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1. Introduction

In this paper we only consider undirected finite graphs without loops or multiple edges. Let
I" be a connected graph. We identifywith the set of vertices. For two vertices g, let
d(«, B) denote the usual distance betweeandg in I". Let

i@ ={BeTl|d@p) =i} and I'(a)=Ti(a).
I" is said to be distance-regular if the cardinality of the set
Dj (e, f) =Ti(@) NTj(B) forevery i, ]

depends only on the distance betweeainds. In this case we write

i = |Dj (e B)|.

wherem = d(«, B8). Letd = d(I") denote the diameter, i.e., the maximal distanc€ of
and

ki = pd =T (@)l

*This research was partially supported by the Grant-in-Aid for Scientific Research (N0.09640062), the Ministry
of Education, Science and Culture, Japan.
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In particulark = k; is the valency of". Let ¢ = p};_;, & = p}; andbj = p};,,,
0<i<d

=qa@ a -~ & -+ a-1 &
b by - b .- by %

is called the intersection array bf Note thatc; + & + bj = k, bg = kandc; = 1.
Letl(c, a, b) denote the number of columhg, a, b) in «(T") and

r(I) =1(cy, ay, by).

The girth of ", denoted byg, is the length of a shortest circuit. In particular, the ggth
equals 3 if and only ik # O for a distance-regular gragh

Information about general theory of distance-regular graphs is given in [1, 5, 8].

In this paper we prove the following theorem.

Theorem 1.1 LetT" be a distance-regular graph of valency 6 and-a 1. Then one of

the following holds.

(1) T isisomorphic to the collinearity graph of the generalized quadrangle of qi2ie2).

(2) T is isomorphic to the collinearity graph of one of the two generalized hexagons of
order (2, 2).

(3) T ~ H(3, 3), the Hamming grapi3®.

(4) T is isomorphic to th&-cover of the collinearity graph of a generalized quadrangle of
order (2, 2), the halved Foster graph.

In [12] A.A. Ivanov proved that the diametel(T") of a distance-regular graph is
bounded by a function of the valenkyandr (I'). So in order to classify distance-regular
graphs of fixed valencly, the major part of work is to give an upper bound @f'). On the
other hand if (T") > 2, it is easy to see that every maximal clique has sizel = a; + 2.

In particulart + 1 = k/(a1 + 1) is an integer. So we define the following.

A distance-regular graph is said to be of ordegs, t) if I'(a) >~ (t + 1) - K for every
vertexa. If I' does not have an induced subgraph isomorphi€4e1, then a distance-
regular graph’ is of order(s, t) for somes andt. In particular, thisis the caserifl") > 1 or
a; < 1. Inthis terminology this paper is concerned with a classification of distance-regular
graphs of ordet2, 2).

LetI" be a distance-regular graph of ordert).

If t =0, itis clear thaf" is a complete graph.

If t = 1, T is aline graph and we have a classification of such graphs. See [8, 13] and
Proposition 6.2.

We are interested inthe nextcase; 2. Ifs = 1,i.e.,ay = O0thenk = 3. Aclassification
of distance-regular graphs of valency 3 is completed by Ito [11], Biggs—Boshier—Shawe-
Taylor [6] and Bannai-Ito [3]. In this paper we treat the caset = 2. It seems that the
situation is a little different in each of the following cases.

t<s, t=s and t>s.
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Actually, stimulated by our result and the techniques developed in this paper, N. Yamazaki
proved the following [16].

Theorem 1.2 LetTI" be a distance-regular graph of ordé¢s, 2) with s > 2. Then one of
the following holds.

Q) dT@) <r () +2.

(2) T is a bipartite half of a distance-biregular graph with vertices of valency three.

We note here that the conditie> 2 is essential in his proof. We believe that our case
is one of the key parts of the classification of distance-regular graphg wth.

We also note thdt = 6, a; = 1 is the smallest unsettled case with girth equals 3.

For the convenience of the reader, we also give a classification of distance-regular graphs
of valencyk < 7, girth 3 in the last section. Except the c&se 6, a; = 1, the results may
be known to some specialists.

In [15], the third author called a distance-regular gragtra thin if b; = ¢4_;. If an
extra thin distance-regular graph satisbgs# 0, thenk = ag(ag + 1) anday = ag— 1. So
Theorem 1.1 includes the nonexistence of extra thin distance-regular graplag witB.

Our proof is divided into two parts.

In the first part we apply combinatorial arguments to show that eittier < r (I') +2 or
I" is a bipartite half of a bipartite distance-regular graph of valency 3. We use intersection
diagrams and investigate the clique patterns on the diagram of rank 1. (See the last part of
Section 2.) After determining the clique patterns, we apply circuit chasing techniques. See
Sections 3 and 4.

Since bipartite distance-regular graphs of valency 3 are completely classified [11], in the
second part we assurd€l’) < r (I') + 2. We use eigenvalue techniques. We follow mainly
the techniques developed by E. Bannai and T. Ito [2—4]. Using additional information in
our case and refinement in computation, we could obtain a bo@hd< 17. Now it is not
hard to determine the feasible arrays either by computer testing the integrality condition of
multiplicities of eigenvalues, or by hand checking the divisibility condition coming from
the number of circuits of certain types.

We also note here the importance of these two parts. Under our assumption, it is not hard
to show that ifl (c, a, b) > 2, then(c, a,b) = (1,1, 4), (2, 2,2) or (4, 1, 1). By a result of
E.Bannaiand T. Ito in [2],(2, 2, 2) < 10- 6- 25. Now we can apply the main theorem in
[4] andd(I") is bounded. So in this sensiI") is theoretically bounded. In order to get a
complete classification, however, we need to obtain a reasonable upper bal{fy.ofor
that reason, it was essential to show tiét) < r(I") + 2.

Our notation and terminologies are standard except the following.

Lete(A, B) denote the number of edges between subsets AIB bistead ok({x}, B),
we will write e(x, B).

For an edger ~ 8,

D(a, ) = Di(, B) = ['(@) NT(B).

Let u, v be vertices at distande We call the induced subgraph dh_;(u) N I'(v),
the ¢i-graph or theci-graphTi_1(u) N T'(v). Theb;-graph and the; -graph are defined
similarly.
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2. Preliminaries
In this section we collect several results we apply in the following sections.

Proposition 2.1 [10, Lemma3.2] Let ' be a distance-regular graph. Let=r(T).
Suppose (¢; = 1 and for all verticese, 8 € T with d(e, 8) = r + 2, the G-
graph Ty 1(a@) NT'(B) is a coclique. Then there exists an integerna; + 1 such that
&y1—a=n@a+1).

Lemma 2.2[8, Lemmab.5.2] LetI be a distance-regular graph and IBt<i < d — 1.
Suppose that for all verticaes, 8 with d(«, 8) =1 + 1, the g,1-graphTi(@) NT'(B) isa
cligue. Theng; = 1.

Lemma 2.3 LetI be a distance-regular graph with 6,8 = 1. If byg_1 = 1, then
one of the following holds.

(1) cg =6andk_; = 0 (mod3).

(2) cg =4 and k = 0 (mod3).

Proof: If cq = 6, the assertion is obvious.

Supposeq # 6, i.e.,ag # 0. Letd(u, v) = d andDj = I'j ()N T} (v). Sinceby 1 = 1,
e(DS~1, DdUDY) = 0. Seefigure 1. So a subgrapl—is 1-regular andq = 0 (mod 2.
If cg =2, thecd—grapth*l is a cliqgue. This contradicts Lemma 2.2. Helgge= 4 = b;.
Soe(DY, Dg) = 0. This implies that every connected componenFgfx) is a clique of
size 3. Thusky = 0 (mod 3. O

Proposition 2.4[9] LetTI be a distance-regular graph of valency & = a; # 0. Let
r =r (). Suppose

(Cr+l, af+17 bI’Jrl) == (CT+17 aI’ths bT+I) = (2s 2a~v b)

Thent< 1.

