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Abstract. We consider a finite subgroupΘn of the groupO(N) of orthogonal matrices, whereN = 2n, n =
1, 2 . . . . This group was defined in [7]. We use it in this paper to construct spherical designs in 2n-dimensional
Euclidean spaceRN . We prove that representations of the groupΘn on spaces of harmonic polynomials of degrees
1, 2 and 3 are irreducible. This and the earlier results [1–3] imply that the orbitΘn,2xt of any initial pointx on
the sphereSN−1 is a 7-design in the Euclidean space of dimension 2n.
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1. Introduction

A sphericalt-design inN-dimensional Euclidean spaceRN is a finite nonempty setX of
points on the unit sphereSN−1 = {x = (x1, . . . , xN) ∈ RN | x2

1 + · · · + x2
N = 1} such that

1

|SN−1|
∫

SN−1

f (x) dx = 1

|X|
∑
x∈X

f (x)

for all polynomials f (x) of degree at mostt where|SN−1| denotes the surface area of the
SN−1. Account of basic properties of sphericalt-designs may be found in [1].

Let Hom(k) be the space of all homogeneousN-variable polynomials of degreek over
R and let Harm(k) be the space of all homogeneous harmonic polynomials of degreek,
i.e. the space of all homogeneous polynomialsy = y(x) satisfying the potential equation
∂2y
∂x2

1
+· · ·+ ∂2y

∂x2
N
= 0. The dimension of Harm(k) is (N+k−1

k )−(N+k−3
k−2 ) [5, 6]. In what follows

we assume thatN > 2.
The space Harm(k) is an irreducible invariant subspace of the representation of the

orthogonal groupO(N) on Hom(k). Speaking more precisely, the space Hom(k) can be
represented as the direct sum:

Hom(k) = Harm(k)+ Harm(k− 2)|x|2+ · · · + Harm(k− 2l )|x|2l , l =
[

k

2

]
.

This material is based upon work supported by the U.S. Civilian Research Development under Award No RM-346
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Each term in this sum is an invariant irreducible subspace of the representation ofO(N) on
Hom(k), where|x| denotes the norm of the vectorx and|x|2 is used as a shorthand for the
polynomialx2

1 + · · · + x2
N [6, 7].

SinceΘn is a subgroup of the groupO(N) the spaces Harm(k − 2 j ) are also invariant
spaces of the representation ofΘn on Hom(k) and they in turn can be decomposed into
direct sum of some nontrivial invariant subspaces.

Next we state some basic results, that will be useful in what follows.

Theorem A [2, Th. 6.10 and Th. 3.1], [3, Th. 1] Let G be a finite subgroup of the
group O(N) and letρk be a representation of G on Harm(k). If all representationsρi for
i = 1, . . . , t are irreducible then for anyx ∈ SN−1 the set

X = {gx | g ∈ G} ⊂ SN−1

is a spherical 2t-design.
If the set X in addition satisfies

∑
x∈X f (x) = 0 for all f (x) ∈ Harm(2t + 1), then X is

a spherical(2t + 1)-design.

In [7] we constructed a finite group6n,p which for p being an odd prime is a group of
pn × pn-matrices overC, and forp = 2 is a group of 2n × 2n-matrices overR.

The group6n,p, p > 2, has an isomorphic image in a certain group6̃n,p of 2pn × 2pn-
matrices overR [7]. The group6n,2 has a remarkable subgroupΘn of index 2 comprising
all matrices from6n,2 with rational entries.

The order of the groupΘn is asymptoticallyc2n(2n+1), c = 1.38. . . ,n→∞.
We used the groupΘn to construct orbit codesK(xt ) = Θnx with x = o1, where

o1 = (1, 0, . . . ,0) (see [7]). The cardinality of the codeK(o1) is asymptotically 2.38. . . ,
2n(n+1)/2, n→ ∞, and its Euclidean code distance is 1. The order of the stabilizer of the
pointo1 in the groupΘn is O(2n(3n+1)/2)).

1. Definition and properties of the group61,p Let Fp be ap-element Galois field, let
f (x) ∈ Fp[x] denotes the polynomial of the second degree, let

E f,p = diag(exp(2π i f (0)/p), . . . ,exp(2π i f (p− 1)/p)

be a diagonal matrix, wherei = √−1, and letA(s) = Ap(s) = ‖ws
a,b‖be a unitary symmet-

rical p×pmatrix, wherea, b ∈ Fp, s= 1, 2, . . . , p−1, andws
a,b = p−1/2 exp(2π iabs/p).

