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Abstract. We consider a finite subgrou®, of the groupO(N) of orthogonal matrices, whefd = 2", n =
1,2.... This group was defined in [7]. We use it in this paper to construct spherical desighsiim@nsional
Euclidean spacBN. We prove that representations of the grépon spaces of harmonic polynomials of degrees
1, 2 and 3 are irreducible. This and the earlier results [1-3] imply that the @¢hi' of any initial pointx on

the spheresy_1 is a 7-design in the Euclidean space of dimensian 2
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1. Introduction

A sphericalt-design inN-dimensional Euclidean spa& is a finite nonempty seX of

points on the unit spher®y_1 = {X = (X1, ..., Xn) € RV [ X2 + ... + xZ = 1} such that
1 1
fX)dx = — f(X)
[Sv-1l Jsus [X] ;

for all polynomialsf (x) of degree at mogstwhere|Sy_;| denotes the surface area of the
Sv-1. Account of basic properties of spheritadlesigns may be found in [1].

Let Hom() be the space of all homogenedNsvariable polynomials of degrdeover
R and let Harmk) be the space of all homogeneous harmonic polynomials of dégree
i.ze. the space of all homogeneous polynomials y(x) satisfying the potential equation
37}’ +- 4 37%’ = 0. The dimension of Harrk} is (N~ — (N7*53) [5, 6]. In what follows
we assume thatl > 2.

The space Harmi] is an irreducible invariant subspace of the representation of the
orthogonal groupO(N) on Homk). Speaking more precisely, the space Hingan be
represented as the direct sum:

Hom(k) = Harm(k) + Harmk — 2)|x|? + - - - + Harm(k — 2)|x|?, | = [;}

This material is based upon work supported by the U.S. Civilian Research Development under Award No RM-346
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Each term in this sum is an invariant irreducible subspace of the representa@ghdbn
Hom(), where|x| denotes the norm of the vectoand |x|? is used as a shorthand for the
polynomialx? + - - - + X2 [6, 7].

Since®y, is a subgroup of the group(N) the spaces Harth — 2j) are also invariant
spaces of the representation®f, on Homk) and they in turn can be decomposed into
direct sum of some nontrivial invariant subspaces.

Next we state some basic results, that will be useful in what follows.

Theorem A [2, Th. 6.10 and Th. 3.1], [3, Th. 1] Let G be a finite subgroup of the
group O(N) and letpg be a representation of G on Haxh. If all representationg; for
i =1,...,tareirreducible then for anx € Sy_1 the set

X={gx|ge G} C N1

is a spherical 2t-design.
If the set X in addition satisfi€s , _ f(x) = Ofor all f (x) € Harm(2t + 1), then X is
a spherical(2t + 1)-design.

In [7] we constructed a finite groubn, , which for p being an odd prime is a group of
p" x p"-matrices ovetC, and forp = 2 is a group of 2 x 2"-matrices oveR.

The groupx, p, p > 2, has an isomorphic image in a certain grcfupp of 2p" x 2p"-
matrices oveR [7]. The groupX, » has a remarkable subgro@p, of index 2 comprising
all matrices fromx, , with rational entries.

The order of the grou®,, is asymptoticallyc2"®+9 ¢ =1.38...,n — oo.

We used the grou®, to construct orbit code& (x') = ©,x with x = 01, where
01 =(1,0,...,0) (see [7]). The cardinality of the codé(o,) is asymptotically 238. ..,
2n+D/2 'y 00, and its Euclidean code distance is 1. The order of the stabilizer of the
pointoy in the group®,, is O(2"3+/2),

1. Definition and properties of the groupXi, LetF, be ap-element Galois field, let
f (x) € Fp[x] denotes the polynomial of the second degree, let

Et,p = diaglexp(2rif (0)/p), ..., exp2rif (p—1)/p)

be adiagonal matrix, where= +/—1, andIetA(s) = Ap(s) = |lw; || be aunitary symmet-
rical px pmatrix, wherea, b € Fp,s=1,2,..., p—1,andw$, = p~?exp2riabs/p).
Note, that(A(s))~! = A(—s). Consider a group

Z1p=(A0),Etpis=12...,p—1 f(x) € Fp[x], deg f(x) < 2),

generated by — 1 unitary matricesA(s) and p® diagonal matrice€  p.