D§ Dy Dy —

Figure L Rankd diagram withby_; = 1.
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In this and the following two sections we will use intersection diagrams of rank 1. For
intersection diagrams, see for example [7, 9].

Lemma 2.5 LetI" be a distance-regular graph of ordés, t) and r = r (I"). For every
pair of verticese and x witha(a, X) =r + 1, the ¢ 1-graph T’ (a) N I'(x) is a coclique.

Proof: We may assume that,; > 2. Take anyyi, y» € It (@) N T'(X). Let{B} =
() N Tr—1(y1).

The intersection diagram with respect(ta 8) has the following shape. (See [9].) In
particular, we have(D/**, D) = 0.

Note thaty; € D] _; andx € D/ 1. Since

1=c =e(x, Dj_;) = [{yi}l,

y2 must be inDy_ ;. Hence we have; # y.. O

Let I' be a distance-regular graph with= 6, = 1, andr = r(I"). Then for each
vertexx € ', I'(X) = 3 Ky, i.e., a disjoint union of thre&,’s. We fix the following
notation in this and the following two sections.

da,p)=1. Dj=Ti@@nTj(p), Di={yh
Note that|D}| = 1 asa; = 1.
We introduce three terms which play key role in the following sections. Theychgeié

type, ‘ vertex typeand ‘clique pattern Let x = {¢, n, £} be a clique. By the clique type
(with respect to a vertex) of x, we mean

(8(77:1 é‘) -, 8(77:5 77) -, 8(77:1 é) _r)

the list of distances fromr minusr of vertices in a clique.
We call

5= (3, 8) —r, a(y,8) —r,a(B,8) —r)

the type of a vertel (with respect ta«, 8)). We also use column vectors in the figures.
The clique pattern &tis the collection of types of vertices I(§) with edges among them.

{a} = D¢ S —Drt—— D, Dt}

\\D%_ cee — DT
/o

{8} = D} T — Dr+t DIz

Figure 2 Rank 1 diagram witle, 11 > 1.
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Thefirst part of our proofis to determine these things. Forexampte, i, a1, br11) =
(2,2,2), Lemma 2.5 tells us that there are no cliques of tyQe, 1), (1, 1, 1), (1, 1, 2).
This is equivalent to say that there are no vertices of the same types. Next we determine the
possibilities of the clique pattern at a vertex which is of certain type. By this argument and
circuit chasing techniques we will show that eitld€f™") < r + 2 orI" is a halved graph of
a bipartite graph of valency 3.

3. Thecase&i41 > 2

In this section we prove the following.

Theorem 3.1 LetI" be a distance-regular graph with ¥ 6,a; = 1. Letr =r(I"). If
G111 > 2, thend<r + 2 and one of the following holds.

()d=r+landg,1 <3.

(@) Cin &1, b)) =(2,2,2)and G2 = 3.

) (41 & 41, bry1) =(2,3,1) and 642 = 6.

Proof: As we remarked in the previous section, for each vextexT", I'(x) >~ 3 Kj,
i.e., a disjoint union of thre&,’s.

Since evenc: 11-graph is a cocliqgue by Lemma 2.§,,1 < 3. Moreover ifc; ;1 = 3,
thenb,; = 0,i.e.,d =r 4+ 1. Hence we may assume tleat; = 2 andb, ,; > 1 to prove
our theorem.

Take any edgex ~ y with x € I't;1(¢) andy € It 2(e). Sincec 1 = 2, we have
{z1,22} = I'' (@) NT'(X). We havez; # z, by Lemma 2.5. Hencgw;} = D(X, zj)
CTIyp1(e) for j =1, 2. This mean$,,; < 2.

Casel. b1 =2,i.e,{y}=D(,Yy) C Iiaa).

The types of cliques ilr (x) U {x} for eachx € I';,1(«) are as depicted in figure 3.

r.%l r 42 T£$1>i'+2
s

Case 1. Case 2.

Figure 3 Clique types ok € I'r 1 (o) with ¢ 1 > 1.
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This implies that everg; . »-graph is a coclique. Hence we haye, < 3. Moreover, if
G2 = 3, thend =r + 2, we have (2).

Suppose; 1 = 2. Thene(Drrff, D{I%) = 0 and by Proposition 2.4, ., # 2. So we
have an edgg ~ u with y € D/ 7 andu € D 5.

Supposethere existsavertex I'(u) N D{ﬁ. Sincex, B € I'r41(v), we havey € T (v)
from figure 3. This means thatu, y) =r + 1. Moreoverg € I’y 12(y) andg € [y 11(Y)

impliesy € I'r42(y). Hence
Di3(y, B) 3 u~ye DIy, B).

This is a contradiction.

On the other hand supposéu, D[T}) = 0. ThenI'(u) N (D[*; U D/ %) is a union
of two cocliques of size 2 without edges in between, because it containg fy«graphs
Trs1(e) N T(u) andTr4q(B) N T'(u), ande(Df 7, DI*7) = 0. Hencel(u) contains a
cocligue of size 4, a contradiction. Thus we have (2) in this case.

Case2. byi=1,i.e,.{y}=D(KX,Yy) C Ii(a).

The types of cliques ifr (x) U {x} for eachx € I'; 1 1(«) are as depicted in figure 3.

This implies that everg, ,1-graph is a coclique of size 2 and every,-graph is a union
of Ky's. If ¢ 12 = 6, we haveg3). Hence we may assume tltat, = 4, as every; . o-graph
always contains &, 1-graph as a subgraph.

Lets € D{ﬁ Sincea, B € I'r11(8), we havey e Iy (8) U I't12(8) from figure 3.
Moreover, D{ﬁ N Tyy2(y) # @, for example every vertex il 1(a) N T'r42(y) satisfies
this condition. Note thas e D,rﬁ N Cria(y), e, 8 is of type (4, 2, 1), if and only if
e, Df) = 0.

Take a vertexx of type (1,2,1). Let{z,z} = I'(x) N D[4, {.2} = T(X) N
DIt with z; ~ 7, 2, ~ 2,

Now we apply a circuit chasing technique.

Take a circuitxg ~ X; ~ --- ~ Xgr42 ~ Xg Of length 2 + 3 such that

Xo € DY, xeD ,, i=1....r+1 Xu=2
r+1 r+3—j .
X =X42 € D1, x,+jeDr+4_j, j=3,...,r+2, X%i3=2.

Let {yi} = D(X;, Xi+1). We haveyy, = y, ¥r+1 = 22, Yr4+2 = Zj, and this circuit does not
contain a triangle, i.ex; % xi12. See figure 4.
Changing the base pointstg, x,, we have easily that
XI’+2 € D::+l, Xr+3 € D:I]]:, Xr+4 € D:+1.
Sinced (Xq, Yr+2) =T, Yr42 € Df 1. SINCE(Xr 14, Yr42} C Dy 1 NT (X 43), €(X 43, D) =
0. Thisimplies thak, 3 € Iy 12(y1) and it is of same type as In particulard(xz, Yr+3) =
r. By induction we have that

r =042 Yo) =9(X,¥Yo) =1 + 2.
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To ¢ e ‘e Trq-3
yr+l

Yo Trt2

yr+2

Ty ¢
Trp1

Figure 4. Circuit of length 2 + 3.

This is a contradiction.
This completes the proof of Theorem 3.1. O

Remark

1. For Case 2, our original proof was different. We showed thetifr 4+ 2, T is a bipartite
half of a bipartite distance-regular graph of valency 3. (®eg, a1, br11) = (1, 3,2)
case in the next section.) The above proof was suggested by N. Yamazaki.

