Proposition 3.2 shows that

Tor (Veronesén, 2,1), C), = Hi_1(A,; C)
Hi_1(Ay; ©)
= ToriAn+1 (Veronesen + 1, 2,1), C);.

12
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HereA, andA; are as defined in Section 3, and the second isomorphism comes from the
crucial (but trivial) fact thatA,, and A; are isomorphic simplicial complexes. Theorem
1.2 for Veronese, 2, r) then follows from the well-known fact that the dimension of the
Weight-space/y* in the irreducibleGL, (C)-representatioV* is the same as for the weight
space\/?A in the irreducibleGL,1(C)-representatiov*.

A similar argument works for Segm, n,r). If m,n,r are not already in the cases
covered by Corollary 2.6, then we can always chomée> m andn’ > n such that
n—m' —r =0andeitherO<r <n"—1or0< —r <m' —1. Then Theorem 1.1 s correct
for Segrém’, n’, r), so the dimensions of each WeightspaceATb(Seger’, n', ), Cy.s
are as predicted by Theorem 1.1. A similar argument using Proposition 3.2 then finishes
the proof. O

3. Rational homology

The goal of this section is to sketch the proof of an old observation on Betti numbers of
semigroup modules over semigroup rings, and then apply this to deduce Theorem 1.3 and
other consequences.

To this end, we introduce some terminology. lebe a finitely generated additive sub-
semigroup ofNY, and letM < NY be a finitely-generated -module, i.e.x + 1 € M for
all . € A andu € M. The semigroup ring[ A] may be identified with a subalgebra of
K[z, ..., z4] generated by some minimal generating set of mononnmls .., m,. Then
M givesrisetoafinitely generated modidle= k M overk[ A]insidek[Zz], simply by taking
thek-span of all monomials of the form* whereyn € M. SurjectingA = K[x, ..., Xq]
ontok[A] by x; — m;, we endowk[A] and M with the structure of finitely generated
A-modules. Furthermore, all the rings and modules just defined cariy®agrading,
and hence so does TaiM, k). We will refer to theath-graded piece of Tér(M, k) by
TorA(M, k), for & € N¢.

Givenpu € M, define a simplicial complex,, on vertex setrf] := {1,2,...,n} as
follows:

K, ::{F < l'LEZ:mi e M}.

Proposition 3.1 (cf. [7, Proposition 1.1], [24, Theorem 7.9], [8], [25, Theorem 12.12])
For A, M, A, M andu € M as abovewe have
TorA(M, k), = Hi_1(K,,; k)

whereH denotes reducegsimplicial) homology and all other graded piece‘ﬁ)riA(M, K)o
for @ & M vanish.

Proof: For completeness, we sketch the proof as in [7, Proposition 1.1].
Firstnote that Tqt(M, k),, = Tor*(k, M),,. We can compute the right-hand side starting
with the well-known Koszul complek resolvingk as anA-module. This complex has as
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its tth termK; the moduleAt A" which is the freeA-module with A-basis

{Ql ARERNAY-H }1Si1<‘“<i15n

and whereg carries the sami“-grading as the monomial generatarof k[ A]. Tensoring
the resolutionC with the A-moduleM gives a compleXxC ® M. Fix u € N® and restrict
attention to theuth-graded piecéX ® M),,, which is a complex ok-vector spaces. The
tth term (K ® M), ,, in this complex has typic&-basis element of the form

Z’e, Ao A8,
wherez” € M, and
zZv S My - =z". 3.1

Equation (3.1) implies thaiC ® M), vanishes unless € M. Furthermore, whep € M,
note that in the above basis vectgrjs uniquely determined by and{iq, ..., i} from
Equation (3.1). If we identify the above basis vector with the oriented simplex.[, it]
in K, one can check thaiC ® M), is identified with the (augmented) simplicial chain
complexC. (K,; k) up to a shift in grading by 1. The proposition then follows. O

To apply this result along with Theorems 1.1 and 1.2, we note that @egne0) is the
g is theith standard basis vector, and Sdgren, r) is the semigroup module generated
over this semigroup by(v, 0)} asv runs over all vectors ilN™ with ) ;v =rifr > 0
(and similarly{(0, w)} if r < 0). For any multidegreéy, §) occurring in Segren, n, r),
the complexKy, sy from Proposition 3.1 is isomorphic to thehessboard complex with
multiplicities A, s defined in [7, Remark 3.5]A, 5 is the simplicial complex whose vertex
set is the set of squares on anx n chessboard, and whose simplices are the Bat$
squares having no more thgnsquares from row and no more tha#y squares from rowy
for alli, j. The isomorphisnK, 5y = A, s comes from identifying the generat, e;)
of the semigroup with the square in rovand columnj of the chessboard. Note that in
the square-free multidegrée, §) = ((1,....1), (1,..., 1)), this complexA, s = Amn
is them x n chessboard compleconsidered in [5], whose vertices are the squares of the
chessboard, and whose simplices are the sets of squares which correspond to a placement
of rooks on the board so that no two rooks lie in the same row or column. The complex
Az 3 is depicted in figure 4(a).

Similarly, Veronesén, 2, 0) is the semigroup ring for the submonoid &f generated
by {(& +€j)}i<i<j<n , and Verones@, 2, 1) is the semigroup module over this semigroup
generated by }1<i<n. For any multidegregs which occurs in Veronegn, 2,r), the
complexK, from Proposition 3.1 may be identified with what we will calbaunded-
degree graph comple,, . In the square-free multidegree= (1, ..., 1), this complex
A, is thematching complex\, for a complete graph on vertices, as considered in [5].
The matching complex for a gragh is the simplicial complex whose vertex set is the set
of edges of5, and whose simplices are the subsets of edges which fpartial matching
i.e. an edge-subgraph in which every vertex lies on at most one edge. The isomorphism
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(a) (b)

Figure 4 (a) The chesshoard complésg 3 = A(111),(1,1,1)- The vertices are labelled by the generatqng

of Segré3, 3, 0). The triangular face with verticesyi, X3y2, X1Ys is shown transparent so as not to obscure the
faces underneath. (b) The matching complex= A1 11,1,1) with vertices labelled by some of the generators
xiXj of Veronesé¢b, 2,0). Note that the generat0|s<~,,2 do not appear as vertices, since they do not divide into
Xx@BLLLD — %) XoX3XaXs.

Aq...1) = A, comes from the fact thak (1, 1) cannot use any vertices corresponding to

the generatore } of the semigroup because of the square-free multidggree. , 1), and

the vertex corresponding to the generago# e; may be identified with the edge between

vertices andj in the complete graph. The matching complexis depicted in figure 4(b).

For more generag}l which are not square-free,, is the bounded-degree graph complex,

whose vertices correspond to the possible loops and edges in a complete gnajgintares,

and whose faces are the subgraphs (with loops allowed) in which the degree ofiviertex

bounded byy;. Here a loop on a vertex is counted as adding 2 to the degree of the vertex.
We record the preceding observations in the following Proposition:

Proposition 3.2 For any field k there are isomorphisms

Tor/™" (Segrém, n, 1), Ko = HiZ1(Ay 5 K)

Tor/™ (Veronesén, 2,1), k), = Hi_1(A,; k).

We next consider symmetries which lead to group actions on these complexes. Notice that
one can re-index the rows and columns of the chessboard (which corresponds to permuting
the coordinates ofy, §) independently via an element Bf, x X,), without changing the
chessboard complek, s up to isomorphism. Consequently, we may assume without loss
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of generality thal/, § are partitions, i.e. that their coordinates appear in weakly decreasing
order. Therefore/, § are completely determined by the multiplicities of the parts which
occur inthem, so we canwrite = 122% ... ands = 1°:2% ..., With this notation, define

the Youngor parabolic subgroup

YaX Tp > Tm X Zp

whereX; = §, x S, x - - - and similarly forZy,. ThenX, x X, acts as a group of simplicial
automorphisms of\, 5. Note that in the square-free case, it is the entire glupx< Xy
which acts omMAp, .

Similarly, one can re-index the vertices| [of the complete graph (which corresponds
to permuting the coordinates gfvia an element o), without changing the bounded
degree graph complex, up toisomorphism. Consequently, we may assume without loss of
generality thay is a partition, and completely determined by the multiplicities of the parts
which occur, so we can writg = 122% ..., There is then a Young subgrogp, — X,
acting as a group of simplicial automorphismsAf, and in the square-free case it is the
entire symmetric grou, which acts om,,.

In order to state our next result, we need to recall the notion wkght spacéen a
GL,(k)-representation (see [12] for this and other facts from the representation theory of
GLn(k)). Letdiagx) denote the diagonal matrix @L;, (k) having eigenvalues, . .., X,. It
is known that whek has characteristic zero, any finite-dimensional (rational) representation
U of GL,(k) decomposes as a direct sunkefector spaces

u=@u,

yeNn

whereU, is thex”-eigenspace for digg), andU, is usually called thaveight spacef

U corresponding to theveighty . It is well-known and easy to see that when we acyon

by an element ok, by permuting coordinates we obtain a weightwhose weight space

U, is isomorphic toU,. As a consequence, in studying weight spaces we may restrict
attention to those witly a partition (i.e. alominant weight soy = 1%2%.... Asin the
previous two paragraphs, the Young (parabolic) subgiup> %, — GL(K) acts onJ

and preserved,,, so thatU, is a X;-representation.