Theorem B [7] The groupXy , is a finite group of ordet , where
1. o1,p = 4p*(p? — 1) whenever p= 3 mod 4

2. o1.p = 2p*(p? — 1) whenever p= 1 mod 4

3. o1.p = 2* whenever p= 2.
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The entries of the matrices B, , and in matrices of the grouR, , to be defined
later are complex numbers wheneyer> 2. There exists an isomorphic mappingof
the groupZ, , to the groupZ, , of orthogonal 2" x 2p" matrices oveR. There also
exists a mapping from U "~ to the spheres?®'~* such that for any matriP € %,
we haver(x — xP) = X (p(X) — p(X)¢(P)), wherex is the usual metric ifC?" and A’
is the Euclidean metric ifR?P". Thus, the map® and p are isomorphic and isometric
transformations of codes an®" ~* into codes org?"" 1.

2. Definition of the group X, p,n > 1 LetD = ||d; j|| be an x n matrix over Galois
fieldFp, i.e.,D € My(Fp).

1. ByKer (D) we denote the linear space of zeroes of mdiriaver the field=,, i.e. the set
of all vectorsx in n-dimensional spacé,,)" such thatDx' = 0. By Im (D) we denote
the space spanned by columns of the malfrj¥.e.Im (D) = {Dx'; x € (Fp)"}.

2. LetD, R, T € My(Fp),a' € F',‘J andm = dim Ker(T). A p" x p" matrix C(D, R,
T,a) = |vapl,a b € (Fp)", over the complex numbers, i.e. matrix fradh: (C), is
defined by

Ua,b = 07
wheneverRa— Thb 4+ « # 0, and by

vap = p~"2exp2riaDb!/ p),

whenever
Ra—Tbh+a =0. Q)
LetUp = {a1,...,an} = (Fp)", N = p", be the set of all elements of the space

(Fp)", listed in the lexicographical order. We use the Sgtfor indexing rows and
columns of the matrice€ (D, R, T, «) in such a way that the entry in the intersection
of theith row and thejth colurTln is equal toy, o, - }
Note that the identity matri¥ in M (R) can be represented &= C(0, Q, Q, 0),

whereQ is an arbitrary nondegenerate matrixhiy (F). The matrixC(0, E, E, —a) =
I', is a substitution matrix corresponding to the translation x — X + « in the space
(Fp)".

3. Denote byB(D, R, T, o) a matrixC(D, R, T, @) such that the matriceB, R, T and
the vectorr satisfy the following two conditions

a. Im(R) = Im(T) anda € Im(R).

b. The bilinear formxDy! has form > 0 the following property: for any not identically
zero vectorxp in Ker(R) the linear functionxoDy! mappingy to Ker(T) is not
identically zero, i.exoDy}, # 0 for someyg in Ker (T).

4. Let f(x) € Fp[X], x = (X1, ..., Xn), be a polynomial of the second degree. By we
denote the diagonal matrix; = diaglexp(2rif («x1)/p), ..., exp2rif (an)/p)).
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Notice that
B(D,R, T,0) = EB(D,R, T,0)I,

whereT'y is the substitution matrix corresponding to the translationx — x + g in
the spacéd=}, g is an arbitrary vector ifFj; satisfying8T = —« andl = [(x) = xDgt
is the linear function.

5. Letp =2, orp = 1 mod 4. We denote b¥, , the set of all unitaryp” x p" matrices
of the form

P==xE#{B(D,R T, a)Ey, (2)

wheref;(x) and f,(x) range over all pairs-variate polynomials of degree at most 2, and
matricesD, R, T and elemeng are chosen from the set of all quadrupl&s R, T, «},
satisfying the properties 3.a. and 3.bplf= 3 mod 4, then by, , we denote the set
of all matrices of the form? P, wheree is chosen in the set of numbdik 2, 3, 4}, and
the matrixP is chosen in the set of all matrices of the form (2). The matriceSip
are all unitary as follows from Lemma A.

Lemma A[7] The matrix GD, R, T, «) is unitary iff conditions3.a., 3.b hold i.e., the
matrix C(D, R, T, «) is unitary matrix iff it coincides with the matrix@®, R, T, ).