2. Case (3)in Theorem 3.1 does not occur. Actually, we could eliminate this case. However
we decided to eliminate this case after bounding the diameter in Section 5 to avoid lengthy
arguments.

4. Thecaserys =1

In this case we prove the following.

Theorem 4.1 LetI" be a distance-regular graph with& 6,a; = 1. Letr = r(I'). If
¢ 41 = 1, then one of the following holds.

1)d=r+1

d=r+2 au1=4 c2=6

R)d=r+2, a&,1=3, ¢i2=30r4

@d=r+2 &y 1=2 C2=230r4

(5) T is a bipartite half of a bipartite distance-regular graph of valerg&y

Proof:  Throughoutthis proofwe assume that r +2. Firstwe note tha(D/ , ,, DI+l =
0 asc 41 = 1. By Proposition 2.1, there is@, »>-graph, which is not a coclique. In partic-
ularcr ;2 > 2. We argue three cases separately depending on the valaes of

The following are the clique types of verticeslitix) U {x} for eachx € I'; ;1 ().
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r r+1 r +

QD’
A > o<dg

Lo B
A<I

a4 =4 Qrp1 = 2

Apy1 = 3

Figure 5 Clique types ok € I'r1(x) with ¢, 1 = 1.

Casel. a,.1=4

By figure 5, it is easy to see that every, »,-graph is a union oKy's, and therefore
G2 € {2,4,6}). ¢,2 = 2is impossible by Lemma 2.2. We want to show that, = 6.
So we will assume; ., = 4 to derive a contradiction.

Stepl. DIZUD[*UD!,,UDT; C Dra(y).
Since{a B, y} is a clique, the assertion follows easily from figure 5.
Step2. €D/ 12, D{f}) =0
We may assumé = r + 2, as otherwisd, ,; = b,,», = 1 and the assertion is
obvious. Suppose there exists an edge z such thaz € D{f andz e D/*}. Let
{y} = DI*'NTI(@. Sinceg1 = by = 1, {y} = Dz y) C D/f] and{x} =
D(z,7) C D{jj Hence the clique pattern atis as in figure 6. Consider the clique
pattern atx. Then there are adjacent verticesw’ in T'(x) both of type (1, 1, 1).
Hence the clique pattern atis as in figure 6. The(w) NI, 2(y) = @ by Step 1, a
contradiction.
Step 3. Letu € Drﬁ such thatd(u, y) > r + 1. Then there are three possible clique
patterns. See figure 7.

Let{v} = DIt N T(u), {v'} = D}, NT(u).

Supposdw} = D(u, v) C DffZ. Then there exists a vertex € I'(u) N D{ﬁ Since

b1 = G112 = 1, the other two verticeg, y in I'(u) are in D{ﬁ Sincew is of type
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L 2’ 1 1
0 9 , 1
1 1 w'1
T 1w
1 1 T 1
2y 0
1 1
1
1y Z 2
0 1
1
Figure 6
0 1 0 1 0
1 1 1 1 1
1 2 1 2 1 )
2
1
2
1 1 1 1 1 3
0 2 o 2 1 2
1 1 1 1 1 1
2 2
1 2
2
1 2 1 2 1
1 1 1 1 1
0 1 0 1 0
A-type B-type C-type

Figure 7.  Clique patterns of the case.; = 4.

(2, 1, 1),u cannot be of type (1, 2, 1) by Step 2, as otherwise

D ff(e,y) 3w ~ue D (a, ).

Henceu is of type (1, 1, 1), and we may assume that
X=(1,0,1), y=(1,21.

Sincey # x andy # w’, x ~ v'. We have B-type. By symmetry, we have A-type if
D(u,v’) C D73
Now we may assume that

D(u,v) UD(u,v") c D/ 1.
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Let{x} = D(u, v), {x’} = D(u, v"). The othertwo verticeg, w in I"(u) must lie inD{ﬁ
and D{j:ﬁ by Step 2. Sincd 3 = 1,9(w, y) >r + 2, as otherwis®(w, y) =r + 1
and

2=|{a, B} = [Tri2(w) NT(y)| = by1.

We haved(y, y) > r + 1. Henceli = (1, 2, 1), as otherwisai must be adjacent to a
vertex inT'; (y), which is impossible. Therefore we also have- X' = (1,1, 1).
If d>r + 3, thenw = (2, 3, 2), y = (1, 2, 1), and we have C-type.
Ifd=r 42, thenw = (2, 2, 2), y=1(1,21),asy=(1,1,1) impliesb, ;1 > 2.
Step 4. r=0 (mod 3).

We apply a circuit chasing technique.
Take a circuitxg ~ X3 ~ -+ - ~ X412 ~ Xg Of length 2 + 3 such that

xoeD}, xeD , i=1..,r+1

r+1 r+3-j ;
Xf+2€Dr+17 Xr+j€Dr+4—j’ 123,,r+2

It is easy to see that with respect to the base points .1,

j P ) r+1
Xi+j€Djy, J=1....,r+1 Xry24+i € Dy 11,

Xiivj €DIIF) j=3...r+3,
where the indices af;’s are taken modulor2+ 3.
Assume thak; o is of A-type. Let{y;} = D(X;, Xj11). In particular

Yrv2 € Irya(X0) N rpa(Yo) N Trpa(Xe).
Changing the base points xg, X, we havey; ,, € D,rif as

X42 € D[ Xz € Drrﬁ and Y42 € Tryo(X).
Hencex .3 is of B-type andy; +5 € T'r42(y1) N DI 1.

Changing the base pointsxg, x3, we havey; .3 € D{ﬁ as before.

We claim thaty; ;3 € I'r11(Y2). Sincey, 3 ~ X 13 € DI, 0(Yria, ¥2) =1 + 1. If
Vr+3 € Tri2(Y2), thenthdy, 1 -graphl” (x2) NIy 12(Yr +3) containgys, Y». This contradicts
bry1 = 1. Thusy,,s € I 11(y2) andy; .3 is of A-type. Sox; .4 must be of C-type and
Yr+a € Try1(y2) N D}

Changing again the base pointsdg x4, we havey; .4 € D{ﬁ

We claim thaty; 14 € Tr12(y3). If yr 44 € T'r1(y3), then

X2, Y2, X4, Y3 € T'r11(Yr+4) NT(X3)
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Try3 Zz
Zg ¢ Yrg2  T1 9 i
yr+3
Yo Try2 Y Zry3
Yrq1
Ty € Lo ¢
1 Trp1 2 Trr2 Yri2
Tri6
o ¢ Tr+5 T3 ¢ . Yrts
Yrta
Y2 Yr43 Trt4 Y3 Zrts
yr+4
I3 ¢ T Ty €
743 wr+4

Figure 8 Circuit of length 2 + 3.

form 2. K,. Thisisimpossible by figure 5. Henge, 4 € I'r12(y3) andx; ;5 is of A-type.
We have proved that the type changes

A—-B—-C— A

with period 3, as we change the base points successively in this circuit. Thus we can
conclude that2+ 3 = 0 (mod 3).
Step 5. The case ., = 4 is not possible.
In the following, we show that = 1 (mod 3) to derive a contradiction.
Take a circuitkg ~ Xy ~ - -+ ~ Xpr43 ~ Xg Of length 2 + 4 such that

xeD?  xeDl, i=1..,r+2

r+1

r+4—j :
L %sjeDfsl, =41 +3

XI’+3 € D r+5—j»
Assume thak; .3 is of A-type. We note that this circuit does not contain triangles. Let
{yi} = DX, Xi41).
Changing the base points g, x,, we havex, .3 € D{ﬁ, ando(Xr43, Y1) >r + 1.
If 9(%r 43, Y1) = r+1, thenwe canargue as before and concluddthat(x; .3) N T'(Xy)
> Xo, Yo, X2, Y1 iS ana, 1-graph containing 2K, which is a contradiction. Henog, 3
is of C-type andj; ;2 € I'r11(Y1). Moreovery; .3 € Drrjj asyry3 € [rao(X) N (X 43),
and we have 4 € T 42(y1) N DI 1

r+1
Changing the bqse points ¥, X3, we havex, 4 € D{ﬁ, andy; 3 € D{ﬁ. Hentl:e
Xr 14 1S Of B-type. Since; 45 € D%(xr+4, Xr+6), andX; 14 7 X 16, We havex; 5 € D{Iz.

Changing again the base pointsxg x4, we havex s € D{jﬁ Xr+6 € Drrﬁ by
Step 2. SINC& 14 # X 16, Xr 16 1S NOt Of B-type. Thus ¢ is of A-type.
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Trt4q Tris
o ¢ yr+3 Iy 9
Tryq
Yo Yr42 Tr+3 n Yr+3
Ty43
Iy I €
Ty Fri Lrt2
Tri6 Tri7
T ¢ s Tris 334 s Yrt6
y7‘+4
»Ys Triq Y3 Yrs Zry6
T3 ¢ Yr43 Ty ¢ T
Tr43 Triq m+8

Figure 9. Circuit of length 2 + 4.

Hence we have the same profile with respectgtox; .
Therefore we conclude that 2- 4 = 0 (mod 3). This contradicts Step 4.
Therefore we have (2) in this case.

Case 2. a1 =3.

In this caseg:,» = 2, 3,4, or6.

Suppose&; 1, = 3, andd >r + 3. If by, = 2, then evenp, . ,-graph is a clique, hence
so is evenby ,1-graph. This is impossible &g, , = 3.

If br,» = 1, then we have a contradiction by Lemma 2.3. Hatheer + 2, in this case.

Next we treat the casg o, = 2.

Lemma 4.2 If (Cri1, &1, braa) = (1,3, 2), with G4 = 2, then &D} 13, D} D) # 0.

Proof: Suppose(D'*1, D'+2) = 0.

r+2° “r+1

Step 1. Letu € D}, v € DI*!, andw € D;{ be a triangle. Then the clique pattern at
the vertexu is as in figure 10.
Sincec 2 = 2, e(w, D{ﬁ) = 1l andw € Iy »(y), as otherwisav € I', 1 1(y) and
there would exist a vertex such that

u#u el (y)NT(w) c D/
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0 1
1 v o« o w 2
1 2
1
2
T 1
1 2
1 u Y1
1 2
1 2
1 v # » w 2
0 1

Figure 10 Clique pattern of the casg+1 = 3 (1).

Letw” € T'(v) N D}Z with w” # w. Thenw” € I'ri2(y) as above. Sincer,, =
2andv € T'111(y), u € Tia(y). Hence there is a vertex € D{ﬁ NI NIy (y).
Now Step 1 follows immediately.

Step 2. There is no trianglel € D{ 71, v € DI*%, w e D12,

Suppose there exists a triangle v, w} with u € D11, v € D{** andw e D[ 2.
Take a circuitxg ~ X; ~ -+ - ~ Xgr42 ~ Xg Of length 2 + 3 such that

xeD?  xeDl , i=1..,r+1,

r+1 r+3—j :
%42 € Dif1,  X4j€D, |, j=3...r+2

Let{yi} = D(Xi, Xi11). SUPPOS&I = X 12,V = Xr41, W = Yry1. SOXg € I'ri2(Yry1).
Then by Step 1y, € D[*3. See figure 11.

Changing the base pointstg X,, we have that, ., € DI+, %3 € Df 11, andx. 14 €
D!, ;. Sinceyri» € Iri2(X0), Yri2 € D2, Thus again by Step 3.5 € D/} and

Xr43 € I'ry1(y1).

ZTo ¢ E:H'S a yr+2
Yo Tri2
1121 ¢ 4
Tri1 Yr41

Figure 11  Circuit of length 2 + 3.
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By induction we can conclude that
Xo € DI T1(X 11, Xr42) and therefore Xo € Tr11(Yr+1)-

Sincexg € I'r 12(Yr11), this is a contradiction.

By Step 2, we have that thg_,-graph is always a coclique, if we assue(@{i%,
D; %) = 0. This contradicts Proposition 2.1.
This proves Lemma 4.2. 0O

Suppose; .2 = 2. By the previous lemma, we may assume that there are veriices,
such that

Dr+2

~ r+l1
12w~ w €D

r+2°

Letv € M(w) N DIt w” € D(w,v). Sincecy2 = 2, w” € D7 Let{u,u} =
I'(v) N D' Thenu ~ u'.

r+1-
Supposaei is of type (1, 1, 1) an@’ e T'(u) N D[ ;. Then there is a vertexin I'; (y) N
I'u) C Drrﬁ andx + v/, Soitis impossible to havg .1 = 2. Sou andu’ are of type (1,

2,1)andw € I'r;1(y), asd(y,v) =r + 1 andly 2(y) N T(v) = {u, u'}. There must be
avertex in(w) N Ty (y) C D,rﬁ This is impossible as ,, = 2. Thusc;, # 2.
Suppose; o = 4. Ifd >r 4 3, itis clear thaicj, aj, bj) = (4,1, Dforr +2<j <

d — 1. Socy = 4 or 6 by Lemma 2.3. We treat three cases together, namely,

(1) d>r+3cyo=cg=4,
(2)d>r+3,¢i2=4,c4=6;and
B)d=r+2¢,2=6.

Our goal is to show (5) in the theorem.

Firstly, in all these three cases evdyy 1-graph is a coclique, as evety,,-graph is a
union ofK3's. So there is no triangle ifi; ;1 (X) for x € T'. This impliesD{ﬁﬂFrH(y) =
@. Hence

Tria(y) = D{iU DU D[ UD ™
For exampleD}? C I'r.1(y) as otherwise, there is a vertexe D] 77 N I'r4»(y) and the
br 11-graphl’(8) N Tr2(x) is a clique. Now it is easy to determine clique patterns.

Let A be the set of all maximal cliques, i.&g'sinT". LetI’ = I' U A be the incidence
graph, i.e., a bipartite graph defined by the following adjacency.

a~xinT ifandonlyif aex, for aeTl, xeA.
We usenotation for the grapl.

Itis straightforward to show the distance-regularitydby the clique patterns described
above.
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1
2 1
1
1]
0 1
-1
0
1
0
1
1
J 2 1
1 0
— 1
Cry2 = 4,6
d—r—1
d-r—1
d—r
d-r-2 d-r
d—r-1 d—r
d—r-2 d—r
de-r
d—-r—1
d-r-1
Cq = 4

Figure 12 Clique patterns of the case;1 = 3 (2).

Note that forx = {«, 8, ¥} € A,

Ix,8) =2i +1

HIRAKI, NOMURA AND SUZUKI

-

1 0 1
1 1 2
2 1
2 1
2 1
1 1 2
1 0 }
Crp2 = 4 Crp2 = 6
d—r—1
d—r—-1
d-r
d-r-2
d—r—1
d—r-2
d—r
d-r-1
d—r—1
d>r+3,¢4=6

ifandonlyif § eI anda(x,3d) =i.

dx,y) =2 +2 ifandonlyif ye A andd(x,y) =i, X # Y.

We only give the values dj’s in each case.

) {1,]:1,2,...,2r+2
Cj =

2 j=2r+3,...,2d-1

Cyg=3 if cg==6
62d=2 and 62d+1=3

Therefore we have (3) or (5) & 1 =

Case 3. a1 =2.

We start from a lemma.

3.
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o !

1y 2 2

1 2
1 v

2

2z € D3
1

1 2

1y z 2

0 1

Figure 13 Clique pattern of the casg.1 = 2 (1).

Lemma 4.3 Suppose€c: .1, &1, br+1) = (1,2, 3).

(1) There is no triangle i, .1 (u) for every vertex ue T, i.e, there is no vertex of type
(1,1, 1). Moreover there exists atriangléy, z, w} withy € Ty 11(X), Z, w € Ty 1 2(X).
In particular, a; o # 0.

(2) Ifcrio=3andd>r + 3, then(c .2, & 42, bry2) = (3,2,1). Moreover there is no
triangle in Ty »(x) for every vertex x T, i.e., there is no vertex of typ@, 2, 2).

(3) Let x be a vertex of typg,, 2,1). If ¢,.o < 3and d> r + 3, then the clique patterrn
of the vertex x is as in figurk3.

(4) Ifcryo=2andd>r + 3, then(G 2, &2, bry2) = (2,3, 1).

Proof:

(1) This follows easily from the fact thdt(x) >~ 3 - K, for every vertexx € I'. See
figure 5.

(2) There is a vertex of type (2, 1, 1) by figure 5u is adjacent to a vertex ifi,  3(x),
which must be of type (3, 2, 2).

If b2 = 2, then evenpy o-graph is a clique. So there is no vertex of type (3,2,2).
This is a contradiction. Thus we hai® 2, a2, br12) = (3,2, 1).

(3) Let{y} = D' NTI'(x) and{y’} = DI** N I'(x). Sincee(y,D/1]) = 1, {z} =
D(x,y) C D{¥2. Similarly, {Z} = D(x,y) C D{f3. Since(c i1, 41, brs1) =
(1,2, 3), there are, w € D] 15N (x).

Supposé€= (2,1, 1). Thenly, y', zZ} C Tr4a1(y) N T (x) and thusc 12, & 42, bry2) =
(3,2,1) from (2). Sincgly2(y) NT(X)| = a2 = 2, we may assumg = (2, 2, 2).
This is a contradiction from (2). Hencé = (2,2,1). By symmetry we have
7 =(1,22).

(4) (Cry2, @42, br42) = (2,1, 3) contradicts Lemma 2.2.

SUPPOSEC; 12, & 12, bry2) = (2,2, 2). Letx be a vertex of typ&l, 2, 1). Then the
cligue patterrn of the vertexis as in figure 13.
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Let{z, z1, 5} = D{F2NT(y). Thenz, ~ z. Sincey € I'r11(y) andby 41 = 3, we may

assume that; € I'r 2(y). Suppose there existg € I'(z;) N D{ﬁ. By our observation
above x; has the same clique patternxasHencex; ~ y, which is impossible. Hence we
have a vertex” € D{j% N T'(z1). Sincebr,, — bryy = 1, we cannot locate the vertex in
D(z1,Z"). Thus(Cr 12, 842, bry2) # (2,2, 2).

The lemma is proved. O

By Lemma 4.3 (1)¢r 42 # 6.

Suppose; 2 = 4 andd > r + 3. Then every, . ,-graph is a union oK's. On the
other hand, everlp, . ;-graph is a union of &; and aK,. This is impossible.

Supposec; .o, = 3 andd > r + 3. Then(¢,2, a42,b42) = (3,2, 1) by Lemma
4.3 (2). Letx be a vertex of typel, 2, 1). The clique pattern at the vertexis as in
figure 13. by Lemma 4.3 (3). Sindgr.2, &2, bri2) = (3,2, 1) we may assume that
v eTi1(y), we Trys(y). Thisisimpossible. Thus we hade=r + 2 if ¢, = 3.

Finally assume; ., = 2 andd > r + 3.

Then we havéc .2, & 12, br12) = (2,3, 1) from Lemma 4.3 (4).

We now determine clique patternsin this case. Note that there is no vertex ¢ftylpéd)
by Lemma 4.3 (1).

Let$ be a vertex irDI 1. Thens is of type (1, 1, 0). And we can determine the types of
vertices in["(§). We call a type-(2, 2, 1)-vertex of type A whenD (3, X) C D{ﬁ, and of
type B whenD (8, x) C D f?. See figure 12.

We have the patterns of cliques at a vertex of type (1, 2, 1) from Lemma 4.3 (3), where
v=(2,3,2 andw = (2, 2, 2).

Converting the base points, we also have clique patterns of vertices of types (1, 0, 1),
0,1,1),(2,1,1),(1,1,2).

Let n be of type (2, 2, 1)-A. By the clique patterns of a vertex of type (2, 1p13,not
adjacent to a vertex of type (2, 1, 1). Sirfge, = 1, there is no vertex of type (3, 3, 2).

Hence ifuy, Uy, Us, Ug, Us, Ug be vertices il (n), we may assume that

u; is of type (1, 1, 0), uis of type (1, 2, 1), ugzis of type (2, 2, 1),
ug is of type (2, 3, 2), usisof type (3, 2,2), andg is of type (2, 1, 2).

Sinceug € Ty 11(y), there exist € Iy (y) N I'(ug) which must be of typé€l, 0, 1). If
Uz ~ Ug, then{v, n, uz} C I'r11(B) N T'(Ug). This contradicts;,,», = 2. Hence

Uz ~ Uz, Uz ~ Ug, Us ~ Ue.

Let £ be of type (2, 2, 1)-B. Ther(¢, D{{}) = 0 as before. Se(£, D[1}) = 1. Let

v1, U2, U3, U4, Us, Ug b€ vertices irT' (£), we may assume that

vy is of type (1, 1, 0), vy is of type (2, 1, 1), vsis of type (1, 2, 2),
vgis of type (2, 3, 2), vsis of type (2, 2, 1), andyg is of type (3, 2, 2).

Sincee(vs, D)) =1,

vy ~ Vg, U3 ~ U4, Us ~ Vg,
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Moreoveruz in I'(n) is of type A, andus in I'(§) is of type B.

Converting the base points, we can obtain the clique patterns of vertices of type (2, 1, 2).
See figure 14.

Take a circuitxg ~ X3 ~ - -+ ~ Xzr44 ~ Xg Of length 2 + 5 such that

xoeDY, xeD , i=1..r+1,
X+j €Dfe ), i=5...r+4
1 2
1 0 1
2 1 2 2
1 2 g
1 24
1 1
0 0 2 3
0 2B 2
-1 1 1 2
1 2
1 2
1 1 0 2B
0 1 1
(110)-type (211)-type
1
1
2
0 1 2 1
=1 0 3
1 2 2
. ! f 2 2 1 2
2 1 2 2 2
1 24 2 3
0 1 2B 2
1 1
2 T 2 31 3
1 1 2 4 2 1 5 2 2
0 1 2 0 1 25 2
1 1
(101)-type (221)-A-type (221)-B-type
2
0 1 1 2 1 2
1 2 1 3 2 2
1 2 2 2 2 3
1
2 2
3
1 2 1 2 1 2
2 0 1 0 1
1 . 1 2 1 2
2
2 2
1
1 2 2 3 2 2
1 24 24 2 1 3
0 1 1 2 1 2
2
(121)-type (212)-A'-type (212)- B'-type

Figure 14 Clique patterns of the case;1 = 2 (2).
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Let{yi} = D(x, Xi+1). We define three types as follows.