Theorem 3.3

e Let(y,d) € N™" x N" be partitionsr := |y| — |8], Za x Xy the group described aboye
and k a field of characteristic zero. Then assg x Xy-representationthe reduced
homologyH. (A, 5; k) of the chessboard complex with multiplicity, 5 is isomorphic
to the direct sum of they, §)-weight spaces

P oWy,

(A, )

as(, u) runs through the same indexing set as in Theatelmand where(, 1) occurs
iN Hss—r)tja1+181-1(Ay 53 K).
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* Lety € N" be a partition r :=|y| mod 2 and X, the permutation group as described
above. Then as &,-representationthe reduced homologh. (A, ; k) of the complete
graph matching complex,, is isomorphic to the direct sum of theweight spaces

DV
A

as A runs through the same indexing set as in Theofey and wherei occurs in
Hs)tial-1(Ay: K).

Proof: By Proposition 3.2 we have

Fi_1(A, 5 k) = Tor'™ (Segrém, n, 1), K)(,.5)

wherer :=|y| — |8|. Since the grading by multidegregs, §) € N™ x N" is easily seen
to coincide with the decomposition of 'ﬁﬂ”(Segrem, n, r), k) into GL,(k) x GLn(K)-
weight spaces, the assertion vy s then follows from Theorem 1.1.

Similarly, by Proposition 3.2 we have

Hi_1(A,; k) = Tor™ (Veroneseén, 2, 1), k),

wherer :=|y| mod 2, and hence the assertion foy follows from Theorem 1.2. O

of the irreducibleGL, (k)-representatiov” affords the irreduciblét,-representatiois™.
This fact follows, for example, from a comparison of Weyl's constructioV bfwith the
Specht construction &8 (see [12, Part | §84 and 6)). O

Remark 3.4 The reader may be unsatisfied with our general description of the rational
homologiesI:L (Ay 5 K), H. (Ay; k), since the answers are stated in terms of the mysteri-
ous X -representations on the Weight—spavgsof the irreducibleGL, (k)-representations
V*. However, we would like to point out that from this description one can deduce
their decompositions into irreducibl,-representations, once one knows the irreducible
Ya-decomposition ofV?. The latter decomposition can be reduced to computations of
Littlewood-Richardson coefficienesnd some instances of theethysm problemas we
now explain. The authors would like to thank Mark Shimozono and William Doran for
explaining this reduction to us.

Lety = 122% 1% and letGL, be the subgroup

Gl X -+ x Glg — GLn(k).

By restriction, Re tZV’\ becomes &L,-representation, and as such has a decomposition
into GL,-irreducibles

ReEViE @D (VB @V
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.....

tation: it is the number ofolumn-strict(semi-standar@itableauxof shapex and content
(p1, - .., pt) Which areYamanouchwith respect to each of the alphabet®l .., a; and
a+1,...,a+aanday+a+1,...,a +ax+ ag, etc. We refer the reader to [12] for
the definition of column-strict tableaux and contents. A tableaux is said to be Yamanouchi
with respect to an alphabeta + 1,...,b — 1, b if when one restricts attention to the
entries of the tableaux that lie in this alphabet, and read these entries from right to left in
a row, proceeding from the top row and moving down, one obtains a word that has more
occurrences of the lettéithan the letter + 1 in any initial segment, for all.

Now using the inclusions

Ya = Gla — GLy(k)

it is easy to see that we have the following isomorphisrz gtepresentations:

ViE D (Ve VL@ VR

whereX, acts onV/s for eachi.

Consequently, we have reduced the original description to the following problem: given
a, b nonnegative integers, anda partition with|p| = ab, how do we decompose the
Ta-representation,, into Z, irreduciblesS” with |v| = a? By a result of Gay [13],
this is an instance of thplethysm problenil2, Part | §6]: the multiplicity ofS” as a
Ta-representation iV, is the same as the multiplicity 67 in S (SynPV) whereS, is
theSchur functof2] corresponding te. Alternatively, the above multiplicity is the same as
the coefficient of th&schur function sin the plethysmic composition ). Algorithms
for computing these multiplicities are contained in [9].

4. Remarks and open problems

Most of the results in this paper have been limited to the case Wherecharacteristic zero,
since some of the methods involved break down in positive characteristic. The question
of how Tor(-, k) varies with the characteristic &ffor the Segre and quadratic Veronese
modules, and consequently what torsion can occur in the homology of the chessboard and
matching complexe®&mn, An is wide open, and of great interest. For this reason, we
review some of what little is known here.

Hashimoto [14] was the first to show that ifb?(SegrQS, 5, 0), k) depends upon whether
k has characteristic 3, and consequently that has 3-torsion in its 2-homology (see also
[5, Proposition 2.3] which contains an error that was later corrected). Anderson [3] showed
that To@7 (Veronesé?, 2, 0), k) depends upon whethkihas characteristic 5, by an explicit
calculation oﬂ:|4(Ay, Z) forthe multidegreer = (2, 2, 2, 2, 2, 2, 2). Bouc [6] showed that
Hy(A7) has 3-torsion (see also Table 3 of [4]), and hencéTMeronesé?, 2,1, k), for
y =(1,1,...,1) will depend upon whether the characteristika$ 3. More specificially,
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Bouc shows thaHy(Ag.4; Z) = Z/3Zfork > 1, and also fok > 3 thatHc(Age,3; Z) is
a finite 9-torsion group requiring at leadt 3 2 generators.

On the other hand, the resolutions of determinantal ideals generated byninors of
anm x n matrix are known to be characteristic-free whea m, m — 1, m — 2 by results
of Eagon and Northcott [10], Akin, Buchsbaum, and Weyman [1], and Hashimoto [15],
respectively. This implies (using thex22 minor case) that Segim, n, 0) has a character-
istic free resolution wheneven < 4. This suggests the following problems:

Problem 4.1. DoeSegrém, n, r) have a characteristic-free resolution for m4?Does

Veroneseén, 2,r) have a characteristic-free resolution for g 67 Equivalently do the
complexes\, s have torsion-free integral homology wheneyehas at mos# parts, and

similarly for A,, wheny has at mos6 parts?

One might be tempted to approach Problem 4.1 by showing that the complgxeasnd
A, are homotopy equivalent to wedges of spheres in the above situations. This was indeed
verified by Xun Dong (personal communication) far, s wheny has at most 2 parts.
However Dong points out that it is not true already for thex 3 chessboard complex
Aa11).31.1.1.1), Since it was observed in [5] that this complex triangulates a 2-dimensional
torus.

Another question deals with vanishing theorems and the connectivity of the associated
simplicial complexes. In [5], it is proven that,, , is topologically(v — 2)-connected,
where

y = min{m, n, {%(m+n+ 1)“

and it is conjectured that this bound is tight, i.e. tha} , has some nontriviafy — 1)-
homology. It is also proven there that, is (| " | — 2)-connected.

Problem4.2. Generalize these connectivity results to arbitrary chessboard complexes with
multiplicity A, s and the multi-matching complexas, .

Suchresults would give constraints on the resolutions of $egre r ) and Verones@, 2, r)
which are independent of the field characteristic.

Remark 4.3 It turns out that the modules Segme(n, r) belong to a larger family of
modulesM; ; supported in determinantal varieties fox t minors witht > 2, which we
briefly describe below. These modules were considered in arecent preprint of Weyman [26].
We thank Mark Shimozono and an anonymous referee for pointing out that the methods of
Lascoux [19] and Pragacz and Weyman [20] can be used to descripeVkgr, Q), thus
generalizing Theorem 1.1.

Let A := Ann = SymV ® W) as above. Let; be the ideal inA generated by the
t x t-minors of them x n matrix (z;). LetY; := Spe¢A/I;) be thedeterminantal variety
and letX := SpecA), an affine space which we identify with* @ W* = Hom(V, W*).
Let G be the Grassmannian @f— 1)-dimensional quotients &f . We have the tautological
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exact sequence of vector bundles@n
O>R—->Vs—>Q—0

whereVs := Og ®V. Similarly defineVs := Og @ W. Inside ofX x G = Hom(V, W*)
x G there is a subbundle

Z := Hom(Q, W§) = {(¢,U) : p induces a map) — W*}.

Let p : Z — G be induced by the projection onto the second factoKix G. For
any partitioni = (i1, ..., At_1) With at most(t — 1)-parts, letL, O be the vector bun-
dle on G obtained by applying th&chur functoi{2] associated withk to Q. Then M ;
:=H%Z, p*(L,Q)) is an A-module supported oN;. If t = 2 andx has a single part
A1 =r,thenM;, = Segrém, n,r).

Presumably, although we have not checked this, similar constructions and resolutions
exist generalizing Theorem 1.2.
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