ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Lagrange Inversion and Schur Functions

Cristian Lenart

DOI: 10.1023/A:1008743720120

Abstract

Macdonald defined an involution on symmetric functions by considering the Lagrange inverse of the generating function of the complete homogeneous symmetric functions. The main result we prove in this note is that the images of skew Schur functions under this involution are either Schur positive or Schur negative symmetric functions. The proof relies on the combinatorics of Lagrange inversion. We also present a q-analogue of this result, which is related to the q-Lagrange inversion formula of Andrews, Garsia, and Gessel, as well as the operator nabla of Bergeron and Garsia.

Pages: 69–78

Keywords: Lagrange inversion; Schur function; Dyck path; Macdonald polynomials

Full Text: PDF

References

1. G.E. Andrews, “Identities in combinatorics III: A q-analogue of the Lagrange inversion theorem,” Proc. Amer. Math. Soc. 53 (1975), 240-245.
2. F. Bergeron, N. Bergeron, A. Garsia, M. Haiman, and G. Tesler, “Lattice diagram polynomials and extended Pieri rules,” Adv. Math. 142 (1999), 244-334.
3. F. Bergeron and A. Garsia, “Identities and conjectures for a remarkable operator on symmetric polynomials,” Séminaire Lotharingien de Combinatoire, to appear Publ. Inst. Rech. Math. Av., Univ. Louis Pasteur, Strasbourg.
4. M. Bousquet-Mélou, F. Bergeron, and D. Gouyou-Beauchamps, Personal communication, May 1998.
5. N. Dershowitz and S. Zaks, “The cycle lemma and some applications,” European J. Combin. 11 (1990), 35-40.
6. A. Dvoretzky and Th. Motzkin, “A problem of arrangements,” Duke Math. J. 14 (1947), 305-313.
7. H.K. Farahat and G. Higman, “The centres of symmetric group rings,” Proc. Royal Soc. (A) 250 (1959), 212-221. LENART
8. A.M. Garsia, “A q-analogue of the Lagrange inversion formula,” Houston J. Math. 7 (1981), 205-237.
9. A. Garsia, Personal communication, May 1998.
10. A. Garsia and M. Haiman, “A remarkable q, t-Catalan sequence and q-Lagrange inversion,” J. Alg. Combin. 5 (1996), 191-244.
11. I. Gessel, “A noncommutative generalization and q-analogue of the Lagrange inversion formula,” Trans. Amer. Math. Soc. 257 (1980), 455-482.
12. I.P. Goulden and D.M. Jackson, Combinatorial Enumeration. Wiley Intersci. Ser. in Discrete Math. John Wiley & Sons, 1983.
13. I.P. Goulden and D.M. Jackson, “Symmetric functions and Macdonald's result for top connection coefficients in the symmetric group,” J. Algebra 166 (1994), 364-378.
14. M. Haiman, “Conjectures on the quotient ring by diagonal invariants,” J. Alg. Combin. 3 (1994), 17-76.
15. M. Haiman and W. Schmitt, “Incidence algebra antipodes and Lagrange inversion in one and several variables,” J. Combin. Theory Ser. A 50 (1989), 172-185.
16. A. Lascoux and M.-P. Sch\ddot utzenberger, “Formulaire raisonné de fonctions symétriques,” Publ. Univ. Paris 7, 1985.
17. I.G. Macdonald, “A new class of symmetric functions,” volume 372 of Séminaire Lotharingien de Combinatoire, Publ. Inst. Rech. Math. Av., pp. 131-171. Univ. Louis Pasteur, Strasbourg, 1988.
18. I.G. Macdonald, Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2nd edition, 1995.
19. I. Pak and A. Postnikov, “Enumeration of trees and one amazing representation of the symmetric group,” in Eighth International Conference on Formal Power Series and Algebraic Combinatorics, D. Stanton (Ed), University of Minnesota, Minneapolis, 1996, pp. 385-389.
20. G.N. Raney, “Functional composition patterns and power series reversion,” Trans. Amer. Math. Soc. 94 (1960), 441-451.
21. R. Stanley, “Parking functions and noncrossing partitions,” Electronic J. Combin. 4(2) (Wilf Festschrift) R20, 1997.
22. R.P. Stanley, Enumerative Combinatorics, volume II, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.
23. R. Winkel, “On the expansion of Schur and Schubert polynomials into standard elementary monomials,” Adv. Math. 136 (1998), 224-250.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition