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Abstract. We give a complete classification of distance-regular graphs of valency 6 anda1 = 1.
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1. Introduction

In this paper we only consider undirected finite graphs without loops or multiple edges. Let
0 be a connected graph. We identify0 with the set of vertices. For two verticesα, β, let
∂(α, β) denote the usual distance betweenα andβ in 0. Let

0i (α) = {β ∈ 0 | ∂(α, β) = i } and 0(α) = 01(α).

0 is said to be distance-regular if the cardinality of the set

Di
j (α, β) = 0i (α) ∩ 0 j (β) for every i, j

depends only on the distance betweenα andβ. In this case we write

pm
i j =

∣∣Di
j (α, β)

∣∣,
wherem = ∂(α, β). Let d = d(0) denote the diameter, i.e., the maximal distance of0,
and

ki = p0
i i = |0i (α)|.
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In particular k = k1 is the valency of0. Let ci = pi
1 i−1, ai = pi

1 i and bi = pi
1 i+1,

0≤ i ≤ d.

ι(0) =
 ∗ c1 · · · ci · · · cd−1 cd

a0 a1 · · · ai · · · ad−1 ad

b0 b1 · · · bi · · · bd−1 ∗


is called the intersection array of0. Note thatci + ai + bi = k, b0 = k andc1 = 1.

Let l (c,a, b) denote the number of columnst (c,a, b) in ι(0) and

r (0) = l (c1,a1, b1).

The girth of0, denoted byg, is the length of a shortest circuit. In particular, the girthg
equals 3 if and only ifa1 6= 0 for a distance-regular graph0.

Information about general theory of distance-regular graphs is given in [1, 5, 8].
In this paper we prove the following theorem.

Theorem 1.1 Let0 be a distance-regular graph of valency 6 and a1 = 1. Then one of
the following holds.
(1) 0 is isomorphic to the collinearity graph of the generalized quadrangle of order(2, 2).
(2) 0 is isomorphic to the collinearity graph of one of the two generalized hexagons of

order (2, 2).
(3) 0 ' H(3, 3), the Hamming graph33.
(4) 0 is isomorphic to the3-cover of the collinearity graph of a generalized quadrangle of

order (2, 2), the halved Foster graph.

In [12] A.A. Ivanov proved that the diameterd(0) of a distance-regular graph0 is
bounded by a function of the valencyk andr (0). So in order to classify distance-regular
graphs of fixed valencyk, the major part of work is to give an upper bound ofr (0). On the
other hand ifr (0) ≥ 2, it is easy to see that every maximal clique has sizes+ 1= a1+ 2.
In particular,t + 1= k/(a1+ 1) is an integer. So we define the following.

A distance-regular graph0 is said to be of order(s, t) if 0(α) ' (t + 1) · Ks for every
vertexα. If 0 does not have an induced subgraph isomorphic toK2,1,1, then a distance-
regular graph0 is of order(s, t) for somesandt . In particular, this is the case ifr (0) > 1 or
a1 ≤ 1. In this terminology this paper is concerned with a classification of distance-regular
graphs of order(2, 2).

Let 0 be a distance-regular graph of order(s, t).
If t = 0, it is clear that0 is a complete graph.
If t = 1, 0 is a line graph and we have a classification of such graphs. See [8, 13] and

Proposition 6.2.
We are interested in the next case,t = 2. If s= 1, i.e.,a1 = 0 thenk = 3. A classification

of distance-regular graphs of valency 3 is completed by Ito [11], Biggs–Boshier–Shawe-
Taylor [6] and Bannai–Ito [3]. In this paper we treat the cases = t = 2. It seems that the
situation is a little different in each of the following cases.

t < s, t = s and t > s.
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Actually, stimulated by our result and the techniques developed in this paper, N. Yamazaki
proved the following [16].

Theorem 1.2 Let0 be a distance-regular graph of order(s, 2) with s> 2. Then one of
the following holds.
(1) d(0) ≤ r (0)+ 2.
(2) 0 is a bipartite half of a distance-biregular graph with vertices of valency three.

We note here that the conditions > 2 is essential in his proof. We believe that our case
is one of the key parts of the classification of distance-regular graphs witht = 2.

We also note thatk = 6,a1 = 1 is the smallest unsettled case with girth equals 3.
For the convenience of the reader, we also give a classification of distance-regular graphs

of valencyk ≤ 7, girth 3 in the last section. Except the casek = 6,a1 = 1, the results may
be known to some specialists.

In [15], the third author called a distance-regular graphextra thin if b1 = cd−1. If an
extra thin distance-regular graph satisfiesad 6= 0, thenk = ad(ad+1) anda1 = ad−1. So
Theorem 1.1 includes the nonexistence of extra thin distance-regular graphs withad = 2.

Our proof is divided into two parts.
In the first part we apply combinatorial arguments to show that eitherd(0) ≤ r (0)+2 or

0 is a bipartite half of a bipartite distance-regular graph of valency 3. We use intersection
diagrams and investigate the clique patterns on the diagram of rank 1. (See the last part of
Section 2.) After determining the clique patterns, we apply circuit chasing techniques. See
Sections 3 and 4.

Since bipartite distance-regular graphs of valency 3 are completely classified [11], in the
second part we assumed(0) ≤ r (0)+2. We use eigenvalue techniques. We follow mainly
the techniques developed by E. Bannai and T. Ito [2–4]. Using additional information in
our case and refinement in computation, we could obtain a boundr (0) ≤ 17. Now it is not
hard to determine the feasible arrays either by computer testing the integrality condition of
multiplicities of eigenvalues, or by hand checking the divisibility condition coming from
the number of circuits of certain types.

We also note here the importance of these two parts. Under our assumption, it is not hard
to show that ifl (c,a, b) ≥ 2, then(c,a, b) = (1, 1, 4), (2, 2, 2) or (4, 1, 1). By a result of
E. Bannai and T. Ito in [2],l (2, 2, 2) ≤ 10 · 6 · 26. Now we can apply the main theorem in
[4] andd(0) is bounded. So in this sense,d(0) is theoretically bounded. In order to get a
complete classification, however, we need to obtain a reasonable upper bound ofd(0). For
that reason, it was essential to show thatd(0) ≤ r (0)+ 2.

Our notation and terminologies are standard except the following.
Lete(A, B) denote the number of edges between subsets A, B of0. Instead ofe({x}, B),

we will write e(x, B).
For an edgeα ∼ β,

D(α, β) = D1
1(α, β) = 0(α) ∩ 0(β).

Let u, v be vertices at distancei . We call the induced subgraph on0i−1(u) ∩ 0(v),
the ci -graph or theci -graph0i−1(u) ∩ 0(v). Thebi -graph and theai -graph are defined
similarly.
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2. Preliminaries

In this section we collect several results we apply in the following sections.

Proposition 2.1 [10, Lemma3.2] Let 0 be a distance-regular graph. Let r= r (0).
Suppose cr+1 = 1 and for all verticesα, β ∈ 0 with ∂(α, β) = r + 2, the cr+2-
graph0r+1(α)∩0(β) is a coclique. Then there exists an integer n≥ a1 + 1 such that
ar+1− a1 = n(a1+ 1).

Lemma 2.2[8, Lemma5.5.2] Let0 be a distance-regular graph and let2 ≤ i ≤ d − 1.
Suppose that for all verticesα, β with ∂(α, β) = i + 1, the ci+1-graph0i (α) ∩ 0(β) is a
clique. Then ci+1 = 1.

Lemma 2.3 Let0 be a distance-regular graph with k= 6,a1 = 1. If bd−1 = 1, then
one of the following holds.
(1) cd = 6 and kd−1 ≡ 0 (mod3).
(2) cd = 4 and kd ≡ 0 (mod3).

Proof: If cd = 6, the assertion is obvious.
Supposecd 6= 6, i.e.,ad 6= 0. Let∂(u, v) = d andDi

j = 0i (u)∩0 j (v). Sincebd−1 = 1,

e(Dd−1
1 , Dd

1 ∪Dd
2) = 0. See figure 1. So a subgraphDd−1

1 is 1-regular andcd ≡ 0 (mod 2).
If cd = 2, thecd-graphDd−1

1 is a clique. This contradicts Lemma 2.2. Hencecd = 4= b1.
Soe(Dd

1 , Dd
2) = 0. This implies that every connected component of0d(α) is a clique of

size 3. Thuskd ≡ 0 (mod 3). 2

Proposition 2.4 [9] Let 0 be a distance-regular graph of valency k, a = a1 6= 0. Let
r = r (0). Suppose

(cr+1,ar+1, br+1) = · · · = (cr+t ,ar+t , br+t ) = (2, 2a, b).

Then t≤ 1.

Figure 1. Rankd diagram withbd−1 = 1.
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In this and the following two sections we will use intersection diagrams of rank 1. For
intersection diagrams, see for example [7, 9].

Lemma 2.5 Let0 be a distance-regular graph of order(s, t) and r = r (0). For every
pair of verticesα and x with∂(α, x) = r + 1, the cr+1-graph0r (α) ∩ 0(x) is a coclique.

Proof: We may assume thatcr+1 ≥ 2. Take anyy1, y2 ∈ 0r (α) ∩ 0(x). Let {β} =
0(α) ∩ 0r−1(y1).

The intersection diagram with respect to(α, β) has the following shape. (See [9].) In
particular, we havee(Dr+1

r , Dr
r ) = 0.

Note thaty1 ∈ Dr
r−1 andx ∈ Dr+1

r . Since

1= cr = e
(
x, Dr

r−1

) = |{y1}|,

y2 must be inDr
r+1. Hence we havey1 6∼ y2. 2

Let 0 be a distance-regular graph withk = 6,a1 = 1, andr = r (0). Then for each
vertexx ∈ 0, 0(x) = 3 · K2, i.e., a disjoint union of threeK2’s. We fix the following
notation in this and the following two sections.

∂(α, β) = 1, Di
j = 0i (α) ∩ 0 j (β), D1

1 = {γ }.

Note that|D1
1| = 1 asa1 = 1.

We introduce three terms which play key role in the following sections. They are ‘clique
type’, ‘ vertex type’ and ‘clique pattern’. Let x = {ζ, η, ξ} be a clique. By the clique type
(with respect to a vertexπ ) of x, we mean

(∂(π, ζ )− r, ∂(π, η)− r, ∂(π, ξ)− r )

the list of distances fromπ minusr of vertices in a clique.
We call

Eδ = (∂(α, δ)− r, ∂(γ, δ)− r, ∂(β, δ)− r )

the type of a vertexδ (with respect to(α, β)). We also use column vectors in the figures.
The clique pattern atδ is the collection of types of vertices in0(δ)with edges among them.

Figure 2. Rank 1 diagram withcr+1 > 1.
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The first part of our proof is to determine these things. For example, if(cr+1,ar+1, br+1) =
(2, 2, 2), Lemma 2.5 tells us that there are no cliques of type(0, 0, 1), (1, 1, 1), (1, 1, 2).
This is equivalent to say that there are no vertices of the same types. Next we determine the
possibilities of the clique pattern at a vertex which is of certain type. By this argument and
circuit chasing techniques we will show that eitherd(0) ≤ r + 2 or0 is a halved graph of
a bipartite graph of valency 3.

3. The casecr+1 ≥ 2

In this section we prove the following.

Theorem 3.1 Let0 be a distance-regular graph with k= 6,a1 = 1. Let r = r (0). If
cr+1 ≥ 2, then d≤ r + 2 and one of the following holds.
(1) d = r + 1 and cr+1 ≤ 3.
(2) (cr+1,ar+1, br+1) = (2, 2, 2) and cr+2 = 3.
(3) (cr+1,ar+1, br+1) = (2, 3, 1) and cr+2 = 6.

Proof: As we remarked in the previous section, for each vertexx ∈ 0, 0(x) ' 3 · K2,
i.e., a disjoint union of threeK2’s.

Since everycr+1-graph is a coclique by Lemma 2.5,cr+1 ≤ 3. Moreover ifcr+1 = 3,
thenbr+1 = 0, i.e.,d = r + 1. Hence we may assume thatcr+1 = 2 andbr+1 ≥ 1 to prove
our theorem.

Take any edgex ∼ y with x ∈ 0r+1(α) and y ∈ 0r+2(α). Sincecr+1 = 2, we have
{z1, z2} = 0r (α) ∩ 0(x). We havez1 6∼ z2 by Lemma 2.5. Hence{w j } = D(x, zj )

⊂0r+1(α) for j = 1, 2. This meansbr+1 ≤ 2.

Case 1. br+1 = 2, i.e.,{y′} = D(x, y) ⊂ 0r+2(α).

The types of cliques in0(x) ∪ {x} for eachx ∈ 0r+1(α) are as depicted in figure 3.

Figure 3. Clique types ofx ∈ 0r+1(α) with cr+1 > 1.
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This implies that everycr+2-graph is a coclique. Hence we havecr+2 ≤ 3. Moreover, if
cr+2 = 3, thend = r + 2, we have (2).

Supposecr+2 = 2. Thene(Dr+2
r+1, Dr+1

r+2) = 0 and by Proposition 2.4,br+2 6= 2. So we
have an edgey ∼ u with y ∈ Dr+2

r+1 andu ∈ Dr+2
r+2.

Suppose there exists a vertexv ∈ 0(u)∩ Dr+1
r+1. Sinceα, β ∈ 0r+1(v), we haveγ ∈ 0r (v)

from figure 3. This means that∂(u, γ ) = r + 1. Moreover,α ∈ 0r+2(y) andβ ∈ 0r+1(y)
impliesγ ∈ 0r+2(y). Hence

Dr+1
r+2(γ, β) 3 u ∼ y ∈ Dr+2

r+1(γ, β).

This is a contradiction.
On the other hand supposee(u, Dr+1

r+1) = 0. Then0(u) ∩ (Dr+1
r+2 ∪ Dr+2

r+1) is a union
of two cocliques of size 2 without edges in between, because it contains twocr+2-graphs
0r+1(α) ∩ 0(u) and0r+1(β) ∩ 0(u), ande(Dr+2

r+1, Dr+1
r+2) = 0. Hence0(u) contains a

coclique of size 4, a contradiction. Thus we have (2) in this case.

Case 2. br+1 = 1, i.e.,{y′} = D(x, y) ⊂ 0r+1(α).

The types of cliques in0(x) ∪ {x} for eachx ∈ 0r+1(α) are as depicted in figure 3.
This implies that everycr+1-graph is a coclique of size 2 and everycr+2-graph is a union

of K2’s. If cr+2 = 6, we have(3). Hence we may assume thatcr+2 = 4, as everycr+2-graph
always contains acr+1-graph as a subgraph.

Let δ ∈ Dr+1
r+1. Sinceα, β ∈ 0r+1(δ), we haveγ ∈ 0r (δ) ∪ 0r+2(δ) from figure 3.

Moreover,Dr+1
r+1 ∩ 0r+2(γ ) 6= ∅, for example every vertex in0r+1(α) ∩ 0r+2(γ ) satisfies

this condition. Note thatδ ∈ Dr+1
r+1 ∩ 0r+2(γ ), i.e., δ is of type (1, 2, 1), if and only if

e(δ, Dr
r ) = 0.

Take a vertexx of type (1, 2, 1). Let {z1, z2} = 0(x) ∩ Dr
r+1, {z′1, z′2} = 0(x) ∩

Dr+1
r with z1 ∼ z′1, z2 ∼ z′2.
Now we apply a circuit chasing technique.
Take a circuitx0 ∼ x1 ∼ · · · ∼ x2r+2 ∼ x0 of length 2r + 3 such that

x0 ∈ D0
1, xi ∈ Di

i−1, i = 1, . . . , r + 1, xr+1 = z′2

x = xr+2 ∈ Dr+1
r+1, xr+ j ∈ Dr+3− j

r+4− j , j = 3, . . . , r + 2, xr+3 = z1.

Let {yi } = D(xi , xi+1). We havey0 = γ, yr+1 = z2, yr+2 = z′1, and this circuit does not
contain a triangle, i.e.,xi 6∼ xi+2. See figure 4.

Changing the base points tox1, x2, we have easily that

xr+2 ∈ Dr+1
r , xr+3 ∈ Dr+1

r+1, xr+4 ∈ Dr
r+1.

Since∂(x1, yr+2)= r, yr+2 ∈ Dr
r+1. Since{xr+4, yr+2}⊂ Dr

r+1∩0(xr+3), e(xr+3, Dr
r ) =

0. This implies thatxr+3 ∈ 0r+2(y1) and it is of same type asx. In particular,∂(x2, yr+3) =
r . By induction we have that

r = ∂(xr+2, y0) = ∂(x, y0) = r + 2.
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Figure 4. Circuit of length 2r + 3.