Note, that(A(s))−1 = A(−s). Consider a group

61,p = 〈A(s), E f,p; s= 1, 2, . . . , p− 1, f (x) ∈ Fp[x], deg f (x) ≤ 2〉,
generated byp− 1 unitary matricesA(s) and p3 diagonal matricesE f,p.

Theorem B [7] The group61,p is a finite group of orderσ1,p, where
1. σ1,p = 4p4(p2− 1) whenever p= 3 mod 4,
2. σ1,p = 2p4(p2− 1) whenever p= 1 mod 4,
3. σ1,p = 24 whenever p= 2.
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The entries of the matrices in61,p and in matrices of the group6n,p to be defined
later are complex numbers wheneverp > 2. There exists an isomorphic mappingφ of
the group6n,p to the group6̃n,p of orthogonal 2pn × 2pn matrices overR. There also
exists a mappingρ from U pn−1 to the sphereS2pn−1 such that for any matrixP ∈ 6n,p

we haveλ(x − xP) = λ′(ρ(x) − ρ(x)φ(P)), whereλ is the usual metric inCpn
andλ′

is the Euclidean metric inR2pn
. Thus, the mapsφ andρ are isomorphic and isometric

transformations of codes onU pn−1 into codes onS2pn−1.

2. Definition of the group 6n,p, n > 1 Let D = ‖di, j ‖ be an × n matrix over Galois
field Fp, i.e., D ∈ Mn(Fp).

1. ByKer(D)we denote the linear space of zeroes of matrixD over the fieldFp, i.e. the set
of all vectorsx in n-dimensional space(Fp)

n such thatDxt = 0. By Im(D) we denote
the space spanned by columns of the matrixD, i.e. Im(D) = {Dxt ; x ∈ (Fp)

n}.
2. Let D, R, T ∈ Mn(Fp), α

t ∈ Fn
p andm = dim Ker(T). A pn × pn matrix C(D, R,

T, α) = |va,b|, a, b ∈ (Fp)
n, over the complex numbers, i.e. matrix fromMpn(C), is

defined by

va,b = 0,

wheneverRa− Tb+ α 6= 0, and by

va,b = p−m/2 exp(2π i aDbt/p),

whenever

Ra− Tb+ α = 0. (1)

Let Un = {α1, . . . , αN} = (Fp)
n, N = pn, be the set of all elements of the space

(Fp)
n, listed in the lexicographical order. We use the setUn for indexing rows and

columns of the matricesC(D, R, T, α) in such a way that the entry in the intersection
of the i th row and thej th column is equal tovαi ,α j .

Note that the identity matrix̃E in M2n(R) can be represented asẼ = C(0, Q, Q, 0),
whereQ is an arbitrary nondegenerate matrix inMn(Fp). The matrixC(0, E, E,−α) =
0α is a substitution matrix corresponding to the translationσ : x→ x+ α in the space
(Fp)

n.
3. Denote byB(D, R, T, α) a matrixC(D, R, T, α) such that the matricesD, R, T and

the vectorα satisfy the following two conditions

a. Im(R) = Im(T) andα ∈ Im(R).
b. The bilinear formxDyt has form> 0 the following property: for any not identically

zero vectorx0 in Ker(R) the linear functionx0Dyt mappingy to Ker(T) is not
identically zero, i.e.x0Dyt

0 6= 0 for somey0 in Ker(T).

4. Let f (x) ∈ Fp[x], x = (x1, . . . , xn), be a polynomial of the second degree. ByE f we
denote the diagonal matrixE f = diag(exp(2π i f (α1)/p), . . . ,exp(2π i f (αN)/p)).
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Notice that

B(D, R, T, α) = El B(D, R, T, 0)0β,

where0β is the substitution matrix corresponding to the translationσ : x→ x+ β in
the spaceFn

p, β is an arbitrary vector inFn
p satisfyingβT = −α andl = l (x) = xDβ t

is the linear function.
5. Let p = 2, or p = 1 mod 4. We denote by6n,p the set of all unitarypn × pn matrices

of the form

P = ±E f1 B(D, R, T, α)E f2, (2)

where f1(x) and f2(x) range over all pairsn-variate polynomials of degree at most 2, and
matricesD, R, T and elementα are chosen from the set of all quadruples{D, R, T, α},
satisfying the properties 3.a. and 3.b. Ifp = 3 mod 4, then by6n,p we denote the set
of all matrices of the formi εP, whereε is chosen in the set of numbers{1, 2, 3, 4}, and
the matrixP is chosen in the set of all matrices of the form (2). The matrices in6n,p

are all unitary as follows from Lemma A.

Lemma A [7] The matrix C(D, R, T, α) is unitary iff conditions3.a., 3.b hold, i.e., the
matrix C(D, R, T, α) is unitary matrix iff it coincides with the matrix B(D, R, T, α).

Theorem C [7] The set6n,p of unitary matrices is closed under multiplication, i.e.6n,p

is the finite group. The order of the group6n,p is

σn,p = ϑ(p)(pn − 1) · . . . · (pn − pn−1)

(
n∑

m=0

pn−m

[
n

n−m

]
p

τm,p

)
τn,p/p (3)

whereϑ(2) = 1, ϑ(p) = 2 whenever p= 1 mod 4, ϑ(p) = 4, whenever p= −1 mod 4,
[ n

m ] p = [ n
n−m ] p = (pn − 1) · . . . · (pn − pm−1)/(pm− 1) · . . . · (pm− pm−1),m≥ 1, is a

Gaussian coefficient, andτn,2 = 2n(n+1)/2+1, τn,p = pn(n+3)/2+1, p > 2, is the number of
n-variable polynomials of the second degree inFp[x], x = (x1, . . . , xN), N = pn.

In particular,σ2,2 = 2304= 28 · 32, σ3,2 = 214 · 32 · 5 · 7, σ4,2 = 222 · 35 · 52 · 7, σ5,2 =
232 · 35 · 52 · 7 · 17 · 31, σ6,2 = 244 · 38 · 52 · 72 · 11 · 17 · 31.

Corollary A [7] The orderσn,p of the group6n,p is σn,p = O(p2n2+3n+1) whenever
p > 2, andσn,2 ∼ c2n(2n+1)+1, n→∞. In this asymptotic c= 1.77. . . .

For p = 2 the setΘn is defined as a set of matricesP of the form (2) with dimKer(R)
even, i.e the setΘn ⊂ 6n,2 is the set of all matrices over the rationals.

The structure of the group6n,p was studied by Lev Kazarin [9].

Theorem D [7] The setΘn is a subgroup of index2 of the group6n,2.
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2. 7-Designs

We also use the setUn defined above for indexing unknown quantityxα of 2n-variable
polynomials f (x) in R[x].

Lemma B For any n≥ 3, the groupΘn has a triplewise transitive subgroupϒ of substi-
tution matrices, i.e. for any two monomials xαi xα j xαk and xβi xβ j xβk ,where{αi , α j , αk} and
{βi , β j , βk} are both three-element subsets of the setFn

2, there is a substitution matrix0 in
the groupϒ such that0xαi xα j xαk = xβi xβ j xβk .

Proof: A substitution matrix is a matrix with rational entries. Therefore to prove the
lemma it suffices to show thatϒ ⊂ 6n,2.

We shall show that the subgroup of6n,2 of all substitution matrices0(σ) corresponding
to affine mapsσ : x→ xQ+ α, whereQ is a nondegenerate matrix overF2 andα ∈ Fn

2,
has all stated properties. Denote this subgroup byϒ .

Direct calculations show that

0(σ) = B(0, E, Q,−α),
hence the groupϒ is a subgroup of6n,2.

To show triplewise transitivity of the subgroupϒ , we prove that it contains substitu-
tion matrix corresponding to the affine mapσ : x → Qx+β, which transforms three-
element setβ = {β1, β2, β3} into the set{0, e1, e2},whereei = (0, . . . ,0︸ ︷︷ ︸

i−1

, 1, 0, . . . ,0), i =
1, . . . ,n.

Indeed, we first use the substitution matrix0β3 to transform the setβ into the setγ =
{0, γ1, γ2}, γi = βi +β3, i = 1, 2. Then use a linear mapσ ′ : x→ Qx with nondegenerate
matrix Q such thatQγi = ei , i = 1, 2, to transform the setγ into the set{0, e1, e2}. The
required substitution matrix is0 = 0(σ ′)0β3. The proof is complete. 2

Quadratic homogeneous harmonic polynomial inN = 2n variables looks as follows

F(x) =
∑
i< j

aαi ,α j xαi xα j +
N∑

i=1

aαi x
2
αi
, where

N∑
i=1

aαi = 0

and a cubic one has the following form

F(x) =
∑

i< j<k

aαi ,α j ,αk xαi xα j xαk +
∑
i< j

aαi ,α j xαi x
2
α j
+
∑
i> j

bαi ,α j xαi x
2
α j
+

N∑
i=1

aαi x
3
αi
,

where

i−1∑
j=1

aαi ,α j +
N∑

j=i+1

bα j ,αi + 3aαi = 0 for all αi .

This implies that the dimension of Harm(3) is(N
3)+2(N

2)+ (N
1)− N = ( N+2

3 )− (N
1) which

agrees with the above-mentioned relation.
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It should be noted that

E f F(x) = F(E f xt ) =
∑

i< j<k

(−1) f (αi )+ f (α j )+ f (αk)aαi ,α j ,αk xαi xα j xαk

+
∑
i< j

(−1) f (αi )aαi ,α j xαi x
2
α j
+
∑
1> j

(−1) f (αi )bαi ,α j xαi x
2
α j

+
N∑

i=1

(−1) f (αi )aαi x
3
αi
.

Lemma C For any n> 1

∑
0,e1,e2

E f xβi xβ j xβk =
{

2n(n+1)/2x0xe1xe2, if {β1, β2, β3} = {0, e1, e2};
0, if {β1, β2, β3} 6= {0, e1, e2},

where the sum in
∑

0,e1,e2
ranges over the set of all diagonal matrices Ef with Boolean

function f(x) = f0+
∑N

i=1 fαi xαi +
∑

i< j fαi ,α j xαi xα j satisfying

f (0)+ f (e1)+ f (e2) = 0. (4)

Proof: Let B0,e1,e2 be the linear space of all Boolean functionsf (x), deg f (x) ≤ 2, such
that (4) holds. The dimension ofB0,e1,e2 is one less then the dimension of the space of all
Boolean functions of second degree, i.e. it is equal ton(n+ 1)/2.

Consider a functionl ( f ) = lβ1,β2,β3( f ) = f (β1)+ f (β2)+ f (β3) on the spaceB0,e1,e2. It
is obvious,l ( f ) is a linear function and in particularl0,e1,e2( f ) is identically zero. We have
to prove that the functionl ( f ) is nondegenerate whenever{β1, β2, β3} 6= {0, e1, e2}. For
this it suffices to show that in the spaceB0,e1,e2 there is a functionf (x) such thatl ( f ) = 1.

Let Le1,e2 be the two-dimensional linear subspace of the spaceFn
2 spanned bye1, e2. First

we consider the case when the vectors{β1, β2, β3} are pairwise distinct and{0, e1, e2} 6=
{β1, β2, β3}.

We consider two subcases:

a) {β1, β2, β3} ⊂ Le1,e2, e.g.,β1 = e1, β2 = e2, β3 = e1+ e2;
b) the vectorβ1 = (β1,1, . . . , β1,n) does not belong toLe1,e2.

In the subcase a) the functionf (x) = x1x2 will do since f (0) + f (e1) + f (e2) = 0
and f (e1 + e2) + f (e1) + f (e2) = 1. If β1 = 0, β2 = e2, β3 = e1 + e2 or β1 = 0, β2 =
e1, β3 = e1+ e2 then the functionf (x) = x1+ x2 has the required properties.

Now we pass to the subcase b). Consider a setM = {β ′1, β ′2, β ′3}, whereβ ′i = (0, 0, βi,3,

. . . , βi,n), i = 1, 2, 3. Under the hypothesis of this subcaseβ ′1 is not identically zero vector. If
either the elements ofM are linearly independent orβ ′1 = β ′2 = β ′3, then obviously there is a
vectorl = (0, 0, l3, . . . , ln) such that〈l, β ′1〉 = 〈l, β ′2〉 = 〈l, β ′3〉 = 1. In this case the function
f (x) = 〈l, x〉 satisfies bothf (0)+ f (e1)+ f (e2) = 0 and f (β1)+ f (β2)+ f (β3) = 1.
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If β ′1 = β ′2+β ′3 andβ ′1 6= 0, β ′2 6= 0, then there are two vectorsl i = (0, 0, l i,3, . . . , l i,n),
i = 1, 2, such, that〈l1, β ′1〉 = 〈l1, β ′2〉 = 1, 〈l1, β ′3〉 = 0 and 〈l2, β ′1〉 = 〈l2, β ′3〉 = 1, 〈l2,
β ′2〉 = 0, since the vectorsβ ′1 and β ′2 are linearly independent. In this case the func-
tion f (x) = 〈l1, x〉〈l2, x〉 satisfies bothf (0) + f (e1) + f (e2) = 0 and f (β1) + f (β2)+
f (β3) = 1.

If β ′1 = β ′2+β ′3 andβ ′1 = β ′2 6= 0, i.e.β ′3 = 0, then the vectorsβ ′′i = (βi,1, β1,2, 0, . . . ,0),
i = 1, 2, are distinct. For example, letβ ′′1 6= 0. There exist two vectorsl′ = (l1, l2, 0, . . . ,0)
andl = (0, 0, l3, . . . , ln) such, that〈β ′′1 , l′〉 = 1, 〈β ′′2 , l′〉 = 0, and〈l, β ′1〉 = 1. The function
f (x) =< l′, x >< l, x > satisfies bothf (0) + f (e1) + f (e2) = 0 and f (β1) + f (β2) +
f (β3) = 1.

Now consider the case when there are at least two identical vectors in the set{β1, β2, β3}.
W.l.o.g. suppose thatβ2 = β3. Then f (β1)+ f (β2)+ f (β3) = f (β1). Therefore we may
consider a one-element set{β1} instead of a three-element one. In this case the proof that
there is a functionf (x) in B0,e1,e2 such thatl ( f ) = f (β1) = 1, and f (0)+ f (e1)+ f (e2)

= 0 goes along the same lines but is a little bit easier. We leave this proof to reader.
Thus, we have proved that in all cases the functionl ( f ) = lβ1,β2,β3( f ) is not identically

zero function provided{β1, β2, β3} 6= {0, e1, e2}.
The proof of the lemma follows from the identity∑

B0,e1,e2

(−1)l ( f ) = 0, (5)

which holds for any not identically zero functionl ( f ). This identity (5) follows from the
fact that each nondegenerate linear function takes the value 0 in exactly one half of the
points. The proof is complete. 2

Theorem E For any n > 1 the representationsρ1, ρ2, and ρ3 of the groupΘn,2 on
Harm(1),Harm(2), andHarm(3) respectively are irreducible.

Proof: First, consider the most complicated case, namely a representationρ3 on Harm(3).
The main idea of the proof is as follows. Suppose, contrary to our claim, that Harm(3) is
not irreducible. Then the Maschke theorem implies that Harm(3) is a direct sum of two
nontrivial invariant subspaces, sayH and H ′. If we could prove, that each ofH and H ′

contains a monomialx0xe1xe2, then we would getH ∩ H ′ 6= {0}, a contradiction.
Thus, the proof of the theorem is reduced to the proof of the following statement. Any

not identically zero invariant subspaceH of Harm(3) contains the monomialx0xe1xe2. We
proceed to prove this statement.

It should be noted that any harmonic polynomial which does not contain monomials of the
form xαi xα j xαk with three-element set of indicesαi , α j , αk, contains at least one monomial
of the formxβi x

2
β j

with not identically zero coefficient. Therefore no harmonic polynomial
can be composed entirely by monomials of the formx3

β .
First we shall prove that any not identically zero invariant subspaceH has polynomial,

which contains some monomialxαi xα j xαk with not identically zero coefficient and three-
element set{αi , α j , αk} of indices.
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Suppose the contrary, i.e. that any polynomialF(x) in H has not identically zero coef-
ficients only for monomials of either formxβi x

2
β j

or x3
β . Since the groupϒ is triplewise

transitive (see Lemma C) we can assume that monomialx0x2
e1

is one of them. In this case
we prove, that there exist a polynomialG(x) ∈ H and a matrixB ∈ Θn such that the
polynomialG(Bx) has some monomialxαi xα j xαk with not identically zero coefficient and
a three-element set{αi , α j , αk} of indices.