Theorem C [7] The setZ, , of unitary matrices is closed under multiplicatiare. Xy, ,
is the finite group. The order of the grod, , is

onp=2(P(P" =D -...-(p" - p“)(Z p“m[nfm} fmm)fn,p/p @)
m=0 p

where#(2) = 1, 9(p) = 2whenever p= 1 mod 4 9 (p) = 4, whenever p= —1 mod 4
[mlp=["mlp=P"=D-...-(p" = p™H/(P" =1 -...-(p"—p"H,m=>1isa
Gaussian coefficienand t, , = 2" D/2H ¢ = p(+3/2+1 "n . 2 is the number of
n-variable polynomials of the second degre€jix], X = (X1, ..., Xn), N = p".

In particular,op, = 2304=28 .32, 03, =2'%.3%.5.7,04, =2%2.3°.52. 7,05, =
232.35.52.7.17.31 g6, = 2% . 38.52.72.11. 17 31.

Corollary A [7]  The orderoy , of the groupS,.p is onp = O(p?"+3"+1) whenever
p > 2, andopp ~ 2@+l n 5 oo, In this asymptotic e= 1.77. ...

For p = 2 the se®,, is defined as a set of matric€sof the form (2) with dimKer (R)
even, i.e the sé®, C X, is the set of all matrices over the rationals.
The structure of the grouB,, , was studied by Lev Kazarin [9].

Theorem D [7] The se®, is a subgroup of indef of the groupXp ».
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2. 7-Designs

We also use the séi, defined above for indexing unknown quantity of 2"-variable
polynomialsf (x) in R[X].

LemmaB Forany n> 3, the group®,, has a triplewise transitive subgroup of substi-
tution matricesi.e. for any two monomials, XX, X, and % Xg, Xg,, where{a;, o, ax} and
{Bi. Bj. Pk} are both three-element subsets of theFgetthere is a substitution matrik in

the groupY such thatl™x,, Xy, Xe, = Xg Xg, Xg, -

Proof: A substitution matrix is a matrix with rational entries. Therefore to prove the
lemma it suffices to show that C %, ».
We shall show that the subgroup¥f, , of all substitution matriceF (o) corresponding
to affine maps : x — xQ + «, whereQ is a nondegenerate matrix over anda € FJ,
has all stated properties. Denote this subgroufrby
Direct calculations show that

I'(e) =B(0, E, Q, —a),

hence the grouff is a subgroup ok, ».

To show triplewise transitivity of the subgroup, we prove that it contains substitu-
tion matrix corresponding to the affine map: x — Qx+ B, which transforms three-
elementseB = {1, B2, B3} into the sef0, e, e}, whereg = (0,...,0,1,0,...,0),i =
1,...,n T

Indeed, we first use the substitution matfix, to transform the sef into the sety =
{0, y1, 2}, i = Bi + B3, i = 1,2. Thenuse alinear map : x — Qx with nondegenerate
matrix Q such thatQy, = g, = 1, 2, to transform the set into the sef0, e;, &;}. The
required substitution matrix i§ = I'(¢")I"g,. The proof is complete. O

Quadratic homogeneous harmonic polynomidNin= 2" variables looks as follows
N N
FOO = 8.0 %X + ) _8,%5. Where
i<j i=1 i=1

8y =0
and a cubic one has the following form

N
F(X) = Z aai,aj,akxozi Xcti Xak + Zaﬂti,lxl Xaixgj + Zbﬂliqa] Xalxtsj + Zaot, Xl:ji’
i<j<k i<j i>] i=1
where
i—1 N
A .0; + Z By + 38y = 0 forall ;.
j=1 j=i+1

This implies that the dimension of Harm(3)@) +2(5) + () — N = (") — (') which
agrees with the above-mentioned relation.
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It should be noted that

EfF() = F(Erx) = Y (=)Mot T, o o Xe X, Xay
i<j<k

+ Z(_l) f(ai)aai,% Xe ng + 12:(_1)f(ai)bai,aj X ng
i<j > ]

N
+ ) (=D @a,x3.
i=1

LemmaC Foranyn>1

{2”(”+1)/2X0Xelxez, if {1, B2, B3} = {0, &1, &2;

E . =
D Eoxexs Xa = o it (B, Bz, B3} # {0, &1, &),

0.e1.&

where the sum i}, . ., ranges over the set of all diagonal matrices &ith Boolean
function f(x) = fo + Y{L; fuXey + X1 fue; X X, SALISTYing

f(0)+ f(e) + f(er) =0. 4)

Proof: Let By, e, be the linear space of all Boolean functioh&), degf (x) < 2, such
that (4) holds. The dimension & ¢, ¢, iS One less then the dimension of the space of all
Boolean functions of second degree, i.e. it is equal(to+ 1)/2.