This is a contradiction.
This completes the proof of Theorem 3.1. 2

Remark

1. For Case 2, our original proof was different. We showed that ifd ≥ r +2,0 is a bipartite
half of a bipartite distance-regular graph of valency 3. (See(cr+1,ar+1, br+1) = (1, 3, 2)
case in the next section.) The above proof was suggested by N. Yamazaki.

2. Case (3) in Theorem 3.1 does not occur. Actually, we could eliminate this case. However
we decided to eliminate this case after bounding the diameter in Section 5 to avoid lengthy
arguments.

4. The casecr+1 = 1

In this case we prove the following.

Theorem 4.1 Let0 be a distance-regular graph with k= 6,a1 = 1. Let r = r (0). If
cr+1 = 1, then one of the following holds.
(1) d = r + 1.
(2) d = r + 2, ar+1 = 4, cr+2 = 6.
(3) d = r + 2, ar+1 = 3, cr+2 = 3 or 4.
(4) d = r + 2, ar+1 = 2, cr+2 = 2, 3 or 4.
(5) 0 is a bipartite half of a bipartite distance-regular graph of valency3.

Proof: Throughout this proof we assume thatd≥ r+2. First we note thate(Dr
r+1, Dr+1

r ) =
0 ascr+1 = 1. By Proposition 2.1, there is acr+2-graph, which is not a coclique. In partic-
ularcr+2 ≥ 2. We argue three cases separately depending on the values ofar+1.

The following are the clique types of vertices in0(x) ∪ {x} for eachx ∈ 0r+1(α).
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Figure 5. Clique types ofx ∈ 0r+1(α) with cr+1 = 1.

Case 1. ar+1 = 4.

By figure 5, it is easy to see that everycr+2-graph is a union ofK2’s, and therefore
cr+2 ∈ {2, 4, 6}. cr+2 = 2 is impossible by Lemma 2.2. We want to show thatcr+2 = 6.
So we will assumecr+2 = 4 to derive a contradiction.

Step 1. Dr+2
r+1 ∪ Dr+1

r ∪ Dr
r+1 ∪ Dr+1

r+2 ⊂ 0r+1(γ ).
Since{α, β, γ } is a clique, the assertion follows easily from figure 5.

Step 2. e(Dr+2
r+1, Dr+1

r+2) = 0.
We may assumed = r + 2, as otherwisebr+1 = br+2 = 1 and the assertion is

obvious. Suppose there exists an edgez ∼ z′ such thatz ∈ Dr+2
r+1 andz′ ∈ Dr+1

r+2. Let
{y} = Dr+1

r ∩ 0(z). Sincecr+1 = br+1 = 1, {y′} = D(z, y) ⊂ Dr+1
r+1 and {x} =

D(z, z′) ⊂ Dr+1
r+1. Hence the clique pattern atz is as in figure 6. Consider the clique

pattern atx. Then there are adjacent verticesw,w′ in 0(x) both of type (1, 1, 1).
Hence the clique pattern atw is as in figure 6. Then0(w) ∩ 0r+2(γ ) = ∅ by Step 1, a
contradiction.

Step 3. Let u ∈ Dr+1
r+1 such that∂(u, γ ) ≥ r + 1. Then there are three possible clique

patterns. See figure 7.

Let{v} = Dr+1
r ∩ 0(u), {v′} = Dr

r+1 ∩ 0(u).

Suppose{w} = D(u, v) ⊂ Dr+2
r+1. Then there exists a vertexw′ ∈ 0(u)∩ Dr+1

r+2. Since
br+1 = cr+1 = 1, the other two verticesx, y in 0(u) are in Dr+1

r+1. Sincew is of type
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Figure 6.

Figure 7. Clique patterns of the casear+1 = 4.

(2, 1, 1),u cannot be of type (1, 2, 1) by Step 2, as otherwise

Dr+2
r+1(α, γ ) 3 w ∼ u ∈ Dr+1

r+2(α, γ ).

Henceu is of type (1, 1, 1), and we may assume that

Ex = (1, 0, 1), Ey = (1, 2, 1).

Sincey 6∼ x andy 6∼ w′, x ∼ v′. We have B-type. By symmetry, we have A-type if
D(u, v′) ⊂ Dr+1

r+2.
Now we may assume that

D(u, v) ∪ D(u, v′) ⊂ Dr+1
r+1.
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Let {x} = D(u, v), {x′} = D(u, v′). The other two verticesy, w in0(u)must lie inDr+1
r+1

andDr+2
r+2 by Step 2. Sincebr+1 = 1, ∂(w, γ ) ≥ r + 2, as otherwise∂(w, γ ) = r + 1

and

2= |{α, β}| ≤ |0r+2(w) ∩ 0(γ )| = br+1.

We have∂(y, γ ) ≥ r + 1. HenceEu = (1, 2, 1), as otherwiseu must be adjacent to a
vertex in0r (γ ), which is impossible. Therefore we also haveEx = Ex′ = (1, 1, 1).

If d ≥ r + 3, then Ew = (2, 3, 2), Ey = (1, 2, 1), and we have C-type.

If d = r +2, thenEw = (2, 2, 2), Ey = (1, 2, 1), asEy = (1, 1, 1) impliesbr+1 ≥ 2.

Step 4. r≡ 0 (mod 3).
We apply a circuit chasing technique.
Take a circuitx0 ∼ x1 ∼ · · · ∼ x2r+2 ∼ x0 of length 2r + 3 such that

x0 ∈ D0
1, xi ∈ Di

i−1, i = 1, . . . , r + 1,

xr+2 ∈ Dr+1
r+1, xr+ j ∈ Dr+3− j

r+4− j , j = 3, . . . , r + 2.

It is easy to see that with respect to the base pointsxi , xi+1,

xi+ j ∈ D j
j−1, j = 1, . . . , r + 1, xr+2+i ∈ Dr+1

r+1,

xr+i+ j ∈ Dr+3− j
r+4− j , j = 3, . . . , r + 3,

where the indices ofxi ’s are taken modulo 2r + 3.
Assume thatxr+2 is of A-type. Let{yi } = D(xi , xi+1). In particular

yr+2 ∈ 0r+1(x0) ∩ 0r+1(y0) ∩ 0r+2(x1).

Changing the base points tox1, x2, we haveyr+2 ∈ Dr+2
r+1, as

xr+2 ∈ Dr+1
r , xr+3 ∈ Dr+1

r+1, and yr+2 ∈ 0r+2(x1).

Hencexr+3 is of B-type andyr+3 ∈ 0r+2(y1) ∩ Dr+1
r+1.

Changing the base points tox2, x3, we haveyr+3 ∈ Dr+1
r+1 as before.

We claim thatyr+3 ∈ 0r+1(y2). Sinceyr+3 ∼ xr+3 ∈ Dr+1
r , ∂(yr+3, y2) ≥ r + 1. If

yr+3 ∈ 0r+2(y2), then thebr+1-graph0(x2)∩0r+2(yr+3)containsy1, y2. This contradicts
br+1 = 1. Thusyr+3 ∈ 0r+1(y2) andyr+3 is of A-type. Soxr+4 must be of C-type and
yr+4 ∈ 0r+1(y2) ∩ Dr+1

r+1.
Changing again the base points tox3, x4, we haveyr+4 ∈ Dr+1

r+1.
We claim thatyr+4 ∈ 0r+2(y3). If yr+4 ∈ 0r+1(y3), then

x2, y2, x4, y3 ∈ 0r+1(yr+4) ∩ 0(x3)
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Figure 8. Circuit of length 2r + 3.

form 2·K2. This is impossible by figure 5. Henceyr+4 ∈ 0r+2(y3) andxr+5 is of A-type.
We have proved that the type changes

A→ B→ C→ A

with period 3, as we change the base points successively in this circuit. Thus we can
conclude that 2r + 3≡ 0 (mod 3).

Step 5. The casecr+2 = 4 is not possible.
In the following, we show thatr ≡ 1 (mod 3) to derive a contradiction.
Take a circuitx0 ∼ x1 ∼ · · · ∼ x2r+3 ∼ x0 of length 2r + 4 such that

x0 ∈ D0
1, xi ∈ Di

i−1, i = 1, . . . , r + 2,

xr+3 ∈ Dr+1
r+1, xr+ j ∈ Dr+4− j

r+5− j , j = 4, . . . , r + 3.

Assume thatxr+3 is of A-type. We note that this circuit does not contain triangles. Let
{yi } = D(xi , xi+1).

Changing the base points tox1, x2, we havexr+3 ∈ Dr+1
r+1, and∂(xr+3, y1) ≥ r + 1.

If ∂(xr+3, y1) = r+1, then we can argue as before and conclude that0r+1(xr+3)∩0(x1)

3 x0, y0, x2, y1 is anar+1-graph containing 2· K2, which is a contradiction. Hencexr+3

is of C-type andyr+2 ∈ 0r+1(y1). Moreoveryr+3 ∈ Dr+2
r+2, asyr+3 ∈ 0r+2(x1)∩0(xr+3),

and we havexr+4 ∈ 0r+2(y1) ∩ Dr+1
r+1.

Changing the base points tox2, x3, we havexr+4 ∈ Dr+1
r+1, andyr+3 ∈ Dr+2

r+1. Hence
xr+4 is of B-type. Sincexr+5 ∈ D1

1(xr+4, xr+6), andxr+4 6∼ xr+6, we havexr+5 ∈ Dr+1
r+2.

Changing again the base points tox3, x4, we havexr+5 ∈ Dr+2
r+1, xr+6 ∈ Dr+1

r+1 by
Step 2. Sincexr+4 6∼ xr+6, xr+6 is not of B-type. Thusxr+6 is of A-type.
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Figure 9. Circuit of length 2r + 4.

Hence we have the same profile with respect tox0, x1.
Therefore we conclude that 2r + 4≡ 0 (mod 3). This contradicts Step 4.
Therefore we have (2) in this case.

Case 2. ar+1 = 3.

In this case,cr+2 = 2, 3, 4, or 6.
Supposecr+2 = 3, andd ≥ r + 3. If br+2 = 2, then everybr+2-graph is a clique, hence

so is everybr+1-graph. This is impossible ascr+2 = 3.
If br+2 = 1, then we have a contradiction by Lemma 2.3. Henced ≤ r + 2, in this case.
Next we treat the casecr+2 = 2.

Lemma 4.2 If (cr+1,ar+1, br+1) = (1, 3, 2), with cr+2 = 2, then e(Dr+1
r+2, Dr+2

r+1) 6= 0.

Proof: Supposee(Dr+1
r+2, Dr+2

r+1) = 0.

Step 1. Let u ∈ Dr+1
r+1, v ∈ Dr+1

r , andw ∈ Dr+2
r+1 be a triangle. Then the clique pattern at

the vertexu is as in figure 10.
Sincecr+2 = 2, e(w, Dr+1

r+1) = 1 andw ∈ 0r+2(γ ), as otherwisew ∈ 0r+1(γ ) and
there would exist a vertexu′ such that

u 6= u′ ∈ 0r (γ ) ∩ 0(w) ⊂ Dr+1
r+1.
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Figure 10. Clique pattern of the casear+1 = 3 (1).

Let w′′ ∈ 0(v)∩ Dr+2
r+1 with w′′ 6= w. Thenw′′ ∈ 0r+2(γ ) as above. Sincebr+1 =

2 andv ∈ 0r+1(γ ), u ∈ 0r+1(γ ). Hence there is a vertexx ∈ Dr+1
r+1 ∩ 0(u) ∩ 0r (γ ).

Now Step 1 follows immediately.
Step 2. There is no triangleu ∈ Dr+1

r+1, v ∈ Dr+1
r , w ∈ Dr+2

r+1.
Suppose there exists a triangle{u, v, w} with u ∈ Dr+1

r+1, v ∈ Dr+1
r andw ∈ Dr+2

r+1.
Take a circuitx0 ∼ x1 ∼ · · · ∼ x2r+2 ∼ x0 of length 2r + 3 such that

x0 ∈ D0
1, xi ∈ Di

i−1, i = 1, . . . , r + 1,

xr+2 ∈ Dr+1
r+1, xr+ j ∈ Dr+3− j

r+4− j , j = 3, . . . , r + 2.

Let {yi } = D(xi , xi+1). Supposeu = xr+2, v = xr+1, w = yr+1. Sox0 ∈ 0r+2(yr+1).
Then by Step 1,yr+2 ∈ Dr+1

r+2. See figure 11.
Changing the base points tox1, x2, we have thatxr+2 ∈ Dr+1

r , xr+3 ∈ Dr+1
r+1, andxr+4 ∈

Dr
r+1. Sinceyr+2 ∈ 0r+2(x1), yr+2 ∈ Dr+2

r+1. Thus again by Step 1,yr+3 ∈ Dr+1
r+2 and

xr+3 ∈ 0r+1(y1).

Figure 11. Circuit of length 2r + 3.
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By induction we can conclude that

x0 ∈ Dr+1
r+1(xr+1, xr+2) and therefore x0 ∈ 0r+1(yr+1).

Sincex0 ∈ 0r+2(yr+1), this is a contradiction.
By Step 2, we have that thecr+2-graph is always a coclique, if we assumee(Dr+1

r+2,

Dr+2
r+1) = 0. This contradicts Proposition 2.1.

This proves Lemma 4.2. 2

Supposecr+2 = 2. By the previous lemma, we may assume that there are vertices,w, w′

such that

Dr+2
r+1 3 w ∼ w′ ∈ Dr+1

r+2.

Let v ∈ 0(w) ∩ Dr+1
r , w′′ ∈ D(w, v). Sincecr+2 = 2, w′′ ∈ Dr+2

r+1. Let {u, u′} =
0(v) ∩ Dr+1

r+1. Thenu ∼ u′.
Supposeu is of type (1, 1, 1) andv′ ∈0(u) ∩ Dr

r+1. Then there is a vertexx in 0r (γ ) ∩
0(u) ⊂ Dr+1

r+1, andx 6∼ v′. So it is impossible to havebr+1 = 2. Sou andu′ are of type (1,
2, 1) andw ∈ 0r+1(γ ), as∂(γ, v) = r + 1 and0r+2(γ ) ∩ 0(v) = {u, u′}. There must be
a vertex in0(w) ∩ 0r (γ ) ⊂ Dr+1

r+1. This is impossible ascr+2 = 2. Thuscr+2 6= 2.
Supposecr+2 = 4. If d ≥ r + 3, it is clear that(cj ,aj , bj ) = (4, 1, 1) for r + 2 ≤ j ≤

d − 1. Socd = 4 or 6 by Lemma 2.3. We treat three cases together, namely,

(1) d ≥ r + 3, cr+2 = cd = 4,
(2) d ≥ r + 3, cr+2 = 4, cd = 6; and
(3) d = r + 2, cr+2 = 6.

Our goal is to show (5) in the theorem.
Firstly, in all these three cases everybr+1-graph is a coclique, as everycr+2-graph is a

union ofK2’s. So there is no triangle in0r+1(x) for x ∈ 0. This impliesDr+1
r+1∩0r+1(γ ) =

∅. Hence

0r+1(γ ) = Dr+2
r+1 ∪ Dr+1

r+2 ∪ Dr
r+1 ∪ Dr+1

r .

For example,Dr+2
r+1 ⊂ 0r+1(γ ) as otherwise, there is a vertexx ∈ Dr+2

r+1 ∩ 0r+2(γ ) and the
br+1-graph0(β) ∩ 0r+2(x) is a clique. Now it is easy to determine clique patterns.

Let1 be the set of all maximal cliques, i.e.,K3’s in 0. Let 0̃ = 0 ∪1 be the incidence
graph, i.e., a bipartite graph defined by the following adjacency.

α ∼ x in 0̃ if and only if α ∈ x, for α ∈ 0, x ∈ 1.

We use∼notation for the graph̃0.
It is straightforward to show the distance-regularity of0̃ by the clique patterns described

above.
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Figure 12. Clique patterns of the casear+1 = 3 (2).

Note that forx = {α, β, γ } ∈ 1,

∂̃(x, δ) = 2i + 1 if and only if δ ∈ 0 and ∂(x, δ) = i .

∂̃(x, y) = 2i + 2 if and only if y ∈ 1 and ∂(x, y) = i, x 6= y.

We only give the values of̃ci ’s in each case.

c̃j =
{

1, j = 1, 2, . . . ,2r + 2

2, j = 2r + 3, . . . ,2d − 1

c̃2d = 3 if cd = 6

c̃2d = 2 and c̃2d+1 = 3 if cd = 4.

Therefore we have (3) or (5) ifar+1 = 3.

Case 3. ar+1 = 2.

We start from a lemma.
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Figure 13. Clique pattern of the casear+1 = 2 (1).

Lemma 4.3 Suppose(cr+1,ar+1, br+1) = (1, 2, 3).
(1) There is no triangle in0r+1(u) for every vertex u∈ 0, i.e., there is no vertex of type

(1, 1, 1). Moreover, there exists a triangle{y, z, w}with y ∈ 0r+1(x), z, w ∈ 0r+2(x).
In particular, ar+2 6= 0.

(2) If cr+2 = 3 and d≥ r + 3, then(cr+2,ar+2, br+2) = (3, 2, 1). Moreover there is no
triangle in0r+2(x) for every vertex x∈ 0, i.e., there is no vertex of type(2, 2, 2).

(3) Let x be a vertex of type(1, 2, 1). If cr+2 ≤ 3 and d≥ r + 3, then the clique patterrn
of the vertex x is as in figure13.

(4) If cr+2 = 2 and d≥ r + 3, then(cr+2,ar+2, br+2) = (2, 3, 1).

Proof:

(1) This follows easily from the fact that0(x) ' 3 · K2 for every vertexx ∈ 0. See
figure 5.

(2) There is a vertexu of type (2, 1, 1) by figure 5.u is adjacent to a vertex in0r+3(α),
which must be of type (3, 2, 2).

If br+2 = 2, then everybr+2-graph is a clique. So there is no vertex of type (3,2,2).
This is a contradiction. Thus we have(cr+2,ar+2, br+2) = (3, 2, 1).

(3) Let {y} = Dr+1
r ∩ 0(x) and {y′} = Dr+1

r ∩ 0(x). Sincee(y, Dr+1
r+1) = 1, {z} =

D(x, y) ⊂ Dr+2
r+1. Similarly, {z′} = D(x, y′) ⊂ Dr+1

r+2. Since(cr+1,ar+1, br+1) =
(1, 2, 3), there arev,w ∈ Dr+2

r+2 ∩ 0(x).
SupposeEz= (2, 1, 1). Then{y, y′, z}⊂0r+1(γ )∩0(x)and thus(cr+2,ar+2, br+2)=

(3, 2, 1) from (2). Since|0r+2(γ ) ∩ 0(x)| = ar+2 = 2, we may assumeEv = (2, 2, 2).
This is a contradiction from (2). HenceEz = (2, 2, 1). By symmetry we have
Ez′ = (1, 2, 2).

(4) (cr+2,ar+2, br+2) = (2, 1, 3) contradicts Lemma 2.2.
Suppose(cr+2,ar+2, br+2) = (2, 2, 2). Let x be a vertex of type(1, 2, 1). Then the

clique patterrn of the vertexx is as in figure 13.
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Let {z, z1, z2} = Dr+2
r+1∩0(y). Thenz1 ∼ z2. Sincey ∈ 0r+1(γ ) andbr+1 = 3, we may

assume thatz1 ∈ 0r+2(γ ). Suppose there existsx1 ∈ 0(z1) ∩ Dr+1
r+1. By our observation

above,x1 has the same clique pattern asx. Hencex1 ∼ y, which is impossible. Hence we
have a vertexz′′ ∈ Dr+1

r+2 ∩ 0(z1). Sincebr+2 − br+1 = 1, we cannot locate the vertex in
D(z1, z′′). Thus(cr+2,ar+2, br+2) 6= (2, 2, 2).

The lemma is proved. 2

By Lemma 4.3 (1),cr+2 6= 6.
Supposecr+2 = 4 andd ≥ r + 3. Then everycr+2-graph is a union ofK2’s. On the

other hand, everybr+1-graph is a union of aK1 and aK2. This is impossible.
Supposecr+2 = 3 andd ≥ r + 3. Then(cr+2,ar+2, br+2) = (3, 2, 1) by Lemma

4.3 (2). Letx be a vertex of type(1, 2, 1). The clique pattern at the vertexx is as in
figure 13. by Lemma 4.3 (3). Since(cr+2,ar+2, br+2) = (3, 2, 1) we may assume that
v ∈ 0r+1(γ ), w ∈ 0r+3(γ ). This is impossible. Thus we haved = r + 2 if cr+2 = 3.

Finally assumecr+2 = 2 andd ≥ r + 3.
Then we have(cr+2,ar+2, br+2) = (2, 3, 1) from Lemma 4.3 (4).
We now determine clique patterns in this case. Note that there is no vertex of type(1, 1, 1)

by Lemma 4.3 (1).
Let δ be a vertex inDr+1

r . Thenδ is of type (1, 1, 0). And we can determine the types of
vertices in0(δ). We call a type-(2, 2, 1)-vertexx of type A whenD(δ, x) ⊂ Dr+1

r+1, and of
type B whenD(δ, x) ⊂ Dr+2

r+1. See figure 12.
We have the patterns of cliques at a vertex of type (1, 2, 1) from Lemma 4.3 (3), where
Ev = (2, 3, 2) and Ew = (2, 2, 2).

Converting the base points, we also have clique patterns of vertices of types (1, 0, 1),
(0, 1, 1), (2, 1, 1), (1, 1, 2).

Let η be of type (2, 2, 1)-A. By the clique patterns of a vertex of type (2, 1, 1),η is not
adjacent to a vertex of type (2, 1, 1). Sincebr+2 = 1, there is no vertex of type (3, 3, 2).

Hence ifu1, u2, u3, u4, u5, u6 be vertices in0(η), we may assume that

u1 is of type (1, 1, 0), u2 is of type (1, 2, 1), u3 is of type (2, 2, 1),

u4 is of type (2, 3, 2), u5 is of type (3, 2, 2), andu6 is of type (2, 1, 2).

Sinceu6 ∈ 0r+1(γ ), there existsv ∈ 0r (γ ) ∩ 0(u6) which must be of type(1, 0, 1). If
u3 ∼ u6, then{v, η, u3} ⊂ 0r+1(β) ∩ 0(u6). This contradictscr+2 = 2. Hence

u1 ∼ u2, u3 ∼ u4, u5 ∼ u6.

Let ξ be of type (2, 2, 1)-B. Thene(ξ, Dr+1
r+1) = 0 as before. Soe(ξ, Dr+1

r+2) = 1. Let
v1, v2, v3, v4, v5, v6 be vertices in0(ξ), we may assume that

v1 is of type (1, 1, 0), v2 is of type (2, 1, 1), v3 is of type (1, 2, 2),

v4 is of type (2, 3, 2), v5 is of type (2, 2, 1), andv6 is of type (3, 2, 2).

Sincee(v3, Dr+2
r+1) = 1,

v1 ∼ v2, v3 ∼ v4, v5 ∼ v6.
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Moreoveru3 in 0(η) is of type A, andv5 in 0(ξ) is of type B.
Converting the base points, we can obtain the clique patterns of vertices of type (2, 1, 2).

See figure 14.
Take a circuitx0 ∼ x1 ∼ · · · ∼ x2r+4 ∼ x0 of length 2r + 5 such that

x0 ∈ D0
1, xi ∈ Di

i−1, i = 1, . . . , r + 1,

xr+ j ∈ Dr+5− j
r+6− j , j = 5, . . . , r + 4.

Figure 14. Clique patterns of the casear+1 = 2 (2).
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Let {yi } = D(xi , xi+1). We define three types as follows.

Type I. Exr+2 = (2, 2, 1)-A, Exr+3 = (2, 3, 2), Exr+4 = (1, 2, 2),
Eyr+2 = (2, 2, 1)-A, Eyr+3 = (1, 2, 2), Eyr+4 = (1, 2, 1)

Type II. Exr+2 = (2, 2, 1)-A, Exr+3 = (2, 2, 1)-A, Exr+4 = (1, 2, 1),
Eyr+2 = (2, 3, 2), Eyr+3 = (1, 1, 0), Eyr+4 = (1, 2, 2)

Type III. Exr+2 = (1, 2, 1), Exr+3 = (1, 2, 2), Exr+4 = (1, 2, 2),
Eyr+2 = (0, 1, 1), Eyr+3 = (2, 3, 2), Eyr+4 = (1, 2, 1)

Note that each of these circuits does not contain triangles. In the following, we determine
the type of the circuit with respect tox1, x2 for each type.

Figure 15. Circuit of length 2r + 5.
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Suppose the circuit is of type I. Thenxr+3 ∈ 0r+2(x1), yr+2 ∈ 0r+1(x1). Soxr+3 is of
(2, 2, 1)-A type, andxr+4 ∈ 0r+2(x1), yr+3 ∈ 0r+2(x1). Hence there are two possibilities.

Exr+4 = (2, 3, 2), Eyr+3 = (2, 2, 1)-A, or Exr+4 = (2, 2, 1)-A, Eyr+3 = (2, 3, 2)

Thus we have either type I or type II. Note that in the first casee(xr+4, Dr+1
r+1) = 0, and

0(xr+4) ∩ Dr+1
r+2 is a cliqueK2.

