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Abstract. In this paper we find the Martin boundary for the Young-Fibonacci laifiBe Along with the lattice

of Young diagrams, this is the most interesting example of a differential partially ordered set. The Martin boundary
construction provides an explicit Poisson-type integral representation of non-negative harmonic funciihs on

The latter are in a canonical correspondence with a set of traces on the locally semisimple Okada algebra. The set
is known to contain all the indecomposable traces. Presumably, all of the traces in the set are indecomposable,
though we have no proof of this conjecture. Using an explicit product formula for Okada characters, we derive
precise regularity conditions under which a sequence of characters of finite-dimensional Okada algebras converges.

Keywords: differential poset, harmonic function, Martin boundary, Okada algebra, non-commutative symmetric
function

1. Introduction

The Young-Fibonacci latticET is a fundamental example otiifferential partially ordered
setwhich was introduced by Stanley [11] and Fomin [3]. In many ways, it is similar to
another major example of a differential poset, the Young latticéddressing a question
posed by Stanley, Okada has introduced [9] two algebras associat#d Tthe first algebra
Fis alocally semisimple algebra defined by generators and relations, which bears the same
relation to the lattic&/[F as does the group algebtss, of the infinite symmetric group
to Young’s lattice. The second algebirais an algebra of non-commutative polynomials,
which bears the same relation to the latfiE as does the ring of symmetric functions to
Young's lattice.

The purpose of the present paper is to study some combinatorics, both finite and asymp-
totic, of the latticeYF. Our object of study is the compact convex setafmonic functions
on YT (or equivalently the set of positive normalized tracesfoar certain positive linear
functionals onR.) We address the study of harmonic functions by determinindy/tduein
boundaryof the latticeYF. The Martin boundary is the (compact) set consisting of those
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harmonic functions which can be obtained by finite rank approximation. There are two
basic facts related to the Martin boundary construction: (1) every harmonic function is
represented by the integral of a probability measure on the Martin boundary, and (2) the set
of extreme harmonic functions is a subset of the Martin boundary (see, e.g., [1]).

This paper gives a parametrization of the Martin boundary¥frand a description of
its topology.

The Young-Fibonacci lattice is described in Section 2, and preliminaries on harmonic
functions are explained in Section 3. A first rough description of our main results is given
at the end of Section 3. (A precise description of the parametrization of harmonic functions
is found in Section 7, and the proof, finally, is contained in Section 8.) Section 4 contains
some general results on harmonic functions on differential posets.

The main tool in our study is the Okada rilyand two bases of this ring, introduced
by Okada, which are in some respect analogous to the Schur function basis and the power
sum function basis in the ring of symmetric functions (Section 5). We describe the Okada
analogs of the Schur function basis by non-commutative determinants of tridiagonal ma-
trices with monomial entries. We obtain a simple and explicit formula for the transition
matrix (character matrix) connecting the s-basis and the p-basis, and also for the value
of (the linear extension of) harmonic functions evaluated on the p-basis. This is done in
Sections 6 and 7.

The explicit formula allows us to study the regularity question for the lafiEe that
is the question of convergence of extreme traces of finite dimensional Okada al@gbras
to traces of the inductive limit algebrg = lim 7,. The regularity question is studied in
Section 8.

The analogous questions for Young’s lattiégwhich is also a differential poset) were
answered some time ago. The parametrization of the Martin bound&riyas been studied
in [14], [15]. A different approach was recently given in [10].

A remaining open problem for the Young-Fibonacci lattice is to characterize the set of
extreme harmonic functions within the Martin boundary. For Young's lattice, the set of
extreme harmonic functions coincides with the entire Martin boundary.

2. The Young-Fibonacci lattice

In this Section we recall the definition of Young-Fibonacci modular lattice (see figure 1)
and some basic facts related to its combinatorics. See Section A.1 in the Appendix for the
background definitions and notations related to graded graphs and differential posets. We
refer to [3—4], [11-13] for a more detailed exposition.

A simple recurrent construction

The simplest way to define the graded grafih= | -, YF is provided by the following
recurrent procedure.

Let the first two levelsYF, and YIF; have just one vertex each, joined by an edge.
Assuming that the part of the grafi¥, up to thenth level Y, is already constructed, we
define the set of vertices of the next |eX&F, 1, along with the set of adjacent edges, by
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Figure L The Young-Fibonacci lattice.

first reflectingthe edges in between the two previous levels, and thaitaghingjust one
new edge leading from each of the vertices on the [8#&] to a corresponding new vertex
at leveln + 1.

In particular, we get two vertices in the Séf,, and two new edges: one is obtained by
reflecting the only existing edge, and the other by attaching a new one. More generally, there
is a natural notation for new vertices which helps to keep track of the inductive procedure.
Let us denote the vertices &fFy and Y, by an empty wordd and 1 correspondingly.

Then the endpoint of the reflected edge will be denoted by 2, and the end vertex of the new
edge by 11. In a similar way, all the vertices can be labeled by words in the letters 1 and 2.
If the left (closer to the roofl) end of an edge is labeled by a wardthen the endvertex

of the reflected edge is labeled by the word Each vertexw of thenth level is joined to a
vertex lw at the next level by a new edge (which is not a reflection of any previous edge).

Clearly, the number of vertices at thth level Y, is thenth Fibonacci numbef,.

Basic definitions

We now give somewhat more formal description of the Young-Fibonacci lattice and its
Hasse diagram.

Definition A finite word in the two-letter alphabé¢t, 2} will be referred to as &ibonacci
word. We denote the sum of digits of a Fibonacci wardy |w|, and we call it theank of
w. The set of words of a given ramkwill be denoted byYF,, and the set of all Fibonacci
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words byYTF. Theheadof a Fibonacci word is defined as the longest contiguous subword
of 2's atits left end. Theositionof a 2 in a Fibonacci word is one more than the rank of the
subword to the right of the 2; that isif = u2v, then the position of the indicated 2ig+ 1.

Next we define a partial order on the && which is known to mak& IF a modular lattice.
The order will be described by giving the covering relation&dhn two equivalent forms.

Given a Fibonacci word, we first define the set C YT of its successors. By definition,
thisis exactly the set of words € YIF which can be obtained fromby one of the following
three operations:

(i) putan extral atthe left end of the wowd
(i) replace the first 1 in the word (reading left to right) by 2;
(i) insert 1 anywhere in between 2's in the head of the wordr immediately after the
last 2 in the head.

Example Take 222121112 for the word of rank 14. Then the group of 3 leftmost 2’s
forms its head, and has 5 successors, namely

v ={12221211122122121112 2212121112 2221121112 222221113.

The changing letter is shown in boldface. Note that the ranks of all successors of a Fibonacci
word v are one bigger than that of

The seb of predecessors of a hon-empty Fibonacci wormn be described in a similar
way. The operations to be applied#dn order to obtain one of its predecessors are as
follows:

() the leftmost letter 1 in the word can be removed;
(i) any one of 2’s in the head af can be replaced by 1.

Example The wordv = 222121112 has 4 predecessors, namely
v={12212111221212111222112111222221112.

We writeu ' v to show thab is a successor af (andu is a predecessor of. Thisis a
covering relation which determines a partial order on thér&eof Fibonacci words. As a
matter of fact, it is a modular lattice, see [11]. The initial part of the Hasse diagram of the
posetYF is represented in figure 1.

The Young-Fibonacci lattice as a differential poset

Assuming that the head length ofis k, the wordv hask + 2 successors ankl + 1
predecessors, if contains at least one letter 1. df= 22--.2 is made of 2's only, it has

k + 1 successors arklpredecessors. Note that the number of successors is always one
bigger than that of predecessors. Another important property of the I&ifide that, for
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any two different Fibonacci wordsy, v, of the same rank, the number of their common
successors equals that of common predecessors (both numbers can only be 0 or 1). These
are exactly the two characteristic properties (D1), (D2) of differential posets, see Section
A.1. In what follows we shall frequently use the basic facts on differential posets, surveyed
for the reader’s convenience in the Appendix. Much more information on differential posets
and their generalizations can be found in [3], [11].

The Okada algebra

Okada [9] introduced a (complex locally semisimple) algebradefined by generators
and relations, which admits the Young-Fibonacci latid@eas its branching diagram. The
Okada algebra has generat¢es; -1 satisfying the relations:

& =g foralli>1 (01)

1
eeie =-a forali=>2 (02)
eej =ejg forli—j|>2 (03)

The algebraF,, generated by the first — 1 generatorgy, . . ., e,_; and these identities
is semisimple of dimension!, and has simple moduléd, labelled by elements € YF,,.
Foru € YF,_; andv € YF,, one hasu 7 v if, and only if, the simpleF,-moduleM,,
restricted to the algebra;_; contains the simplé-,_;-moduleM,. As a matter of fact,
the restrictions of simplg,-modules taF,_; are multiplicity free.

3. Harmonic functions on graphs and traces ofAF-algebras

In this Section, we recall the notion of harmonic functions ograded graphand the
classical Martin boundary construction for graded graphstaadching diagramsWe
discuss the connection between harmonic functions on branching diagrams and traces on
the corresponding\F-algebra. Finally, we give a preliminary statement on our main results
on the Martin boundary of the Young-Fibonacci lattice.

We refer the reader to Appendix A.1 for basic definitions on graded graphs and branching
diagrams and to [2], [7] for more details on the combinatorial theoehlgebras.

The Martin boundary of a graded graph

Afunctiong : I' — R defined on the set of vertices of a graded grBg$calledharmonic
if the following variant of the “mean value theorem” holds for all vertices I":

W) =Y gw). (3.1)

wiu S w

We are interested in the problem of determining the sgéaoé all non-negative harmonic
functions normalized at the vertéx by the conditionp(O0) = 1. Since™H is a compact
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convex set with the topology of pointwise convergence, it is interesting to ask about its
set of extreme points. (Recall that artreme poinp in a convex seK is a point which
cannot be written as a non-trivial convex combination of point&otthat is, whenever
¢ =Sp1 + (L —9)p2, With 0 < s < 1 andy, ¢, € K, it follows thaty; = ¢, = ¢.)

A general approach to the problem of determining the set of extreme points is based on the
Martin boundary construction (see, forinstance, [1]). One starts witfithension function
d(v, w) defined as the number of all oriented paths froto w. We putd(w) = d(0O, w).

From the point of view of potential theorgl(v, w) is the Green function with respect to
“Laplace operator”

(Ap)(U) = —pW) + Y p(w). (3.2)

wiu/w

This means that ify,,(v) = d(v, w) for a fixed vertexw, then—(Avy,,) (v) = §,, for all
v eI'. Theratio

d(v, w)

K@, w) = d(w)

(3.3)

is usually called théartin kernel

Consider the space Fdn) of all functions f :I" — R with the topology of pointwise
convergence, and I& be the closure of the subgetc Fun(I") of functionsv - K (v, w),
wel. Since those functions are uniformly bounded=0K (v, w) < 1, the spaceé
(called theMartin compactificatiohis indeed compact. One can easily check that E
is a dense open subsetBf Its boundaryE = E \ T is called theMartin boundaryof the
graphr.

By definition, the Martin kernel (3.3) may be extended by continuity to a function
K:TI' x E — R. For each boundary poind € E the functiong,(v) = K(v, ») is
non-negative, harmonic, and normalized. Moreover, harmonic functions have an integral
representation similar to the classical Poisson integral representation for non-negative har-
monic functions in the disk:

Theorem (cf. [1]). Every normalized non-negative harmonic functipe H admits an
integral representation

oW = [ K(u.o) Mo, (3.4)
E

where M is a probability measure. Conversely, for every probability measure M on E, the
integral (3.4) provides a non-negative harmonic functiore H.

All indecomposablg.e.,extremgelements of{ can be represented in the fopp(v) =
K (v, w), for appropriate boundary poiat € E, and we denote b, the set of all such
points. It is known thatEn,, is a non-emptyG;s subset ofE. One can always choose
the measureM in the integral representation (3.4) to be supportedEhy,. Under this
assumption, the measuké representing a functiop € H via (3.4) is unique.
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Given a concrete example of a graded graph, one looks for an appropriate “geometric”
description of the abstract Martin boundary. The purpose of the present paper is to give an
explicit description for the Martin boundary of the Young—Fibonacci gréph

The traces on locally semisimple algebras

We next discuss the relation between harmonic functions on a graded graph and traces on
locally semisimple algebras. Wcally semisimple complex algebra(ér AF-algebra) is
the union of an increasing sequence of finite dimensional semisimple complex algebras,
A = lim A,. Thebranching diagranor Bratteli diagramI"(A) of a locally semisimple
algebraA (more precisely, of the approximating sequefi8g}) is a graded graph whose
vertices of rankn correspond to the simplé,-modules. LetM, denote the simplé\,-
module corresponding to a vertexe I',,. Then a vertex of rankn and a vertexw of rank
n+1 are joined by: (v, w) edges if the simplé\,,; moduleM,,, regarded as aA, module,
containsM,, with multiplicity » (v, w). We will assume here that all multiplicitieg v, w)
are 0 or 1, as this is the case in the example of the Young-Fibonacci lattice with which we are
chiefly concerned. Conversely, given a branching diadgrawthat is, a graded graph with
unique minimal vertex at rank 0 and no maximal vertices—there is a locally semisimple
algebraA such thaf"(A) =T.

A traceon a locally semisimple algebrais a complex linear functionat satisfying

¥(e) > 0 forallidempotentse € A;
Yy =1 (3.5)
Y(ab) = y(ba) forall a,be A.

To each trace/ on A, there corresponds a positive normalized harmonic funaficom
' = I'(A) given by

¥ (v) = y(e) (3.6)

wheneverv has rankn ande is a minimal idempotent irA, such thateM, # (0) and
eM, = Oforallw e I'y\ {v}. The trace property af implies thaty is a well defined non-
negative function oi’, and harmonicity of follows from the definition of the branching
diagramI'(A). Conversely, a positive normalized harmonic functipron ' = I'(A)
defines a trace ow; in fact, a trace on each, is determined by its value on minimal
idempotents, so the assignment

v ™ (e =¥ (), (3.7)

whenevee is a minimal idempotent i\, such thaeM, # (0), defines a trace oA,. The
harmonicity ofy implies that they ™ arecoherenti.e., the restriction ofy ™9 from A1
to the subalgebrd, coincides withy ™. As a result, the traceg™ determine a trace of
the limiting algebraA = [im A,.
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The set of traces oW\ is a compact convex set, with the topology of pointwise con-
vergence; amxtremeor indecomposablé&ace is an extreme point in this compact convex
set.

The mapy — v is an affine homeomorphism between the space of positive normalized
harmonic functions o" = I'(A) and the space of traces @a From the point of view
of traces, the Martin boundary ®f consists of traceg which can be obtained as limits
of a sequenc@,, whereyr, is an extreme trace oA,. All extreme traces o\ are in the
Martin boundary, so determination of the Martin boundary is a step towards determining
the set of extreme traces @n

The locally semisimple algebra corresponding to the Young-Fibonacci Iatiids the
Okada algebreF introduced in Section 2.

The main result

We can now give a description of the Martin boundary of the Young-Fibonacci lattice (and
consequently of a Poisson-type integral representation for non-negative harmonic functions
on YF).

Definition Letw be an infinite word in the alphabgt, 2} (infinite Fibonacci word), and
letds, da, ... denote the positions of 2's im. The wordw is said to besummabléf, and
only if, the seriesZ?c=l 1/d; converges, or, equivalently, the product

rw)= [] (1— d—1]> >0 (3.8)

jdj=2
converges.

As for any differential poset, the latticéF has a distinguished harmonic functipg,
called thePlancherel harmonic functionpp is an element of the Martin boundary. The
complement ofgp} inthe Martin boundary of IF can be parametrized with two parameters
(B, w); hereBisarealnumber, & 8 < 1, andw is a summable infinite word in the alphabet
{1,2).

We denote by the parameter space for the Martin boundary:

Definition Let the spac&2 be the union of a poinP and the set
{(B,w):0< B <1, wasummable infinite word in the alphaliét 2}},
with the following topology: A sequenag™, w™) converges tdP iff
g™ -0 or m(w™)— 0.
A sequencés™, w™) converges tgg, w) if, and only if,

w™ — w (digitwise) and B™Wx(w™) - Br(w).
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We will describe in Section 7 the mappirg— ¢, from Q to the set of normalized
positive harmonic functions ofiF.
We are in a position now to state the main result of the paper.

Theorem 3.2 The mapw +— ¢, is @ homeomorphism of the spa@eonto the Martin
boundary of the Young-Fibonacci lattice. Consequently, for each probability measure M
on €, the integral

pv) = f Po(VMdw), veYF (3.9)
Q

provides a hormalized, non-negative harmonic function on the Young-Fibonacci léRice
Conversely, every such function admits an integral representation with respect to a measure
M on 2 (which may not be unigue).

In general, for all differential posets, we show that there is a flow

(t, ) = Ci(p)

on [0, 1] x H with the properties

Ci(Cs(p)) = Cis(p) and Colp) = ¢p. (3.10)

For the Young-Fibonacci lattice, one Hag¢s,1,) = Cip,» andCi(¢p) = gp. In particular,
the flow onH preserves the Martin boundaryt is not clear whether this is a general
phenomenon for differential posets.

We have not yet been able to characterize the extreme points within the Martin boundary
of YF. In a number of similar examples, for instance the Young lattice, all elements of the
Martin boundary are extreme points.

4. Harmonic functions on differential posets
The Young-Fibonacci lattice is an example of a differential poset. In this section, we

introduce some general constructions for harmonic functions on a differential poset. Later
on in Section 7 we use the construction to obtain the Martin kernel of the §f&ph

Type | harmonic functions

In this subsection we don't need any special assumptions on the branching diaigram
Consider an infinite path

t = (vo,v1,...,0n,...)
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inT. For each vertex € I the sequencgd(u, vn)}3, is weakly increasing, and we shall
use the notation

d(u,t) = nIim d(u, vn). (4.2)
Note thatd(u, t) = d(u, s) if the sequences s coincide eventually.

Lemma 4.1 The following conditions are equivalent for a path tIin
(i) All but finitely many vertices, in the path t have a single immediate predecessor
Un—1.
(i) dd,t) < oo.
(i) d(u,t) < oo forallu eT.
(iv) There are only finitely many paths which eventually coincide with t.

Proof: ltis clearthad(d, vh_1) = d(O, vy) iff v,_1 is the only predecessor of. Since
d(u,t) <d(d,t) forallu e T, we have(i) — (ii) — (iii) — (i). The number of paths
s € T, equivalent td is exactlyd([1, t). O

In casel’ =Y is the Young lattice, there are only two paths (i.e. Young tableaux)
satisfying these conditions:= ((2), ..., (n),...) andt = ((1), ..., (1"),...). In case of
Young-Fibonacci lattice there are countably many paths satisfying the conditions of Lemma
4.1. The vertices of such a path eventually take the fogre= 1"""v, n > m, for some
Fibonacci wordv of rankm. Hence, the equivalence class of eventually coinciding paths
in YFF with the properties of Lemma 4.1 can be labelled by infinite words in the alphabet
{2, 1} with only finite number of 2's. We denote the set of such words"a§H.

Proposition 4.2 Assume that a path t il satisfies the conditions of Lemma. Then

d(v,1)
dad,t)’

p(v) = 4.2)

is a positive normalized harmonic function bn

Proof: Sinced(v,t) = Zwm]wd(w,t), the functiong; is harmonic. Alsog;(v) > 0
forallv e I', andg (0) = 1. O

We say that these harmonic functions afdypel, since the correspondingF-algebra
traces are traces of finite-dimensional irreducible representations (type | factor-representa-
tions). It is clear that all the harmonic functions of type | are indecomposable.

Plancherel harmonic function

Let us assume now that the posets differentialin the sense of [11] or, equivalently, is
a'Y-graph in the terminology of [3] or aelf-dual graphin that of [4]. The properties of
differential posets which we need are surveyed in the Appendix.
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Proposition 4.3 The function

d@,
oo =" per = (43)

is a positive normalized harmonic function on the differential pdset
Proof: This follows directly from (A.2.1) in the Appendix. m|

Note that if" = Y is the Young lattice, the functiopp corresponds to the Plancherel
measure of the infinite symmetric group (cf. [7]).

Contraction of harmonic functions on a differential poset

Assume that is a differential poset. We shall show that for any harmonic functitimere
is a family of affine transformations, with one real parametazonnecting the Plancherel
functiongp to ¢.

Proposition 4.4 For 0 < t < 1 and a harmonic functiog, define a function G¢) on
the set of vertices of the differential po$eby the formula

n ‘L'k(l _ .L,)nfk

Co =) T

k=0

> eWdu,v), n=ol. (4.4)

Jul=k
Then G () is a positive normalized harmonic function, and the map- C, (¢) is affine.

Proof: We introduce the notation

S, 9) =Y e du,v). (4.5)

Jul=k
First we observe the identity
Y S, 9) =S, 9) + (N —K+1) S, 9),
wiv Sw

which is obtained from a straightforward computation using (A.2.3) from the Appendix,
and the harmonic property (3.1) of the functipnFrom this we derive that

n+1 ‘ck(l _ r)”’kH

Y Cpw) = Y Zm&(w,w)

wiv S w wv,/w k=0
n+1 ‘[k(l o .L.)nkarl n ‘[k(l o .L.)nkarl
= kX:; m&—l(v, ®) + kX:(; Wsk(v, ®)
=1 C (@) +(1-1) Clp)(v)

= C: (@) (V). (4.6)
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This shows tha€, (¢) is harmonic. Itis easy to see that(¢) is normalized and positive,
and that the map — C;(¢) is affine. O

Remarks (a) The semigroup property hold€; (Cs(¢)) = Cst(¢); (b) Co(p) = ¢p, for
all ¢, andCi(¢p) = gp forallt, 0 <t < 1; (c) C1(p) = ¢. These statements can be
verified by straightforward computations.

Example Let ¢ denote the indecomposable harmonic function on the Young lattice with
the Thoma parametels; 8; y), see [7] for definitions. Then the functidy (¢) is also
indecomposable, with the Thoma parameters t8; 1 — (1 — y)).

Central measures and contractions

Recall (see [7]) that for any harmonic functipron T there is acentral measure Mon the
spaceT of paths ofl", determined by its level distributions

MZ(v) =d(@,v) pw), veTh 4.7)
In particular,y”, .. Mq(v) = 1 foralln.
There is a simple probabilistic description of the central measure corresponding to a
harmonic function on a differential poset obtained by the contraction of Proposition 4.4.
Define a random vertex € ', by the following procedure:

(@) Choose arandoky 0 < k < n with the binomial distribution

b(k) = <E>rk(l — )"k (4.8)

(b) Choose a random vertexe 'y with probability
My (u) = d(0, we(u) (4.9)
(c) Start a random walk at the vertaxwith the Plancherel transition probabilities

ddd,y)

Py = DA% IX|=r, X 7Yy. (4.10)

Let v denote the vertex at which the random walk first hitsritle level setl",,. We denote
by M{"*’ the distribution of the random vertex

Proposition4.5 The distribution M’ is the n’th level distribution of the central measure
corresponding to the harmonic function ):

M9 (v) = d(0, v) C, () (v). (4.11)
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Proof: It follows from (A.2.1) that (4.10) is a probability distribution. By Lemma A.3.2,
the probability to hitl", at the vertex, starting the Plancherel walk ate Ty, is

k! d(u, v)d(d, v)
) = — 7 4.12
PU.v) = TR (4.12)
The Proposition now follows from the definition of the contractidfn(e) written in the
form

Ce(@)()d(T,v) = Y b(k) Y M{ () p(u, v). (4.13)
k=0

uelk

O

Example LetT" = Y be the Young lattice and lét = ((1), (2),..., (n),...) be the
one-row Young tableau. Then the distribution (4.9) is trivial, and the procedure reduces to
choosing a random row diagrak) with the distribution (4.8) and applying the Plancherel
growth process until the diagram gaimboxes.

5. Okada clone of the symmetric function ring

In this Section we introduce the Okada variant of the symmetric function algebra, and its two
bases analogous to the Schur function basis and the power sum basis. The Young-Fibonacci
lattice arises in a Pieri-type formula for the first basis.

Therings R and R

Let R=R < X,Y > denote the ring of all polynomials in two non-commuting variables
X, Y. We endowR with a structure of graded rin@® = @, R,, by declaring the degrees
of variables to be de}f = 1, degY = 2. For each word

v =1k21%1 .. k1% ¢ YR, (5.1)
let h, denote the monomial
h, = XKy Xk ... xkery xk (5.2)

ThenR, is aR-vector space with thé, (Fibonacci number) monomialg, as a basis.

We let R, = MRH denote the inductive limit of linear spac&, with respect to
imbeddingsQ — Q X. Equivalently,R,, = R/(X — 1) is the quotient oR by the principal
leftideal generated b¥X — 1. Linear functionals ok, are identified with linear functionals
¢ on R which satisfyp(f) = ¢(fX). The ring R, has a similar ofe for the Young-
Fibonacci lattice and the Okada algelffaas the ring of symmetric functions has for the
Young lattice and the group algebra of the infinite symmetric gi®up(see [8]).
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Non-commutative Jacobi determinants

The following definition is based on a remark which appeared in the preprint version of [9].
We consider two non-commutativeth order determinants

XY O 0 .--- 0O
1 XY O --- 0 O
P,=/0 1 X Y ... 0 O (5.3)
0O 0 0 o0 - 1 X
and
Y Y O O 0 O
Y O 0 0
Qn:1=/0 1 X Y --- 0 0O}, (5.4)
0O 0o 0 0 --- 1 X

By definition, the non-commutative determinant is the expression

det(@;) = Y Sign(w) aw1 dw@2 * - Bwmn. (5.5)

webp

In other words, thé&-th factor of every summand is taken from thh column. Note that
polynomials (5.3), (5.4) are homogeneous elemeni& degP,, = nanddedQ,_1 = n+1.

Following Okada, we define elements®Rfwhich we callOkada-Schur polynomiatsr
s-functions) by the products

S =Py Qi -+~ Q. v=142...142 1% ¢ YR, (5.6)

(cf. [9], Proposition 3.5). The polynomiats for |v| = n are homogeneous of degreg
and form a basis of the linear spaBg. We define a scalar produ¢t, .) on the spacd®
by declaring thes-basis to be orthonormal.

The branching of Okada-Schur functions
We will use the formulae

Pry1 =P X = Po1Y, n>1, (5.7)
Qni1= QnX = Qn1Y, n=>1, (5.8)



THE MARTIN BOUNDARY OF THE YOUNG-FIBONACCI LATTICE 31

obtained by decomposing the determinants (5.3), (5.4) along the last column. The first
identity is also true fon = 0, assuming®_; = 0. Then = 0 case of the second identity
(5.8) can be written in the form

QoX = XQo + Q1. (5.9)

One can think of (5.9) as of a commutation rule for passtngver a factor of typeQo. It
is clear from (5.9) that

QFX=XQF+> Q" QuQy ™ (5.10)

i=1

It will be convenient to rewrite (5.7), (5.8) in a form similar to (5.9):

PaX = Pni1 + Pa-1Qo. (5.11)
QnX = Qn+1+ Qn-1Qo, (5.12)

The following formulae are direct consequences of (5.10)—(5.12):

PaQTX =Y PaQl " Q1Qp + Par1QF + Paoa QP (5.13)
i=0

QQIX =Y QnQF ' Q:Qh+ Qu1QF + Qua QP (5.14)
i=0

It is understood in (5.13), (5.14) that> 1.
The formulae (5.10), (5.13) and (5.14) imply

Theorem 5.1 (Okada) For everyw € YIF, the product of the Okada-Schur determinant
s, by X from the right hand side can be written as

S, X = Z Sy. (5.15)
viw v

This theorem says that the branching of Okadianctions reproduces the branching law
for the Young-Fibonacci lattice. In the following statemdudtjs the “creation operator”
on Fun(YF), which is defined in the Appendix, (A.1.1).

Corollary 5.2 The assignmer® : v — s, extends to a linear isomorphism

O : &, FunYF, — R

taking Fun(YF,) to R, and satisfying® o U (f) = ©(f)X.
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Because of this, we will sometimes write( f) instead off X for f € R, andD(f) for
® o Do®1(f), see (A.1.2) for the definition db.

Corollary 5.3 There exist one-to-one correspondences between:
(a) Non-negative, normalized harmonic functionsYa;
(b) Linear functionalsy on Fun(YF) satisfying

polU =g, o) =1, and 0(8,) =0 forv e YF;
(c) Linear functionalsy on R satisfying
o(f)y=¢(fX) forall f e R, (1) =1, and o(s,) >0, forveYF;
(d) Linear functionals on R = lim R, satisfying

() =1 and ¢(§,) >0, forveYF,

wheres, denotes the image of §1 R.;
(e) Traces of the Okada algebta,..

We refer to linear functionalkg on R satisfyinge(s,) > 0 aspositivelinear functionals.
The Okada p-functions

Following Okada [9], we introduce another family of homogeneous polynomials, labelled
by Fibonacci word® € YT,

py = (X2 — (ko + 2) X oY) - (XK1F2 — (kg + 2) XK1Y XK, (5.16)
where
v =151 . 21k
S —— ~——

One can check thdtp, },=n is aQ-basis ofR,. Two important properties of thp-basis
which were found by Okada are:

U(p,) = p,X=pn and D(py) =0 (5.17)

Since the images g, and of py, in R, are the same, we can conveniently denote the
image bypi~y. The family of p,, wherev ranges over YT, is a basis oR.

Transition matrix from s-basis to p-basis

We denote the transition matrix relating the two baggg and{s,} by X{;; thus

pu= Y Xis. U veYF,. (5.18)

v/=n
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The coefficientsX}, are analogous to the character matrix of the symmetric gepu hey
were described recurrently in [9], Section 5, as follows:

Xh=Xi X=X X5 =—Xj, (5.19)
X3, = (M) + DXy XP, =0, (5.20)

wherem(u) is defined in (6.2) below. An explicit product expression for ¥jpwill be
given in the next section.

6. A product formula for Okada characters

In this Section we improve Okada’s description of the character m({fito obtain the
product formula (6.11) and its consequences.

Some notation
We recall some notation from [9] which will be used below. bdie a Fibonacci word:

v =1k21k1 . kg ¢ YR,

Then:
€(v) = 41 if the rightmost digit of is 1, ande (v) = —1 otherwise (6.1)
m(v) = k; is the number of 1’s at the left end of (6.2)
The rank ofv, denotedv|, is the sum of the digits of. (6.3)
If v = v,2v5, then thepositionof the indicated 2 i$v,| + 1. (6.4)

t—1
d(v) = H(ko + -4+ k +2i +1). In other wordsd(v) is the product
i=0

of the positions of 2's inv. It is easy to check by induction that

d(v) =d(@, v). (6.5)

zZ(v) = k! (ke—1 + 2)ki—1! - - - (ko + 2)ko!. (6.6)
Theblock ranksof v are the numberg + 2, ky + 2, ..., ki—1 + 2, k;. (6.7)
Theinverse block rankef v arek; + 2, ki_1 + 2, ..., ki + 2, k. (6.8)
Consider a sequence= (n, ..., N1, Np) of positive integers witth " n; = n. We call a

word v € Y, n-splittable if it can be written as a concatenation
v=n1 ---v1v9, Wherejyj|=n; fori =0,1,...,t. (6.8)

Lemma6.1 Letn = (n, ..., Ny, Ng) be the sequence of block ranks in a Fibonacci word
u. Then
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(i) Xy # 0if, and only if, the word is n-splittable.
(i) If v = v ---vyvy is then-splitting, then

Xy = d(v)g(wt-1) - - - 9(vo), (6.9)

where

+dw’), if w=1w’

Proof: This is a direct consequence of Okada’s recurrence relations cited in the previous
section. 0

Proposition 6.2 Letu, v € YF,. Letéy, 82, ..., dm be the positions d?’s in the word u,

and putdn,1 = oco. Letdy, dy, ..., d; the positions of’s in the wordv. Then
m
XU = 1‘[ 1‘[ (ds — (8 + 1)). (6.11)
j:15j§d5<5j+1

Proof: This can also be derived directly from Okada’s recurrence relations, or from the
previous lemma. Note in particular th¥f, = 0 if, and only if,ds = §; 4+ 1 for somes and
j; this is the case if, and only if, does not split according to the block ranksuof O

We definef(ﬁ = d(v)‘lxg; from Proposition 6.2 and the dimension formula (6.5), we
have the expression

Xy — ﬁ I (1— ‘Si(;sr 1) (6.12)

j=l§j§ds<5j+1

The inverse transition matrix

According to [9], Proposition 5.3, the inverse formula to Eq. (5.18) can be written in the
form

Pu
= E X — YFy. 6.13
SU u Z(u)’ Ve n ( )

[ul=n

We will give a description of a columi;, for a fixedwv.

Lemma 6.3 Letn = (n,..., Ny, Ng) be the sequence of inverse block ranks=nk; +
2,....,n1 =k +2,ng=kyinawordv = (142 ...1%21%) € YF,. Then
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(i) Xy # 0if, and only if, the word u igi-splittable.
(i) fu =u¢---usug is then-splitting for u, then

Xt = f1fp o fy, (6.14)
where
fi= {1+m(uj—1"'U1Uo), if e(uj) = +1. (6.15)

Here mlu) = m denotes the number b6 at the left end of u= 1M2u'.

Proof: This is another corollary of Okada’s recurrence relations cited in Section3.

7. The Martin boundary of the Young-Fibonacci lattice

In this section, we examine certain elements of the Martin boundary of the Young-Fibonacci
lattice YF. Ultimately we will show that the harmonic functions listed here comprise the
entire Martin boundary.

It will be useful for us to evaluate normalized positive linear functionals on theRigg
(corresponding to normalized positive harmonic function&/@) on the basi§p,}. The
first result in this direction is the evaluation of the Plancherel functional on these basis
elements.

Proposition 7.1 ¢p(py) = 0 for all Fibonacci words u containing at least o2e

Proof: It follows from the definition of the Plancherel harmonic functipp that for
w € YF,,

Z @p(v) = Npp(w).
vy, w

Therefore, for allf € Ry,
ep(Df) =ngp(f).

If u=1°2v, and|2v| = n, then

1
ep(Pu) = @p(P2v) = - @p(Dp2y) =0,
sinceDpy, = 0, by (5.17). O

For each wordy € YF,, the path(w, 1w, 12w, ...) clearly satisfies the conditions of
Proposition 4.1, and therefore there is a type | harmonic functiotiibdefined by

— iim d(v, I¥w)
Ww(v) - K 00 d(D, lkw)
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Proposition 7.2 Letw € YF,, and letd, do, ... be the positions d?'s in w. Letu be a

word in1*°YTF containing at least ong, and letsy, &, . . ., 8m be the positions d's in u.
Then:
m
S +1
ww<pu)=]j[. H (1—T). (7.1)
i=18<dj <811 J

Proof: Letu = 1%®ug, whereug € YF,. Choose, s > 1 such that1Sw| = |1"up|. Then
Vo (Pw) = (L) " (Prrug, Sisu)
= (d<15w>)‘1< D XirwSe, 515w>
= (d(X*w) X{.
Thus the result follows from Eg. (6.12). O

Next we describe some harmonic functions which arise from summable infinite words.
Given a summable infinite wordl, define a linear functional on the ririgy, by the require-
mentsy,, (1) = 1 and

sow(pu)=ﬁ I (1_&; ) (7.3)

=16 <dj<éi11 J

whereu € 1°YF. As usualéy, ..., m are the positions of 2’s in, and thed;’s are the
positions of 2's inw. Itis evident thatp,, (puX) = ¢y, (Pw) = ¢w (Pu), SO thaty,, is in fact
a functional onR,,.

Proposition 7.3 If w is a summable infinite Fibonacci word, ther is a normalized
positive linear functional on R, so corresponds to a normalized positive harmonic function
onYF.

Proof: Only the positivity needs to be verified. Lef, be the finite word consisting of the
rightmostn digits of w. It follows from the product formula for the normalized characters

Y, thate, (py) = nIim Y, (Pu). Therefore als@,, (s,) = nIim Y, (Sy) > 0. O

Given a summable infinite Fibonacci wardand 0< 8 < 1, we can define the harmonic
functiongg,,, by contraction ofp,,, namely,pg ., = Cg(¢py).

Foru € 1°YF, we let|ju|| denote theessential rankof u, namely|ju||l= 1 + §, whereé
is the position of the leftmost 2 in, and|ju||= 0 foru = 1.

Proposition 7.4 Letw be a summable infinite word arl< 8 < 1. Letu e 1*°YF.
Then

op.0(Pw) = Mo, (pu). (7.4)
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Proof: The casal = 1% is trivial. Letu = 1*°ug, where||u||= |ug| = n > 0. Then for
any linear functionap on R, one hasp(py) = ¢(py,). For 0< k < n, define

kn = Z Z $uw(v) d(v, X)Sx.

lv|=k |x|=n
In particular,
Avn= Y pu(®)s,.
lv|=n

Note thatU AY, ;| = AZ,, whenk < n — 1. It follows from the definitions ofy ., (cf.
(4.4)) and of A that

LKA -p" kL,
ppw(f) = <k2_; WAk,n» f>,

for f in R,, where(-, -) denotes the inner product ddwith respect to which the Okada
s-functions form an orthonormal basis. Recall that the operddoaesd D are conjugate
with respect to this inner product. Consequently,

_ [N BaA-p
¢p.w(Puo) = <k2_(:) Tk pU0>
n—1 gk n—k
_ B(1—pB) » o
= <g ok A Puo> +(B" At Puo)
= ('BnAﬁ,n’ on) = ﬂn‘Pw(puo),
since(U AY 1. Pu,) = (AY_1. Dpy,) = 0and(Ay . f) = ¢, (f) for f in R,. O

Corollary 7.5 The functionalsy ,, for 8 > 0andw summable are pairwise distinct, and
different from the Plancherel functiongp.

Proof: Suppose thab is a summable word and thatis the set of positions of 2's iw.
We set

k
T (w) = ) ]‘[ (1— E)'
jidj>k-1 I
Then for eackk > 2 andg > 0,
0p.u(Paz2) = Bi(w)

is zero if and only ifke A. In particulargg,, # ¢p, by Lemma 7.1, and moreover,
A\ {1} is determined by the sequence of valygs,(p.x-2), kK > 2. It is also clear
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thatgg ., (p2) = B%m2(w) is negative iff 1 A, hence the sef\ and therefore alsa are
determined by the valuess ,,(p21x), k > 0. Finally, 8 is determined by

o\ K
/3:<§0ﬂ,w(p21 )) ’

(w)

foranyk ¢ A. O

Proposition 7.6 For each summable infinite Fibonacci wosdand each3, 0 < 8 < 1,
there exists a sequene€” of finite Fibonacci words such thag , = nIim Yym.
— 00

Proof: If B = 1, putr, = 0; if 8 = 0, putr, = n%, and if 0 < B < 1, choose the
sequence, so that

T 1-— p2
lim = = p
n—oo N ,32

Then, in every case,

2

lim
n—oo N4y

Let wy, be the finite word consisting of the rightmasdigits of w, puts, = 2n+ 1 — |wy|,
and

™ = 2 1Sy,.

Fixu = 1®°ug € 1*°YF andletn > |ug|. Suppose thaiy has 2’s at positions, &, ..., 5m,
and putk =||ul|= 8m + 1. Using the product formula faf,~, one obtains

K k K
Yrym (Pu) = 1;Z’wn(pu)|:<1_ 2n+2)<1_ 2n+4> <1_ 2n+2rn)]'

The first factor converges t9, (py), so it suffices, by Proposition 7.4, to show that the
second factor converges 8. The second factor reduces to

I(N+rn—k/2+ DN+ 1)
rn+1—-k/2Tr(n+ry+1)°

Using the well-known fact that

lim pp-al T _
n—o00 I'(n+b)

9
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one obtains that the ratio of gamma functions is asymptotic to

n k/2
n+rn, ’

which, by our choice of,, converges t@, as desired. O

This proposition shows that as well as all of the harmonic functiops ,, are contained
in the Martin boundary of the Young-Fibonacci lattice. In the following sections, we will
show that these harmonic functions make up the entire Martin boundary.

8. Regularity conditions

In this Section we obtain a simple criterion for a sequence of characters of finite dimensional
Okada algebras to converge to a character of the limiting infinite dimensional algebra
F = lim Fn. Using this criterion, theegularity conditions we show that the harmonic
functions provided by the formulae (7.3) and (7.4) make up the entire Martin boundary
of the Young-Fibonacci graptiF. Technically, it is more convenient to work with linear
functionals on the spacdg, and their limits inR,, = I'ﬂ R,, rather than with traces on
F. As it was already explained in Section 5, there is a natural one-to-one correspondence
between traces of Okada algelffg and positive linear functionals on the spage

In this Section we shall use the following elementary inequalities:

b-5)<-)

for every pair of positive integer numbets> 2 andk;
1\ K
1--— 1-——|, 8.2
(--5) =(-3) ®2)

) ()
T e

and

Q=

1<(1

=

for every pair of integerd > k. We omit the straightforward proofs of these inequalities.

(8.3)

Qlx

Convergence to the Plancherel measure

We first examine the important particular case of convergence to the Plancherel character
¢p.
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Definition We define the functiomr of a finite or summable word by
1
jidj>2 I

where thel; are the positions of the 2's in We also recall that for ea¢h> 2 the function
7 was defined as

k
ﬂk(U) = l_[ (1_ d—)
I

jidj=k-1

Note that ifu = 1°21%~2, andv is a summable word, thep,(py) = m(v), according to
Eq. (7.3).

Proposition 8.1 The following properties of a sequengg € YF, n = 1,2,..., are
equivalent:

(i) The normalized characteng,, converge to the Plancherel character, i.e.,

nIim Y, (Pu) = @p(pu), for each ue 1°YF;
(i) r!im ak(wn) =0, forevery k=2,3,...;
(iii) rI1im 7 (wp) = 0.
The proof is based on the following lemmas.

Lemma 8.2 For every finite wordv € YT, and for every ue 1*°YF of essential rank
k =]ull,

¥ (P < ()], (8.4)

Proof: Letd, ..., 8y indicate the positions of 2's in the wotd and letdy, . . ., d, be the
positions of 2's inv. The essential rank af can be written ak =||u||= 6y + 1, so that

k
(V) = ]_[ (1— E)'

j:dj>0m J
By the product formula,

m—1
el =1m) [T ]

i=1 & de <8it1

1—

6 +1
d

< |m()l,

since none of the factors in the product exceed 1. Infact (§ + 1)/d| = 1/5 < 1f
d=45,1-(+1/d=0ifd=§+1,and0<1-(§+1)/d < 1ifd >§+ 1. O
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Lemma 8.3 Foreachk=2,3,...,and for every word € YT,
k()] < (kK ().

Proof: It follows from (8.1) that

k
m@l = ] =11 (1_5)5 I (1_i>
dj>k+1 d; d; >k+1 d;

dj>k-1

1 —k
:7‘[(1})k 1_[ (1—5) .
J

2<d;=<k

k
1— —
d;

Since(1 — 1/d)~! > 1 ford > 2, the last product can be estimated as

—k —k
M(-2) (32 ) e
224 d, 2 3 k

and the lemma follows. O
Lemma 8.4 If di(v) # 2, then|mo(v)| > m(v)4, and if dy(v) = 2, then|m3(v)| > 7 (v)°.

Proof: We apply the inequality (8.2). H;(v) > 3, then

2 1\* A
|m2(v)| = ]_[ (1—5)2 ]_[ (1_E> =7 (v)
jdj>3 I j:dj>3 J

by the inequality (8.2). 18, (v) = 1, then(1—-2/d;) = —1, and sincel, > 3, the inequality
holds in this case as well.
In case ofd;(v) = 2 we haved,(v) > 4, hence

|7T3(v)|=§ H <1—d—j>; |7T(v)|:E 1_[ (1_d_j>’

j Zdj >4 J Zdj >4
so that the second inequality of Lemma also follows from (8.2). O

Proof Proposition 8.1: The implication (i)=- (ii) is trivial, sincemy(v) = ¥, (py) IS a
particular character value far= 12142, The statement (iii) follows from (i) by Lemma
8.4. In fact, we can split the initial sequenfae,} into two subsequencegy;} and{w;},
in such a way thatl; (w;,) = 2 andd;(w;;) # 2. Then we derive from Lemma 8.4 that for
both subsequencesw,) — 0, and (iii) follows.

Now, (i) follows from (iii) by Lemma 8.3, and (ii) implies (i) by Lemma 8.2. O

General regularity conditions

We now find the conditions for a sequence of linear functionals on the spatesonverge
to a functional on the limiting spade,, = “ﬂ R,.
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Definition (Regularity of character sequences) 1{gtbe alinear functional on the graded
componentR, of the ring R = Q(X,Y), for eachn = 1,2, ..., and assume that the
sequence converges pointwise to a functignah the ringR, in the sense that

lim Y (PX™) = p(P) (8:5)

for everym € N and every polynomiaP € R,,. We call such a sequencggular.
Our goal in this Section is to characterize the set of regular sequences.

Definition (Convergence of words) Létv,} be a sequence of finite Fibonacci words, and
assume that the ranks,| tend to infinity asn — oco. We say thafw,} convergego an
infinite word w, iff the mth letterw,(m) of w, coincides with themth letterw(m) of the
limiting word w for almost alln (i.e., for all but finitely manyn’s), and for allm.

Let us recall that an infinite word with 2’s at positiongl;, ds, . .. is summabile, if, and
only if, the serieszcj’o:l 1/d; converges, or, equivalently, if the product

m(w) = H <1_d_1->>0

j:dj>2 J

converges.

Consider a sequenaey, wo, . . . of Fibonacci words converging to a summable infinite
word w. We denote byw;, the longest initial (rightmost) subword af, identical with the
corresponding segment of, and we call itstablepart of w,. The remaining part oiv,
will be denoted byw;,, and referred to asansientpart of wy,.

Definition (Regularity conditions) We say that a sequence of Fibonacci wogds Y,
satisfies regularity condition#f either one of the following two conditions holds:

@) lim 7 (wp) =0;
n—o0
or
(i) the sequencev, converges to a summable infinite ward and a strictly positive limit

p=m(w)™" lim 7(wn) > 0 (8.6)
exists.

Theorem 8.5 Assume that the regularity conditions hold for a sequence YIF,. Then
the character sequenag,, is regular. If the regularity condition (i) holds, then

nILmoo wwn (Q anm) = ¢p (Q)a
and if regularity condition (ii) holds, then

im ,, QX" = 95,(Q) ot
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for every polynomial ¢ Ry, m=1, 2,.... Conversely, if the character sequengg, is
regular, then the regularity conditions hold for the sequenges YIF,.

This theorem will follow from Proposition 8.1 and the following proposition:

Proposition 8.6 Assume that a sequenag, wy, ... of Fibonacci words converges to a
summable infinite word, and that there exists a limit

p=m(w)™" lim 7(wn). (8.8)
Then

me(w) ™t lim_m(wn) = B (8.9)
forevery k=2, 3, .... More generally,

lim 4, (pu) = B*0u(Pu) (8.10)

for every element & 1°YTF of essential ranku||= k.

Proof: Letmj, be the length of the stable part of the warg, and note thatn, — oo. In
the following ratio, the factors corresponding to 2's in the stable pait,afancel out,

n(wn)_ 1 1 -1
T(w) [1 <1_dj(wn)> [1 (1_dj(w)>’

j:dj(wn)>mp judj(w)>my

and a similar formula holds for the functional, k =2, 3, ...:

ml) T <1— X ) I1 (1— X )l (8.11)
m(w) dj @n) / }.g dw)) _

j:dj (wn)>my

Consider the ratio

( (wn) /7 (W) _ I (1 — 1/d; (wn))* I (1— k/d;(w))
(i (wn) /(W) (L= k/djWn) | g o, (1= 1/dj (@)

j:dj (wn)>mp

The second product in the right hand side is a tail of the converging infinite product (since
the wordw is summable), hence converges to 1nas oo. By (8.3), the first product can
also be estimated by a tail of a converging infinite product,

(1— 1/d; (wn)) (3)
1= ] (= K/d; (wn) [1 (”(d;—k)z ’

j:dj (wn)>my jidj>my

hence converges to 1, as well.
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The proof of the formula (8.10) is only different in the way that the ratio in the left hand
side of (8.11) should be replaced t#y;, (pu)/®w(Pu)- O

Proof of the Theorem 8.5: It follows directly from Propositions 8.1 and 8.6 that the
regularity conditions for a sequenee, wo, ... imply convergence of functionalg,,

to the Plancherel charactep in case (i), and to the charactgg ., in case (ii). By the
Corollary 7.5 we know that the functiogg ,, are pairwise distinct, and also different from
the Plancherel functionalp.

Let us now assume that the sequetige converges to a limiting functiongl. We can
choose a subsequengg, in such a way that the corresponding sequangeconverges
digitwise to an infinite wordw. If w is not summable, the@ = ¢p coincides with the
Plancherel functional, and the part (i) of the regularity conditions holds. Otherwise, we can
also assume that the limit (8.6) exists, and hepce ¢, by Proposition 8.6. Since the
parametep and the wordw can be restored, by Corollary 7.5, from the limiting functional
¢, the sequence, cannot have subsequences converging to different limits, nor can the
sequencer (w,) have subsequences converging to different limits. It follows, that the reg-
ularity conditions are necessary. The Theorem is proved. O

Finally, we prove Theorem 3.2, which states that the map
(:85 w)'_)(pﬂ,w’ P'_)‘pP

is a homeomorphism a onto the Martin boundary of F, whereQ is the space defined
near the end of Section 3.

Proof of Theorem 3.2;: It follows from Corollary 7.5 that the map is an injection @f
into the Martin boundary, and from Theorem 8.5 that the map is surjective. Furthermore,
the proof that the map is a homeomorphism is a straightforward variation of the proof of
the regularity statement, Theorem 8.5. O

9. Concluding remarks

The Young-Fibonacci lattice, along with the Young lattice, are the mostinteresting examples
of differential posets. There is a considerable similarity between the two graphs, as well as
a few severe distinctions.

Both lattices arise as Bratteli diagrams of increasing families of finite dimensional
semisimple matrix algebras, i.e., group algebras of symmetric groups in case of Young
lattice, and Okada algebras in case of Young-Fibonacci graph. For every Bratteli diagram,
there is a problem of describing the traces of the corresponding inductive limit algebra,
which is well-known to be intimately related to the Martin boundary construction for the
graph. The relevant fact is that indecomposable positive harmonic functions, which are
in one-to-one correspondence with the indecomposable traces, form a part of the Martin
boundary.

For the Young lattice the Martin boundary has been known for several decades, and
all of the harmonic functions in the boundary are known to be indecomposable (extreme
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points). In this paper we have found the Martin boundary for the Young-Fibonacci lattice.
Unfortunately, we still do not know which harmonic functions in the boundary are decom-
posable (if any). The method employed to prove indecomposability of the elements of the
Martin boundary of the Young lattice can not be applied to Young-Fibonacci lattice, since
the Kp-functor ring R of the limiting Okada algebr#& is not commutative, as it is in case
of the group algebra of the infinite symmetric group (in this case it can be identified with
the symmetric function ring).

Another natural problem related to Okada algebras is to find all non-negative Markov
traces. We plan to address this problem in another paper.

Appendix

In this appendix, we survey a few properties of differential posets introduced by R. Stanley
in[11], and by S. Fomin (under another name) [3]. Further generalizations were introduced
in [12-13], and [4-5].

A.1l. Definitions
A graded poseF = | o, 'y is calledbranching diagran{cf. [7]), if

(B1) The sefl”, of elements of rank is finite foralln =0, 1, ...
(B2) There is a unigue minimal elemente I'g
(B3) There are no maximal elementslin

One can consider a branching diagram as an extended phase space of a non-stationary
Markov chain ', being the set of admissible states at the momaeartd covering relations
indicating the possible transitions.

We denote the rank of a vertexe I',, by |v| = n, and the number of saturated chains in
an interval [1, v] C T by d(u, v).

Following [11], we define an-differential posets a branching diagramsatisfying two
conditions:

(D1) If u # v in T then the number of elements coveredibgndv is the same as the
number of elements covering battandv.
(D2) If v € T covers exactlk elements, then is covered by exactlig +r elements of".

Note that the number of elements in a differential poset covering two distinct elements
can be at most 1. In this paper we focus on 1-differential posets.

For any branching diagrami one can define two linear operators in the vector space
Fun(T") of functions onl" with coefficients inR: the creation operator

UthHoy = Y f), (A.1.1)

wiv,/Sw
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and theannihilation operator

D(Hw) = Y f). (A.1.2)
uu v

Identifying finitely supported functions dn with formal linear combinations of points of
" and vertices of™ with the delta functions at the vertices, one can write instead:

Uv= )" w, (A.1.7)
wiv,/Sw

Dv= > u (A.1.2)
uu v

One can characterizedifferential posets as branching diagrams for which the operators
U, D satisfy the Weyl identitpU —UD =r |.

A.2. Some properties of differential posets

We review below only a few identities we need in the main part of the paper. For a
general algebraic theory of differential posets see [11-13], [3-5]. Assume hefgithat
1-differential poset.

The first formula is well known:

> d@.w)=n+1Dd(@,v). vel. (A.2.1)

wiv Sw

Proof: Letd, = ZIU‘:nd(D, v)v € Funl'). ThenU d, = d,;; and (A.2.1) can be
written asD dny1 = (n + 1) d,. This s trivial forn = 0, and assumin® d, = nd,_; we
obtain

Ddy,1=DUd,=UDdy+dy=nUd,_1+d, = (n+1)dp. O
Our next result is a generalization of (A.2.1).

LemmaA.2.2 LetI be al-differential poset, and let u«< v be any vertices of ranks
lul =K, |v] = n. Then

D duw) = Y dx,v) =N —k+1) du, v). (A.2.3)
wiv Sw X:X,u

Proof: Using the notatiord,(u) = Zm:n d(u, v)v, one can easily see thtd,(u) =
dnhy1(u) and that (A.2.3) can be rewritten in the form

D dhis(W) = Y ch() + (N —k+ 1) dn(u).
X:X,u
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Forn = k — 1 the formula is true by the definition @. By induction,
D dhy1(u) = DU dn(u) = U D dn(u) + dn(u)

=U ( D a0+ (=K dnl(u)> + Oa(U)

X:X /U
= D th()+ (N —k+ 1) dn(W).
X:X,/U
Note that (A.2.3) specializes to (A.2.1) in cdse- 0,u = [. |

A.3. Plancherel transition probabilities on a differential poset
It follows from (A.2.1) that the numbers

dd, w)

m; v / w, n= |U|, (A31)

w =

as transition probabilities of a Markov chain &h Generalizing the terminology used
in the particular example of Young lattice (see [7]), we call (A.R1gncherel transition
probabilities

Lemma A.3.2 Letu < v be vertices of rankfu| = k, |v| = n in a 1-differential poset
. Then the Plancherel probability(p, v) to reach (by any path) the vertexstarting with
uis

k! d(u, v)d(d, v)

Proof: We have to check that’ p(u, v) p,.» = p(U, w). Since)_, d(u, v) d(v, w) =
d(u, w), we obtain

d(d, v) dd, w) k! d(u, w)d(d, w)
d d =
nt I;ﬂ ao.u Ve e T el dow
and the Lemma follows. O
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