Consider afunctioh(f) = lg, 4, 5,(f) = T(B1)+ T (B2)+ f(B3) onthe spac@ge, e,. It
is obvious] (f) is a linear function and in particuldg ¢, ¢,( f) is identically zero. We have
to prove that the functioh( f) is nondegenerate whenevgh, B2, 83} # {0, e1, &}. For
this it suffices to show that in the spaBge, ¢, there is a functiorf (x) such that(f) = 1.

LetL¢ e be the two-dimensional linear subspace of the spgapanned by, ;. First
we consider the case when the vect@#s B2, B3} are pairwise distinct anfD, e, &} #

{B1, B2, B3}

We consider two subcases:

a) {ﬂlﬂ 1827 /33} C Lel,ez’ e'g'!ﬂl = el, ,32 = eZv 183 = el + e29
b) the vectomB; = (B1.1, ..., B1n) does not belong the, e,.

In the subcase a) the functioinx) = x3x, will do since f(0) + f(e;) + f(e) = 0
andf(er+e)+ fe)+ f(e) =111 =0, =€, 3=e+€o0rp1=0p=
e, B3 = €1 + & then the functionf (X) = x; + %, has the required properties.

Now we pass to the subcase b). Consider ket {87, 85, 85}, whereg/ = (0, 0, §; 3,
..., Bin), i = 1,2, 3. Underthe hypothesis of this subcg&ses notidentically zero vector. If
either the elements &fl are linearly independent 8; = g, = g3, then obviously thereis a
vectorl = (0,0, 13, ..., In) suchthatl, ;) = (I, B3) = (I, B5) = 1. Inthis case the function
f(x) = (I, x) satisfies bothf (0) + f(e)) + f(e) =0andf(B1) + f(B2) + f(B3) = 1.
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If B = B5+ B andp; # 0, B, # 0, then there are two vectols= (0,0, 3, ..., i n),
i = 1,2, such, that(ly, ;) = (l1, B3) =1, (1, B3) =0 and (I, ;) = (l2, B3) = 1 (l2,
Bs) = 0, since the vectorg; and g, are linearly independent. In this case the func-
tion f(x) = (I1, X){l2, x) satisfies bothf (0) + f(e;) + f(e) =0andf(By) + f(B2) +
f(Bs) = 1.

If 81 = By+psandp] = B; # 0,i.e.B; = 0, thenthe vectord” = (i 1, f12,0,...,0),
i =1, 2, are distinct. For example, I8’ # 0. There exist two vectois= (11, 1,0, ..., 0)
andl = (0, 0,13, ..., 1) such, thatg;,I') = 1, (85, I") = 0, and(l, g7) = 1. The function
f(x) =< I',x >< |, x > satisfies bothf (0) + f(e) + f(e) =0andf(B1) + f(B2) +
f(Bs) =1

Now consider the case when there are at least two identical vectors in {ite, &t 83}
W.l.o.g. suppose tha, = B3. Thenf (81) + f(B2) + f(B3) = f(B1). Therefore we may
consider a one-element g¢ } instead of a three-element one. In this case the proof that
there is a functionf (x) in By g e, such that(f) = f(81) = 1, andf (0) + f(e)) + f(e)
= 0 goes along the same lines but is a little bit easier. We leave this proof to reader.

Thus, we have proved that in all cases the funckidn = I, g, ,(T) is not identically
zero function providedps, B2, B3} # {0, e1, &}.

The proof of the lemma follows from the identity

Z (-1 =0, (5)

Bo,er,e

which holds for any not identically zero functidqf). This identity (5) follows from the
fact that each nondegenerate linear function takes the value 0 in exactly one half of the
points. The proof is complete. O

Theorem E For any n > 1 the representationg1, p2, and ps of the group®,, on
Harm(1), Harm(2), andHarm(3) respectively are irreducible.

Proof: First, consider the most complicated case, namely a represengatiorHarm(3).

The main idea of the proof is as follows. Suppose, contrary to our claim, that Harm(3) is
not irreducible. Then the Maschke theorem implies that Harm(3) is a direct sum of two
nontrivial invariant subspaces, séy and H’. If we could prove, that each dfi andH’
contains a monomialpXe, Xe,, then we would geH N H’ # {0}, a contradiction.

Thus, the proof of the theorem is reduced to the proof of the following statement. Any
not identically zero invariant subspatkof Harm(3) contains the monomizxe, Xe,. We
proceed to prove this statement.

It should be noted that any harmonic polynomial which does not contain monomials of the
form Xy, Xa; Xe, W|th three-element set of indices, «j, ok, contains at least one monomial
of the formxﬂ‘ x ~with not identically zero coefficient. Therefore no harmonic polynomial
can be composed entirely by monomials of the f

First we shall prove that any not identically zero invariant subspades polynomial,
which contains some monomigl, x,, X, with not identically zero coefficient and three-
element sefei, o}, o} Of indices.
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Suppose the contrary, i.e. that any polynont&k) in H has not identically zero coef-
ficients only for monomials of either formy, xgj or xg. Since the groupr is triplewise
transitive (see Lemma C) we can assume that monomi@l is one of them. In this case
we prove, that there exist a polynomi@lx) € H and a matrixB € ©®, such that the
polynomialG(Bx) has some monomial, X, X, With not identically zero coefficient and
athree-element sét;, o, oy} of indices.

For this we consider the polynomial

M) = Me(X) = Y F(Enx), (6)
0

where the sund_, ranges over the linear spatg of all Boolean functions of the form
h(x) = ZiN=1 Ny, Xg; +Zi<j Ny .o Xe Xo; (With h(0) = 0). Itis easy to show along the same
lines as in the proof of Lemma 2, that

m(x) = 2”(””)/2( Z 0.0 XoX> + aoxg’> and Z Ay +3a9=0. (7)
a#0 a#0

Note thatm(x) # 0, providedag e, # 0 and the last equality in (7) holds sino&x) is a
harmonic polynomial.

Consider a matrix8 = B(D, R, R,0) in ®,, whereD = diag1,1,0,...,0) and
R = diag0,0,1,...,1). The matrixB can be represented & = diag(Az, ..., A)
with a suitable numbering of rows and columns. Hegeidthe 4x 4 Hadamard matrix
Ay = 1/2||(=D)“ )|, a1 = 0,2 = €1, 03 = €, s = € + &. Notice that entry, s of
the matrixB = |lv, |l is not identically zero iffix + 8 € Lo, whereL, = Lg ¢, is the
two-dimensional subspace i spanned by vectors, e;. In this casey, s = (—1)*PA,

Letag = 0. In this case we show, that the polynomi@lBx) has a monomiake, Xa, Xa,
with not identically zero coefficient and three-element{sgt«;, o} of indices.

Let 8 = {B1, B2, B3} be a three-element subset of the{fek,, e, e, + &} = L, and let

1< .
S = (Br B Ba) = 5 ) (~DAHAM =123,

where the sum ranges over all permutation, y», y3) of the triple (81, B2, B3). Direct
calculations show that

Mg (BX)2 "™ D/2 =% (a6, S1(B) + 0., 2(B) + 01, S5 (B)) X X, Xps + - - -
B
(8)

where the sun{jﬂ ranges over all four distinct three-element subgets the setl,, and
dots stand for monomiabsg,, Xy, X, such thafes, ez, ez} ¢ L.

LetS(B) = (S1(B), S(B), S3(B))- By easy calculationswe ha®0, e, &) = %(6, 2,2),
SO, €1, €1+ &) = S(0, &, €1 + &) = 3(6, —2, —2), andS(ey, &, €1 + &) = (6, 6, 6).
The spac&, S C R3, spanned by these three vectors has dimension 2. The y8ctet, 1)
is a basis of one-dimensional spageorthogonal tcS.
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By assumptiorag ¢, # 0, thereforea = (age,, .6y, 0.6,+e,) ¢ S It follows that in the
four-element selt , of vectors there is at least one, g&ysuch that{S(8), a) # 0. Thus we
get that the polynomiah(Bx") (cf. (8)) has some monomiak, xs,Xs,, {1, B2, B3} C Lo,
with not identically zero coefficient and three-element set of indize$,, Bs.

Let nowag # 0. Consider the subgroup’ of the groupY, consisting of all substitution
matrices, corresponding to linear mapsx — Qx in the spacéF,)", whereQis an x n
nondegenerate matrix over the fi€lgl Notice, thaDis a fixed point of the mag, therefore
the polynomialst, X2 andxg and only they are fixed points of any transformationin

The polynomial

qe) = > me(Px) =a) xoxZ +bx3.a+3b=0b=a)T, )
PeY’ a#0

is invariant with respect to all transformationsih. Therefore under the hypothesis# 0
the factora in this expression is not identically zero.

Next we show, that a nondegenerate polynongjéBx') has monomialxs, Xs, Xz,

{B1, B2, B3} C {0, e, &, e + &} = Lo, with three-element set of indices and not identi-
cally zero coefficient. The proof of this statement goes along the same lines as the proof
of the previous casey = 0. Namely, first we explicitly calculate a vector of coefficients
S(B) = (S(B), Su(B), S(B), S(B)), B = {B1, B2, B3}, to be used in the expression for

the coefficient corresponding to the mononxglxg, X, (cf. (8)). Notice, that now we have
extended a set of coefficien8(B),i = 0, 1, 2, 3, by a new on&y(8), determined by the
relationu(2Bx") = 3", So(B)%g, Xg,Xp;, Whereu(x) = x3.

Again, just as in the cas® = 0 the spacé, spanned by vectors frol®(8) has dimen-
sion 2. The spac8" of vectorsa = (g, ag.e,> 0.e,> 80.¢,+e,) SUCh that'S, @) = 0 also has
dimension 2 and its basis{s-1, 1, 0, 0), (0, 0, —1, 1).

The vectora = a(q) = (ap, 8o, Q06,5 Q0.6,+6,) OF COefficients of the polynomiad(x)
is equal to(b, a, a, &), b #£ 0, a # 0, and does not belong ®". Therefore among four
vectorsS(B), B € L,, there must be at least one, such ¢88), a(q)) # 0, i.e.q(Bx') has
monomialxg Xg, Xg, With not identically zero coefficient and three-element{ggt8;, f}
of indices.

Thus, in any nontrivial invariant subspadethere is a polynomiaj(x) having at least one
monomialxy, X4, Xy, With not identically zero coefficient and three-element{sgt oz, a3}
of indices. In the groupr there is a matrixy, which transforms the monomial, Xu, Xu
into monomialXpXe, Xe,. Therefore in any subspaéethere is a polynomial which contains
the monomialxgxe, Xe, With not identically zero coefficient. This and Lemma C imply,
thatH contains the monomiayXe, Xe,. This proves the theorem in the case of representa-
tion p3.

The proof of irreducibility of the representatiops and p, is easier than the proof of
irreducibility of the representatiop; and goes along the same lines. In particular, in the
case of the space Harm(2) (respectively Harm(1)), we prove, that any not identically zero
invariant subspace contains the monomiat, (respectivelyxg). The details are left to
reader. The theorem is proved. O
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Theorem F  For anyx € Sy_; the setC(x) = ©,x! (the orbit of the groum®,, with the
initial point x or the orbit codg is a 7-design.

Proof: It follows from the Theorem A, Theorem E and the identity
> F(Bx) =0,

Be®,

which holds for any polynomidt (x) in Hom(2k 4 1), since the grou®,, contains a matrix
—E, whereE is the identity matrix.

One natural question is how one can select an initial poimsuch a way that the number
of elements of the desig6, (x) is minimal. ObviousfC, (X)| = |©n]/|2(X)|, where2 (X)
is the stabilizer of the point in the group®,,. As shown in [7] (Lemma 6)

1Q(0)] = (2" 1) (2" = 2" N1, 2/2,

whereo; = (1,0, ...,0) andz,» = 2"™D/2+1 js the number oh-variable polynomials
of the second degree over the fi€lg
This implies that

4 n
K(op)| = 2n-m T
KC(ov)] mzzjo [mL m2
It should be noted that the cardinalitigs,(01)| of the designsC,(0;1) for dimensions
N = 8,16, 32(n = 3,4, 5) coincide with the cardinalities of well-know designs derived
from Barnes-Wall lattices [8].

Other natural question is whether there exists an initial pgifar which the desigiC(x)
has the strength larger than 7. This question will be studied by the author in forthcoming
papers. O
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