Suppose the circuit is of type II. Thenxr+3 ∈ 0r+1(x1). So xr+3 is of (1, 2, 1) type.
xr+4 ∈ 0r+1(x1), yr+3 ∈ 0r (x1) implies that we have type III, as this circuit does not have
triangles.

Suppose the circuit is of type III. Thenxr+3 ∈ 0r+2(x1), yr+2 ∈ 0r+1(x1). Soxr+3 is
of (2, 2, 1)-A type, andxr+4 ∈ 0r+2(x1), yr+3 ∈ 0r+2(x1). Suppose∂(yr+3, y1) = r + 3.
Then

{y0, y1} ⊂ 0(x1) ∩ 0r+3(yr+3).

This contradictsbr+2 = 1. Henceyr+3 is of (2, 2, 1)-A type and we have a circuit of type I.
Therefore by induction, we can conclude that for eachi , this circuit is either of type I,

II, or III with respect to every pair of adjacent verticesxi , xi+1 in the circuit. Moreover, it
is easy to see that there is a circuit of type III.

Take a circuit of type III with respect tox0, x1. It is of type I with respect tox1, x2.
Changing the base points toxr+3, xr+4, we have thatx0 ∈ Dr+1

r+1 andx1 ∈ Dr+2
r+2. This is

absurd because with respect to these base points, this circuit is of type different from I, II,
or III.

This completes the proof of Theorem 4.1. 2

Lemma 4.4 Let (cr+1,ar+1, br+1) = (1, 4, 1), cr+2 = 6. Then r≡ 0 (mod3).

Proof: Let u ∈ Dr+1
r+1 such that∂(u, γ ) ≥ r + 1. We claim that there are three possible

clique patterns.

Figure 16. Clique patterns of the casear+1 = 4.
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Let u be of type (1, 1, 1) and{v1, v2, . . . , v6} = 0(u). Sincecr+1 = br+1 = 1, we may
assume that

Ev1 = (1, 1, 0) Ev2 = (1, 0, 1) Ev3 = (0, 1, 1)
Ev4 = (1, 1, 2) Ev5 = (1, 2, 1) Ev6 = (2, 1, 1).

Note thatD(v2, u) = {v4} or {v6}. Now we have either A-type or B-type depending on the
location ofD(x, u).

Now we can determine the clique pattern at a vertex of type (1, 2, 1) as well without
difficulty.

Therefore we can use the first circuit used in Case 1 Step 4 in the proof of Theorem 4.1
to concluder ≡ 0 (mod 3). 2

Remark We can also show that in case (4) in Theorem 4.1,cr+2 6= 4.

In the next section, we apply Theorem 4.1 to give a bound of the diameter. We summarize
the information we need as a corollary as follows.

Corollary 4.5 Let 0 be a distance-regular graph of valency6, a1 = 1. If 0 is not a
bipartite half of a bipartite distance-regular graph of valency3, then d≤ r + 2 and the
following hold.
(1) If d = r + 1, then cr+1 ≤ 3.
(2) If (cr+1,ar+1, br+1) = (2, 2, 2), then cr+2 ≤ 3.
(3) If (cr+1,ar+1, br+1) = (2, 3, 1), then cr+2 ≥ 4.
(4) If (cr+1,ar+1, br+1) = (1, 2, 3), then cr+2 ≤ 4.

5. An upper bound of r(Γ)

We apply eigenvalue technique to give an upper bound ofr (0) assuming thatd ≤ r (0)+2.

Theorem 5.1 Let0 be a distance-regular graph of valency6 with a1 = 1. Let r = r (0).
If d(0) ≤ r + 2, then r≤ 17.

We start by the notational conventions, which mostly follow those used in [1–4].
Let0 be a distance-regular graph of diameterd, valencyk and parametersai , bi , ci . Let

A be the adjacency matrix of a graph0. Let

k = θ0 > θ1 > · · · > θd−1 > θd

be the eigenvalues ofA andm(θi ) the multiplicity of θi .
The polynomialsvi (x)(0≤ i ≤ d + 1) are defined by the recurrence relation

xvi (x) = bi−1vi−1(x)+ ai vi (x)+ ci+1vi+1(x)

for 0≤ i ≤ d with v−1(x) = 0, v0(x) = 1, andcd+1 = 1.
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The Fi (x) (0≤ i ≤ d) are the monic polynomials defined by

Fi (x) = c1c2 · · · ci (v0(x)+ v1(x)+ · · · + vi (x)).

They satisfy the recurrence relation

Fi (x) = (x − k+ bi−1+ ci )Fi−1(x)− bi−1ci−1Fi−2(x)

for 2≤ i ≤ d with F0(x) = 1, F1(x) = x + 1.
We put

Si (x) =
i∑

j=0

v j (x)2

kj
.

It is well known that

m(θi ) = |0|/Sd(θi ).

In the following we assume thatk = 6,a1 = 1, r = r (0) = l (1, 1, 4), andd ≤ r + 2.

Lemma 5.2 Let θ 6= 6 be an eigenvalue of A. Then−3≤ θ < 5.

Proof: Sincea1 = 1, the size of maximal cliques is always 3. Hence by Proposition 4.4.6
in [8], θ ≥ −3. We now find an upper bound by a Sturm series.

For 2≤ i ≤ r , the recurrence relation ofFi ’s yields

Fi (x) = (x − 1)Fi−1(x)− 4Fi−2(x).

So for 0≤ i ≤ r ,

Fi (5) = 2i (2i + 1) and

Fr+1(5) = (3+ cr+1)Fr (5)− 4Fr−1(5)

= 2r (2r + 5+ (2r + 1)cr+1).

Moreover, ifd = r + 2, then

Fr+2(5) = (−1+ br+1+ cr+2)Fr+1(5)− br+1cr+1Fr (5)

= 2r ((−1+ br+1+ cr+2)(2r + 5+ (2r + 1)cr+1)− br+1cr+1(2r + 1))

= 2r ((2r + 5)(br+1+ cr+2− 1)+ (2r + 1)(cr+2− 1)cr+1).

SinceF0(x), . . . , Fd(x) is a Sturm series,Fi (5) > 0, i = 0, 1, . . . ,d, implies thatθ < 5
asθ is a root ofFd(x) = 0.

Thus we have the assertion. 2
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Lemma 5.3 Let θ1 be the second largest eigenvalue. Then

θ1 > 1+ 4 cos
2π

2r + 1
.

Proof: Let x = 1+ 4 cosα < 5. Then by the recurrence relation,

Fr (x) = 2r

sinα
(sin(r + 1)α + sinrα).

Let α = 2π
2r+1. Then

sin(r + 1) α + sinrα = sin

(
r + 1

2r + 1
· 2π

)
+ sin

(
r

2r + 1
· 2π

)
= sin

(
π + π

2r + 1

)
+ sin

(
π − π

2r + 1

)
= 0.

Hence a root ofFd(x) is greater than 1+ 4 cos 2π
2r+1. 2

Lemma 5.4 The following hold.
(1) Let x= 1+ 4 cosφ. Then

Sr (x) = 1+ 2

3
r + 1+ cosφ

6 sin2 φ
r − sinrφ

12 sin3 φ
(4 cos(r + 3)φ

+ 4 cos(r + 2)φ − 3 cos(r + 1)φ − 2 cosrφ + cos(r − 1)φ).

(2) If r ≥ 18, then

Sr (θ1) > 1+ 2

3
r + r 2(r + 1)

3π2
.

(3) If |x − 1| < √14, then

Sr (x) < 1+ 2

3
r + 1

3
(4+
√

14)r + 4

3
(5+ 4

√
2).

Proof: For (1), see [15, Proposition 2.4].
(2) By Proposition 2.5 in [15], we know that the largest root of

vr (x) = 2r−1

sinφ
(2 sin(r + 1)φ + sinrφ − sin(r − 1)φ)

with x − 1= 4 cosφ is in the interval corresponding to 0< φ < π/r .
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Firstly we will improve the lower bound above. Leta = 1.09,φ = π/ar . Then

2 sin(r + 1)φ + sinrφ − sin(r − 1)φ

= 2 sin

(
π

a
+ π

ar

)
+ sin

π

a
− sin

(
π

a
− π

ar

)
= sin

π

a

(
1+ cos

π

ar

)
+ 3 cos

π

a
sin

π

ar

≥ sin
π

a

(
1+ cos

π

18

)
+ 3 cos

π

a
sin

π

18
> 0.