Type I 2f+2 = (27 25 1)_A7 Xr+3 = (27 37 2)5 Xr+4 = (11 27 2)9
yr+2 = (2’ 21 1)_A» yr+3 = (1s 2» 2)9 yr+4 = (11 27 1)
Type 1. )_('I'+2 = (2’ 21 1)_A9 )?r+3 = (2’ 29 1)_A7 )_()r+4 = (15 27 1)7
?I’-FZ = (27 35 2)5 yr+3 = (1’ 19 O)a yr+4 = (15 27 2)
Type I”' Xf+2 = (17 25 1)5 ir+3 = (13 27 2)5 )-(>r+4 = (15 2’ 2)7
yl'+2 - (ov 1, 1)7 )7]’4*3 - (27 37 2)5 yr+4 - (17 27 1)

Note that each of these circuits does not contain triangles. In the following, we determine
the type of the circuit with respect tq, x, for each type.

Yr43

Trts
o ¢ «
Yo Tres
Type 1
Iy 4
Tyl
yr+2
Tris Yr+4
Ty ¢ & g
Triq Yr+2
Yo
Type 11 Tri3
Yr+3
1 ¢ 4 &
Try1 Tri2
o ¢
Yo
Type I1I Yres
:121 [

Tr41

Figure 15 Circuit of length 2 + 5.
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Suppose the circuit is of type |. Theq, 3 € T'r12(X1), Yry2 € Tr11(X1). S0X 13 is of
(2,2, 1)-Atype, and; 4 € T'r12(X1), Y13 € I'ri2(X1). Hence there are two possibilities.

Xr+4 = (27 35 2), ;’r+3 = (21 27 1)_A7 or )zr+4 = (29 27 1)_A7 9|'+3 = (27 35 2)

Thus we have either type | or type Il. Note that in the first case,4, D{ﬁ) =0, and
I (X+4) N D} is a cliqueKo.

Suppose the circuit is of type Il. Theq 3 € Ir11(X1). Sox 43 is of (1, 2, 1) type.
Xr4a € Try1(X1), Yras € T (X) implies that we have type lll, as this circuit does not have
triangles.

Suppose the circuit is of type Ill. Then 3 € T'ri2(X1), Yra2 € Iri1(X1). SOXr 43 1S
of (2, 2, 1)-Atype, andk 4 € Tr2(X1), Yr+3 € [ri2(X1). SUPPOSE (Yr 43, Y1) =T + 3.
Then

{Yo, Y1} C I'(X1) N Iy y3(Yr 43)-

This contradict®; .o = 1. Hencey, .3 is of (2, 2, 1)-A type and we have a circuit of type I.

Therefore by induction, we can conclude that for egdhis circuit is either of type I,

I, or 1l with respect to every pair of adjacent verticgs x; 1 in the circuit. Moreover, it
is easy to see that there is a circuit of type Ill.

Take a circuit of type Ill with respect tgg, X;. It is of type | with respect toy, Xs.
Changing the base points .3, X4, we have thako, € D} !} andx, € D/ 3. Thisis
absurd because with respect to these base points, this circuit is of type different from I, 11,
or lll.

This completes the proof of Theorem 4.1. O

Lemma 4.4 Let(G1,841,b41) = (1,4, 1), ¢2 = 6. Thenr= 0 (mod3).

Proof: Letu e D{f] such thad(u, y) > r + 1. We claim that there are three possible
clique patterns.

0 1 0 1 0 1
1e » 1 1 1 1 p 1
1 2 1 2 1 2
1
1
1 ! 1 1 1 1
0 2 0 2 1
1 1 1 R 1 1 1
1 2
1 1
1 2 1 2 1 2
1 1 1 ¢ > 1 1 » 1
0 1 0 1 0 1
A-type B-type C-type

Figure 16 Clique patterns of the case;1 = 4.
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Letu be of type (1, 1, 1) anflvy, vy, ..., vg} = ['(U). Sincec 1 = b1 = 1, we may
assume that
11=(1,10 7,=(101) v3=(011)
12=(1,1,2 vs=(1,21) us=(211).
Note thatD (v, u) = {v4} or {ve}. Now we have either A-type or B-type depending on the

location of D(x, u).
Now we can determine the clique pattern at a vertex of type (1, 2, 1) as well without

difficulty.
Therefore we can use the first circuit used in Case 1 Step 4 in the proof of Theorem 4.1
to conclude = 0 (mod 3). O

Remark We can also show that in case (4) in Theorem ¢.1; # 4.

In the next section, we apply Theorem 4.1 to give a bound of the diameter. We summarize
the information we need as a corollary as follows.

Corollary 4.5 LetI" be a distance-regular graph of valenéya; = 1. If I" is not a
bipartite half of a bipartite distance-regular graph of valengythen d < r + 2 and the
following hold.

Q) fd =r +1,theng,y < 3.

(2) 1f (Cry1, & 11, br1) = (2,2,2), then g2 < 3.

() If (Gry1, & 11, r41) = (2,3, 1), then ¢, > 4.

(4) If (Cri1, @11, bri0) = (1,2, 3), then 42 < 4.

5. Anupper bound of r(T")
We apply eigenvalue technique to give an upper boumdIlof assuming thad < r (I") + 2.

Theorem 5.1 LetI" be a distance-regular graph of valen6yith &y = 1. Letr = r ().
Ifd() <r +2 thenr<17.

We start by the notational conventions, which mostly follow those used in [1-4].
LetT" be a distance-regular graph of diameatevalencyk and parameters, b;, ¢;. Let
A be the adjacency matrix of a graph Let

K=6y>0, > > 04_1 > by4

be the eigenvalues & andm(6;) the multiplicity of6;.
The polynomialg; (x)(0 < i < d + 1) are defined by the recurrence relation

Xvi (X) = Bi_1vi—1(X) + & vi (X) + Ci1vi+1(X)

forO<i <dwithv_1(X) =0, vp(X) = 1, andcyg 1 = 1.
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TheF(x) (0 <i < d) are the monic polynomials defined by
Fi(X) = C1C2- - - G (vo(X) + va(X) + - - + vi(X)).
They satisfy the recurrence relation
Fi(x)=X—k+bi_1+c)F_1(X) = bi_1¢-1F _2(x)

for2<i <dwith Fo(x) =1, F;(X) =x + 1.
We put

v (%)
S(x) = J; K
Itis well known that
m(@) = I'l/S6h).
In the following we assume thét=6,a; = 1,r =r (') =1(1,1,4),andd <r + 2.
Lemmab5.2 Let6d # 6 be an eigenvalue of A. Them3 <6 < 5.
Proof: Sincea; = 1, the size of maximal cliques is always 3. Hence by Proposition 4.4.6

in [8], & > —3. We now find an upper bound by a Sturm series.
For2<i <r, the recurrence relation &j’s yields

F(X) = X—-DF_1(X) — 4F _2(X).
SoforO<i <r,

FGB) =22 +1 and
Fri18) = @+ G0 R (5) —4F _1(5)
=2(2r +5+ (2r + D¢ 41).

Moreover, ifd =r + 2, then

Fri2(®) = (=1+ b+ G2 Fra(®) — brpaG R (5)
=2 ((-14+b1+ G2 +5+ (2 + DCry1) — brjaCpa(2r + 1))
=2(2r +9br1+C2— 1D+ (2 + D (G2 — DCrya).

SinceFp(x), ..., Fq(X) isa Sturm series;; (5) > 0,i =0,1,...,d, impliesthaty < 5
asé is aroot of Fg(x) = 0.
Thus we have the assertion. O
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Lemma 5.3 Leto; be the second largest eigenvalue. Then

2
%) 1+ 4cos .
1> 1+ 11

Proof: Letx =1+ 4cosx < 5. Then by the recurrence relation,

r

F(x) = (sin(r + Da + sinra).

sina

Leta = Zrz—L Then

. . . r+1 i r
sin(r +1 sinfoe = sin| —— - 27 sin -2
(F+ Do +sinra <2r+1 >+ <2r+1 ”)

sin + T + sin id
= b/ T —
2r+1 r+1

=0.

Hence a root of4(x) is greater than % 4 cosz.f—il. O

Lemma 5.4 The following hold.
(1) Letx= 1+ 4cosp. Then

. g 1+ cosg B sinr¢
SO =14t e | 12site
+4 cosr + 2)¢ — 3 cosr + 1) — 2 cosr¢p + codr — 1)¢p).

(4 cogr + 3)¢

(2) Ifr > 18 then

2 r3r+1
S6) >1+ ér +?

(3) If |x — 1] < /14, then

SX) < 1—|—g

1 4
SUREECE V1dyr + §(5+4«/§).

Proof: For (1), see [15, Proposition 2.4].
(2) By Proposition 2.5 in [15], we know that the largest root of

r—1

v (X) = (2 sin(r + )¢ + sinr¢ — sin(r — 1)¢)

sing

with x — 1 = 4 cos¢ is in the interval corresponding to9 ¢ < 7/r.



DISTANCE-REGULAR GRAPHS OF VALENCY 6 ANDg; = 1 125

Firstly we will improve the lower bound above. Lat= 1.09,¢ = x/ar. Then

2 sinr +1)¢ + sinr¢g — sinr — 1)¢

. T T . TT . T T
=2 sm(— + —) + sin— —sm(— — —)
a ar a a ar

. T T T . T
=sin—|1+cos— ) + 3 cos— sin—
a ar a ar

>sinn 1+cosn +3 cosn sinﬂ 0
— — — — > 0.
- a 18 a 18

Sincevi (x)'s form a Strum sequence, all roots@fx)’s are less thag = 1 + 4 cos;:
Hence$ (x) is increasing in the intervak, o).
Thus we may assume that

T 2
61 =1+4 coswy, —
! + ar o= 2r+1
by Lemma 5.3. Since
b4 2rm big
—<ra< <, —1 < cosra < cos—.
a 2r+1 a

Using the mean value theorem,
—1 < cogr +h)a < cosra + |hja
for everyh. Hence for > 18,
—4 cosr 4+ 3)a — 4 cosr + 2)a + 3 cogr + Do + 2 cosa — cogr — D«
> 4(—costa — 3x) +4(—costa —2a) —3+ 2 cOS o — COSfo — «
> -—-7coga —3—2lx

2
> -7 0052—3—21- dd

0.
or+1

Since simra > 0,

2 1+ cosux
61) > 14 r + ———r
SO0 > 14 3t R
> 1+2r+ r
- 3  6(1-cosw)’
As
o? 2n 2
—_— < 7’
2 (2r +1)2
2 (2 4+
SO) > 1+ ér + W

2 r3r+1
1+ 5r4 — 17
=it g

1—cosa <
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(3) Firstly,

4 cosr + 3)¢ + 4 cosr + 2)¢p — 3 cosr + 1) — 2 cosr ¢ + coqr — Do
= coqr + 3)¢ — 6SINr + 2)¢ sing
+2 cogr + 2)¢ — 4 sin(r + 1)¢ sing + cogr — 1)¢
= sing(—6sinr + 2)¢ — 4 sinr + 1)¢)
+cogr +3)¢ + 2 cosr + 2)¢ + cosr — 1)¢.

Letx — 1 = 4cosB. Since 16 co58 < 14,

: 1 14
|sing] > —=, and |cosf| < g

22

We have

14 cosp n sinrp
6sirt g 6sir? g
(coqr +3)B + 2 cosr + 2) +codr — 1)B)

2 1 8 162
14+ =r+ (4 +V1r + = - .1
< +3r+3(+ )r+65+ 12

2 1 4
=1+ 37+ 54+ V1 +§(5+4«/§).

2
SX) =1+ 3 + (3 sinr +2)8 + 2 sinr +1)8)
sinrB

 12sim B

This completes the proof of Lemma 5.4. O

Lemma5.5 If [x — 1] < v/14, then the following hold.
D i <21A+2v2), i=01...,r
Ur+ 2
() % < 22-9+4/2) < 10
(3) S <123

Proof:
(1) Letx —1=4cosB. Then
i

2 L 1 . 1 . .
vi(X) = W(sm(l + 1B+ > sinig — > sin(i — 1)/3>

(sin(i +1)B8 + siniﬁ)).

= 2'<cosiﬁ+ 2sing

So|vi (X)| < 2 (14 2v2).
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(2) Cravr42(X) = (X = Dvr (X) — 4vr_1(X).
Since the right hand side equails 1(x) for a distance-regular graph witlil, 1, 4) =
r+1,

|G v 11(X)] < 2711+ 2V2)

by (1). Hence we have

v 41(X)? _ (Cr11vr41(X))?
K11 B Cr1brk
- 4r+l(1+2ﬁ)2
C1-6-4

2
9+ 4v2) < 10.
Cr+1

(3) Cri2vr42(X) = (X — @41 vr41(X) — brvyr (X).
Assumec; 1 = 1. Then

Cr2|vr42(X)| = [(X = Dvrp1(X) — 4vr (X) + (1 — & 41 Vr 41(X)]
< 2121+ 2v2) +3- 21+ 2V2)
< 2151+ 2V/2).

We have

U200 _ (Cryavri2(X))’
Kr 42 Cr42br 11Kr 41

- 4+1.259 4 4/2)
- 2.6-4

25
SO+ 4v?2) < 123

IA

Suppose; 11 = 2, a1 = 2. In this case,

Cr2lvr 2| = [(X = @4 1)vr 12(X) — brvp (X)]

< X=22A+2V2) +4-2'(1+2V2)
< 254 V11 + 2V2).
vr+2(X)2 _ (Cr+zvr+2(x))2
Kr 12 Cr12br 11K 41
_ 4G+ VI AL+ 2v2) 2
= 2.2.4 .6

< 94,
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If ¢11 =2 841 =3, thenc ;> > 4. So

Ci2lvra2(X)| < 2 (6+ V1H(1+ 2v2)

vr2()? _ 46+ V19*(1+2v2)-2

116
ke 446 B

This competes the proof of Lemma 5.5. O

Proof of Theorem 5.1: Suppose > 18. Then by Lemma 5.2 and 5.3,

2
5>0,> 144 cos—— > 1+ /15,
2r +1

asr > 18> 12. Let

n=[]w-1?-15,

where the product is taken for all algebraic conjugate$s,. In particulary is a non-zero
integer.

Since 0 < |(6; — 1)> — 15/ < 1, there is an algebraic conjugateof 6, such that
(0’ —1)2—15 > 1. So

0/ =1 >4 or |0 —1 <14

By Lemma 5.2, the first case is impossible.
Moreoverm(0’) = m(9;). So

(0 = (01 > S (61)

2 r3r+1
1+ 54 —12
ity

by Lemma 5.4.
On the other hand

vr41(0)? | urga(8)?

0)=8@©)+ +
S(0) = S+ s
2 1
<1+§r+§(4+J171)r+15+10+123
Thus
r2e +1)

1
3 <34+ V14r + 148

This impliesr < 17.
Therefore we conclude that< 17 as desired. O
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Proof of Theorem 1.1: If T is a bipartite half of a bipartite distance-regular graph of
valency 3, then we can use the classification of such graphs given by Ito in [11]. We have
(1), (2) and (4) in this case.

Now we can assum&(") < r(I") + 2 andr (") < 17 by Theorem 3.1, 4.1, and 5.1. It
is not hard to check the integrality condition of multiplicities of eigenvalues. Actually, just
by testing them for the second largest eigenvalues, we see that the only possible arrays are
those of (1), (2), (3) or the following.

o O ¥

1
1
4

N

6
0
*

The nonexistence of a distance-regular graph with the last array follows from Lemma 4.4.
Since the characterization of graphs by parameters same as (1), (2), (3) are known ([8]),
we have a desired result. O

6. Distance-regular graphs of girth 3,k < 7

In this section, we give a classification of the graphs in the title above. As we noted in
Introduction, except the cage= 6, a; = 1, the result may be known to some specialists.
We decided to include this section for the convenience of the reader. See the table.