Sincevi (x)’s form a Strum sequence, all roots ofvi (x)’s are less thanξ = 1+ 4 cosπar
HenceSr (x) is increasing in the interval(ξ,∞).

Thus we may assume that

θ1 = 1+ 4 cosα,
π

ar
< α <

2π

2r + 1

by Lemma 5.3. Since

π

a
< rα <

2rπ

2r + 1
< π, −1< cosrα < cos

π

a
.

Using the mean value theorem,

−1≤ cos(r + h)α ≤ cosrα + |h|α
for everyh. Hence forr ≥ 18,

−4 cos(r + 3)α − 4 cos(r + 2)α + 3 cos(r + 1)α + 2 cosrα − cos(r − 1)α

≥ 4(− cosrα − 3α)+ 4(− cosrα − 2α)− 3+ 2 cosrα − cosrα − α
≥ −7 cosrα − 3− 21α

≥ −7 cos
π

a
− 3− 21 · 2π

2r + 1
> 0.

Since sinrα > 0,

Sr (θ1) > 1+ 2

3
r + 1+ cosα

6 sin2 α
r

≥ 1+ 2

3
r + r

6(1− cosα)
.

As

1− cosα <
α2

2
<

2π2

(2r + 1)2
,

Sr (θ1) > 1+ 2

3
r + (2r + 1)2r

12π2

> 1+ 2

3
r + r 2(r + 1)

3π2
.
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(3) Firstly,

4 cos(r + 3)φ + 4 cos(r + 2)φ − 3 cos(r + 1)φ − 2 cosrφ + cos(r − 1)φ

= cos(r + 3)φ − 6 sin(r + 2)φ sinφ

+2 cos(r + 2)φ − 4 sin(r + 1)φ sinφ + cos(r − 1)φ

= sinφ(−6 sin(r + 2)φ − 4 sin(r + 1)φ)

+ cos(r + 3)φ + 2 cos(r + 2)φ + cos(r − 1)φ.

Let x − 1= 4 cosβ. Since 16 cos2 β < 14,

|sinβ| > 1

2
√

2
, and |cosβ| <

√
14

4
.

We have

Sr (x) = 1+ 2

3
r + 1+ cosβ

6 sin2 β
r + sinrβ

6 sin2 β
(3 sin(r + 2)β + 2 sin(r + 1)β)

− sinrβ

12 sin3 β
(cos(r + 3)β + 2 cos(r + 2)β + cos(r − 1)β)

< 1+ 2

3
r + 1

3
(4+
√

14)r + 8

6
· 5+ 16

√
2

12
· 4

= 1+ 2

3
r + 1

3
(4+
√

14)r + 4

3
(5+ 4

√
2).

This completes the proof of Lemma 5.4. 2

Lemma 5.5 If |x − 1| < √14, then the following hold.
(1) |vi (x)| ≤ 2i (1+ 2

√
2), i = 0, 1, . . . , r.

(2) vr+1(x)2

kr+1
≤ 2

3cr+1
(9+ 4

√
2) < 10.

(3) vr+2(x)2

kr+2
< 123.

Proof:

(1) Let x − 1= 4 cosβ. Then

vi (x) = 2i

sinβ

(
sin(i + 1)β + 1

2
siniβ − 1

2
sin(i − 1)β

)
= 2i

(
cosiβ + 1

2 sinβ
(sin(i + 1)β + siniβ)

)
.

So|vi (x)| ≤ 2i (1+ 2
√

2).
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(2) cr+1vr+1(x) = (x − 1)vr (x)− 4vr−1(x).
Since the right hand side equalsvr+1(x) for a distance-regular graph withl (1, 1, 4) =
r + 1,

|cr+1vr+1(x)| ≤ 2r+1(1+ 2
√

2)

by (1). Hence we have

vr+1(x)2

kr+1
= (cr+1vr+1(x))2

cr+1br kr

≤ 4r+1(1+ 2
√

2)2

cr+1 · 6 · 4r

≤ 2

3cr+1
(9+ 4

√
2) < 10.

(3) cr+2vr+2(x) = (x − ar+1)vr+1(x)− br vr (x).
Assumecr+1 = 1. Then

cr+2|vr+2(x)| = |(x − 1)vr+1(x)− 4vr (x)+ (1− ar+1)vr+1(x)|
≤ 2r+2(1+ 2

√
2)+ 3 · 2r+1(1+ 2

√
2)

≤ 2r+1 · 5(1+ 2
√

2).

We have

vr+2(x)2

kr+2
= (cr+2vr+2(x))2

cr+2br+1kr+1

≤ 4r+1 · 25(9+ 4
√

2)

2 · 6 · 4r

≤ 25

3
(9+ 4

√
2) < 123.

Supposecr+1 = 2,ar+1 = 2. In this case,

cr+2|vr+2(x)| = |(x − ar+1)vr+1(x)− br vr (x)|
≤ |x − 2|2r (1+ 2

√
2)+ 4 · 2r (1+ 2

√
2)

≤ 2r (5+
√

14)(1+ 2
√

2).

vr+2(x)2

kr+2
= (cr+2vr+2(x))2

cr+2br+1kr+1

≤ 4r (5+√14)2(1+ 2
√

2)2 · 2
2 · 2 · 4r · 6 < 94.
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If cr+1 = 2,ar+1 = 3, thencr+2 ≥ 4. So

cr+2|vr+2(x)| ≤ 2r (6+
√

14)(1+ 2
√

2)

vr+2(x)2

kr+2
≤ 4r (6+√14)2(1+ 2

√
2)2 · 2

4 · 4r · 6 < 116.

This competes the proof of Lemma 5.5. 2

Proof of Theorem 5.1: Supposer ≥ 18. Then by Lemma 5.2 and 5.3,

5> θ1 > 1+ 4 cos
2π

2r + 1
> 1+

√
15,

asr ≥ 18≥ 12. Let

η =
∏
((θ − 1)2− 15),

where the product is taken for all algebraic conjugatesθ of θ1. In particularη is a non-zero
integer.

Since 0< |(θ1 − 1)2 − 15| < 1, there is an algebraic conjugateθ ′ of θ1 such that
|(θ ′ − 1)2− 15| > 1. So

|θ ′ − 1| > 4 or |θ ′ − 1| <
√

14.

By Lemma 5.2, the first case is impossible.
Moreover,m(θ ′) = m(θ1). So

Sd(θ
′) = Sd(θ1) > Sr (θ1)

> 1+ 2

3
r + r 2(r + 1)

3π2
,

by Lemma 5.4.
On the other hand

Sd(θ
′) = Sr (θ

′)+ vr+1(θ
′)2

kr+1
+ vr+2(θ

′)2

kr+2

< 1+ 2

3
r + 1

3
(4+
√

14)r + 15+ 10+ 123.

Thus

r 2(r + 1)

3π2
<

1

3
(4+
√

14)r + 148.

This impliesr ≤ 17.
Therefore we conclude thatr ≤ 17 as desired. 2
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Proof of Theorem 1.1: If 0 is a bipartite half of a bipartite distance-regular graph of
valency 3, then we can use the classification of such graphs given by Ito in [11]. We have
(1), (2) and (4) in this case.

Now we can assumed(0) ≤ r (0) + 2 andr (0) ≤ 17 by Theorem 3.1, 4.1, and 5.1. It
is not hard to check the integrality condition of multiplicities of eigenvalues. Actually, just
by testing them for the second largest eigenvalues, we see that the only possible arrays are
those of (1), (2), (3) or the following.

∗ 1 1 6

0 1 4 0

6 4 1 ∗


The nonexistence of a distance-regular graph with the last array follows from Lemma 4.4.

Since the characterization of graphs by parameters same as (1), (2), (3) are known ([8]),
we have a desired result. 2

6. Distance-regular graphs of girth 3,k ≤ 7

In this section, we give a classification of the graphs in the title above. As we noted in
Introduction, except the casek = 6,a1 = 1, the result may be known to some specialists.
We decided to include this section for the convenience of the reader. See the table.

Here we only determine the arrays. For the description and the uniqueness, refer the
readers to [8]. For GD(3, 1) it seems that the uniqueness problem is not settled yet.

Lemma 6.1 Let0 be a distance-regular graph of valency k.
(1) If d(0) = 1, then0 ' Kk+1.
(2) If b1 = 1, k > 2, then c2 = k = 2(m−1) and0 ' Km×2 ' the complement of m·K2.

Proof: It is easy and well-known. See [8, Proposition 1.1.5]. 2

Proposition 6.2 Let 0 be a distance-regular graph of order(s, 1), i.e., of valency k=
2(a1 + 1) without an induced subgraph isomorphic to K2,1,1. Then0 is a line graph and
one of the following holds.
(1) 0 ' Cn; an n-gon.
(2) 0 ' H(2,a1+ 2); a Hamming graph.
(3) 0 ' a collinearity graph of a generalized2d-gon of order(s, 1), d = 3, 4, or6.
(4) 0 ' the line graph of a Moore graph.

ι(0) =


∗ 1 1 4

0 κ − 2 κ − 1 2κ − 6

2κ − 2 κ − 1 κ − 2 ∗

 , κ = 3, 7, or 57.

Proof: See [8, Proposition 4.3.4, Theorem 4.2.16]. 2
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Lemma 6.3 Let 0 be a distance-regular graph of valency k= 7 with a1 = 2, c2 = 2.
Then

ι(0) =


∗ 1 2 7

0 2 4 0

7 4 1 ∗

 .
Proof: We name a fixed vertex∞. Sincec2 = 2, 0(∞) ' C7. We identify0(∞) with
Z7 = {0, 1, 2, 3, 4, 5, 6}, andi ∼ i +1 (mod 7). Each vertex in02(∞) can be represented
by a pair of vertices in0(∞), which are adjacent to it.

Let A = {(i, i + 1)|i = 0, 1, . . . ,6}, B = {(i, i + 3)|i = 0, 1, . . . ,6}. Then02(∞) =
A∪ B. Since0(i ) ' C7, we have

(i, j ) ∼ (i, k), j 6= k for all (i, j ), (i, k) ∈ B.

Moreover, either(i, i + 1) ∼ (i, i + 3) or (i, i + 1) ∼ (i, i + 4). If (i, i + 1) ∼ (i, i + 4)
for somei ,

∂(i + 1, (i, i + 4)) = 2, while

0(i + 1) ∩ 0((i, i + 4)) 3 i, (i, i + 1), (i + 1, i + 4).

This is a contradiction. Hence(i, i +1) ∼ (i, i +3), and(i, i −1) ∼ (i, i −3). In particular,
we havea2 ≥ 4.

If a2 = 5, then we have a contradiction by counting the number of triangles. (See [8,
Lemma 4.3.1].) Soa2 = 4. Sincec2 6= 1, c2 < c3. (See [8, 5, 4, 1].) We havec3 = 7, as
k2 = 14. We have a desired conclusion. 2

With a little more effort, it is not hard at all to show the uniqueness of the graph. (See
[8, p. 386].)

Lemma 6.4 If k = 6, a1 = 2 and c2 ≥ 2, then d= 2 and c2 = 2 or 3.

Proof: 0(x) ' 2 · K3 or C6. Soa2 6= 0. Hencec2 = 2 or 3.
Assumed ≥ 3 and derive a contradiction. By Proposition 6.2, we may assume that for

some vertexx, 0(x) ' C6. Since0 is connected,0(x) ' C6 for everyx ∈ 0.
Supposec2 = 3. Sincek1 = k2, 0 is an antipodal 2-cover. (See [8, Lemma 5.1.2].) So

02(x) ' C6 and for eachy ∈ 0(x), 0(y) ' C6 and0(y)∩02(x) is a path of length 2. We
easily obtain a contradiction.

Supposec2 = 2. Let∞ be a fixed vertex. We identify0(∞)with Z6 = {0, 1, 2, 3, 4, 5},
with i ∼ i +1 as in the previous lemma. Then02(∞) = A∪ B, whereA = {(i, i +1)|i =
0, 1, . . . ,5}, B = {(0, 3), (1, 4), (2, 5)}. Considering the structure of0(i ), we easily have
(i, i + 1) ∼ (i, i + 3) ∼ (i, i − 1). In particulara2 ≥ 4. 2

Let 0 be a distance-regular graph of valencyk, girth 3 and diameterd. Supposek ≤ 7.
By Lemma 6.1, we may assume thatk ≥ 3 anda1 ≤ k− 3.



DISTANCE-REGULAR GRAPHS OF VALENCY 6 ANDa1 = 1 131

If k is odd,a1 must be even as0(x) is a1-regular. In particular,k 6= 3.
Let k = 5. Then by our assumption,a1 = 2. Hence0(x) ' C5 andc2 ≥ 2, a2 6= 0. So

c2 = 2. Sincek1 = k2 anda2 is even, we have an antipodal 2-cover withd = 3. (See [8,
Proposition 1.1.4].)

Let k = 7. Then by our assumptiona1 = 2 or 4.
If a1 = 4, then0(x) is a complement ofC7 or C3 ∪ C4. In either case we havec2 ≥ 4

anda2 6= 0. This is impossible.
Supposea1 = 2. Then0(x) ' C7 or C3 ∪ C4. Soc2 ≥ 2 anda2 ≥ 2. If c2 ≥ 3, then

c2 = 4 and0 must be an antipodal 2-cover with 16 vertices. We can eliminate this case by
counting the number of triangles. On the other hand, ifc2 = 2, we can apply Lemma 6.3.

Let k = 4. By our assumption,a1 = 1. Hence we can apply Proposition 6.2, in this case.
Let k = 6. If a1 = 1, the results follow from Theorem 1.1. Soa1 = 2 or 3. If a1 = 2

andc2 = 1, then we can apply Proposition 6.2. On the other hand, ifa1 = 2, c2 ≥ 2, we
can apply Lemma 6.4.

Supposea1 = 3. Then0(x) is a complement ofC6 or 2·K3. Hencec2 ≥ 3. Soc2 = 3, 4
or 6 andd = 2. The nonexistence of the first case can be shown easily, for example by
counting the number of 5-cycles in the complement.

Thus we have the arrays in the following table.

(Continued on next page.)

k = 2


∗ 1
0 1
2 ∗

 K3

k = 3


∗ 1
0 2
3 ∗

 K4

k = 4 (a)


∗ 1
0 3
4 ∗

 K5

(b)


∗ 1 4
0 2 0
4 1 ∗

 K2,2,2

(c)


∗ 1 2
0 1 2
4 2 ∗

 H(2, 3)

(d)


∗ 1 1 4
0 1 2 0
4 2 1 ∗

 L(O3)

Table.   Distance-Regular Graphs of Girth, k ≤ 7.
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(e)


∗ 1 1 2
0 1 1 2
4 2 2 ∗

 GH(2, 1)

( f )


∗ 1 1 1 2
0 1 1 1 2
4 2 2 2 ∗

 GO(2, 1)

(g)


∗ 1 1 1 1 1 2
0 1 1 1 1 1 2
4 2 2 2 2 2 ∗

 GD(2, 1)

k = 5 (a)


∗ 1
0 4
5 ∗

 K6

(b)


∗ 1 2 5
0 2 2 0
5 2 1 ∗

 icosahedron

k = 6 (a)


∗ 1
0 5
6 ∗

 K7

(b)


∗ 1 6
0 4 0
6 1 ∗

 K2,2,2,2

(c)


∗ 1 6
0 3 0
6 2 ∗

 K3,3,3

(d)


∗ 1 4
0 3 2
6 2 ∗

 J (5, 2)

(e)


∗ 1 3
0 2 3
6 3 ∗

 a conference graph

( f )


∗ 1 2
0 2 4
6 3 ∗

 H(2, 4), Shrikhande graph

(g)


∗ 1 1 2
0 2 2 4
6 3 3 ∗

 GH(3, 1)

(Continued on next page.)

Table. (Continued).

(h)

 ∗ 1 1 1 2
0 2 2 2 4
6 3 3 3 ∗

 GO(3, 1)
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(i)


∗ 1 1 1 1 1 2
0 2 2 2 2 2 4
6 3 3 3 3 3 ∗

 GD(3, 1)

( j)


∗ 1 3
0 1 3
6 4 ∗

 GQ(2, 2)

(k)


∗ 1 1 3
0 1 1 3
6 4 4 ∗

 GH(2, 2) (two graphs)

(l)


∗ 1 2 3
0 1 2 3
6 4 2 ∗

 H(3, 3)

(m)


∗ 1 1 4 6
0 1 3 1 0
6 4 2 1 ∗

 3-cover of G Q(2, 2)

k = 7 (a)


∗ 1
0 6
7 ∗

 K8

(b)


∗ 1 2 7
0 2 4 0
7 4 1 ∗

 3-cover of K8

Table. (Continued).
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