Here we only determine the arrays. For the description and the uniqueness, refer the
readers to [8]. For GD(3, 1) it seems that the uniqueness problem is not settled yet.

Lemma 6.1 LetI be a distance-regular graph of valency k.
Q) Ifd() =1, thenl" >~ Kyy1.
(2) Ifby =1,k > 2, theng =k =2(m—1) andl' >~ K2 =~ the complement of rKs.

Proof: Itis easy and well-known. See [8, Proposition 1.1.5]. O

Proposition 6.2 LetT be a distance-regular graph of ordés, 1), i.e., of valency k=
2(a; + 1) without an induced subgraph isomorphic tg . ThenI is a line graph and
one of the following holds.

(1) T ~ C,; an n-gon.

(2) T >~ H(2, a1 + 2); a Hamming graph.

(3) T ~ a collinearity graph of a generalize2d-gon of order(s, 1), d = 3, 4, or6.

(4) T ~ the line graph of a Moore graph.

* 1 1 4
() = 0 k—2 k-1 2—-6}%, k=37 or57.
2« —2 k—1 k-2 *

Proof: See [8, Proposition 4.3.4, Theorem 4.2.16]. O
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Lemma 6.3 LetI be a distance-regular graph of valency=k 7 with gy = 2,¢c, = 2.
Then

(M) =

~N O %
NI S
AN
* o ~N

Proof: We name a fixed vertexo. Sincec, = 2, I'(co) >~ C7. We identify I" (c0) with
Z7:=1{0,1,2,3,4,5,6},andi ~i+1 (mod 7). Each vertex if,(c0) can be represented
by a pair of vertices ii" (co), which are adjacent to it.

LetA={@,i +1]i=0,1,...,6}, B={(,i +3)|i =0,1,...,6}. ThenI'z(co) =
AU B. Sincerl'(i) ~ C7, we have

a,))~@,k), j#£k forall i, j), (i,k) € B.

Moreover, eithei,i +1) ~ (,i +3)or(i,i +1) ~ ((,i +d. fG,i +1) ~@(,i +48
for somei,

a(i +1,G,i +4) =2, while
TG +DNTG,i+4) 30, (,i+1), (+1i0+4).

Thisis a contradiction. Hende i +1) ~ (i,i +3),and(i,i —1) ~ (i, i —3). In particular,
we havea, > 4.
If a; = 5, then we have a contradiction by counting the number of triangles. (See [8,
Lemma 4.3.1].) S@, = 4. Sincec, # 1,¢; < c3. (See [8, 5, 4, 1].) We hawg = 7, as
ko = 14. We have a desired conclusion. O

With a little more effort, it is not hard at all to show the uniqueness of the graph. (See
[8, p. 386].)

Lemma6.4 Ifk =6, ag=2ande > 2, thend=2and g =2or 3.

Proof: T'(x) ~2.KjzorCgs. Soay # 0. Hencec, = 2 or 3.

Assumed > 3 and derive a contradiction. By Proposition 6.2, we may assume that for
some vertex, I'(x) >~ Cg. Sincel is connectedl’(x) >~ Cg for everyx € I'.

Suppose;, = 3. Sincek; = kp, I' is an antipodal 2-cover. (See [8, Lemma 5.1.2].) So
I'2(x) >~ Cg and for eacly € I'(x), ['(y) >~ Cg andI'(y) N I'2(X) is a path of length 2. We
easily obtain a contradiction.

Suppose&; = 2. Letoo be a fixed vertex. We identiffy (co) with Zg = {0, 1, 2, 3, 4, 5},
withi ~ i +1 asin the previous lemma. Th&a(co) = AU B, whereA = {(i,i + 1)|i =
0,1,...,5}, B=1{(0,3), (1,4, (2,5}. Considering the structure of(i ), we easily have
(i,i+1)~(,i +3) ~(,i —1). Inparticulara, > 4. O

LetT" be a distance-regular graph of valengygirth 3 and diameted. Supposé < 7.
By Lemma 6.1, we may assume tlkat- 3 anda; < k — 3.
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If kis odd,a; must be even aB(x) is a;-regular. In particulark £ 3.

Letk = 5. Then by our assumption; = 2. Hencel'(x) ~ Cs andc, > 2,a, # 0. So
c; = 2. Sincek; = ky; anday is even, we have an antipodal 2-cover with= 3. (See [8,
Proposition 1.1.4].)

Letk = 7. Then by our assumpticaa = 2 or 4.

If a; = 4, thenI"(x) is a complement o€; or C3 U C4. In either case we hawe > 4
anda, £ 0. This is impossible.

Supposey; = 2. ThenI'(x) >~ C; or C3 U C4. Soc, > 2 anda, > 2. If ¢, > 3, then
c; = 4 andl’ must be an antipodal 2-cover with 16 vertices. We can eliminate this case by
counting the number of triangles. On the other hand, i 2, we can apply Lemma 6.3.

Letk = 4. By our assumptiora; = 1. Hence we can apply Proposition 6.2, in this case.

Letk = 6. If a; = 1, the results follow from Theorem 1.1. @9 = 2or 3. Ifa; = 2
andc, = 1, then we can apply Proposition 6.2. On the other hara, & 2, c, > 2, we
can apply Lemma 6.4.

Supposey = 3. Thenl'(x) is acomplement dEg or 2- K3. Hencec, > 3. Soc, = 3, 4
or 6 andd = 2. The nonexistence of the first case can be shown easily, for example by
counting the number of 5-cycles in the complement.

Thus we have the arrays in the following table.

Table. Distance-Regular Graphs of Girth, k < 7.

* 1
k=2 0 1 Ks
2 %

* 1

k=4(@ {0 3 Ks

l K222

l H(2,3)

(b) { O

N
=N
* O D

30

N R
* NN

*
[

(d) {0

N
=N

4
0t L(O3)
*

(Continued on next page.)
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Table. (Continued).

(e GH(2, 1)

o %
[
e
NN

—_—

(f) GO(2,1)

» O *
N R
N R
N PP
* NN
[—

*

[EnY
-
=

@

o
=
=
=

N P

N P

* NN

] GD(2,1)
* 1

k=5(@) {0 4 Ke
5 x

(b) icosahedron

o *
N -
NN
o o

——

* 1
k=6@ 10 5 Kz
6 x

o *
FNQEEN
»

(b) K2222

»
=
*

*
[any

© K333

o
w
*¥ O O

*
=

(d) JG5,2)

o O
N W
* N D

*

) aconference graph

o
wnN -
* W W

*

(f) H (2, 4), Shrikhande graph

o
W NP
* AN

@ GH@GE 1

o O *
WN B
w N

* AN
[N —

N
¥ AN

] GO, 1)

,\
=)
=

e e,

o O *

w

W NP

w NP

(Continued on next page.)
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Table. (Continued).

x 1 1 11 1 2

i) {0 2 2 2 2 2 4} GD@3 1
6 3 3 3 3 3 x
* 1 3

(j)10 1 3 GQ(2,2)
6 4 x
* 1 1 3

® {0 11 3 GH (2, 2) (two graphs)
6 4 4 x
* 1 2 3

{40 1 2 3 H(@3, 3
6 4 2 x
* 1 1 4 6

madJ0 1 3 10 3-cover of GQ(2, 2)
6 4 2 1 «
* 1

k=7 (a) 6 Kg

7
« 1 2 7

b)) 10 2 4 0 3-cover of Kg
7 41 x
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