For this we consider the polynomial

m(x) = mF (x) =
∑

0

F(Ehxt ), (6)

where the sum
∑

0 ranges over the linear spaceL0 of all Boolean functions of the form
h(x) =∑N

i=1 hαi xαi +
∑

i< j hαi ,α j xαi xα j (with h(0) = 0). It is easy to show along the same
lines as in the proof of Lemma 2, that

m(x) = 2n(n+1)/2

(∑
α 6=0

a0,αx0x2
α + a0x3

0

)
and

∑
α 6=0

a0,α + 3a0 = 0. (7)

Note thatm(x) 6= 0, provideda0,e1 6= 0 and the last equality in (7) holds sincem(x) is a
harmonic polynomial.

Consider a matrixB = B(D, R, R, 0) in Θn, where D = diag(1, 1, 0, . . . ,0) and
R = diag(0, 0, 1, . . . ,1). The matrix B can be represented asB = diag(A2, . . . , A2)

with a suitable numbering of rows and columns. Here A2 is the 4× 4 Hadamard matrix
A2 = 1/2‖(−1)〈αi ,α j 〉‖, α1 = 0, α2 = e1, α3 = e2, α4 = e1+ e2. Notice that entryvα,β of
the matrixB = ‖vα,β‖ is not identically zero iffα + β ∈ L2, whereL2 = Le1,e2 is the
two-dimensional subspace inFn

2 spanned by vectorse1, e2. In this casevα,β = (−1)αDβt .
Let a0 = 0. In this case we show, that the polynomialm(Bx) has a monomialxαi xα j xαk

with not identically zero coefficient and three-element set{αi , α j , αk} of indices.
Letβ = {β1, β2, β3} be a three-element subset of the set{0, e1, e2, e1+ e2} = L2 and let

Si = ({β1, β2, β3}) = 1

8

′∑
(−1)〈βi ,γ2〉+〈βi ,γ3〉, i = 1, 2, 3,

where the sum ranges over all permutation(γ1, γ2, γ3) of the triple (β1, β2, β3). Direct
calculations show that

mF (Bxt )2−n(n+1)/2 =
∑
β

(a0,e1 S1(β)+ a0,e2 S2(β)+ a0,e1+e2 S3(β))xβ1xβ2xβ3 + . . . ,

(8)

where the sum
∑

β ranges over all four distinct three-element subsetsβ of the setL2, and
dots stand for monomialsxα1xα2xα3 such that{α1, α2, α3} 6⊂ L2.

LetS(β) = (S1(β), S2(β), S3(β)). By easy calculations we haveS(0, e1, e2) = 1
8(6, 2, 2),

S(0, e1, e1 + e2) = S(0, e2, e1 + e2) = 1
8(6,−2,−2), andS(e1, e2, e1 + e2) = 1

8(6, 6, 6).
The spaceS,S⊂ R3, spanned by these three vectors has dimension 2. The vector(0,−1, 1)
is a basis of one-dimensional spaceS⊥ orthogonal toS.
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By assumptiona0,e1 6= 0, thereforea= (a0,e1,a0,e2,a0,e1+e2) /∈ S⊥. It follows that in the
four-element setL2 of vectors there is at least one, sayβ, such that(S(β), a) 6= 0. Thus we
get that the polynomialm(Bxt ) (cf. (8)) has some monomialxβ1xβ2xβ3, {β1, β2, β3} ⊂ L2,
with not identically zero coefficient and three-element set of indicesβ1, β2, β3.

Let nowa0 6= 0. Consider the subgroupϒ ′ of the groupϒ , consisting of all substitution
matrices, corresponding to linear mapsσ : x→ Qx in the space(F2)

n, whereQ is an× n
nondegenerate matrix over the fieldF2. Notice, that0 is a fixed point of the mapσ , therefore
the polynomialsx0, x2

0 andx3
0 and only they are fixed points of any transformation inϒ ′.

The polynomial

q(x) =
∑
P∈ϒ ′

mF (Pxt ) = a
∑
α 6=0

x0x2
α + bx3

0,a+ 3b = 0, b = a0|ϒ ′|, (9)

is invariant with respect to all transformations inϒ ′. Therefore under the hypothesisa0 6= 0
the factora in this expression is not identically zero.

Next we show, that a nondegenerate polynomialq(Bxt ) has monomialxβ1xβ2xβ3,

{β1, β2, β3} ⊂ {0, e1, e2, e1 + e2} = L2, with three-element set of indices and not identi-
cally zero coefficient. The proof of this statement goes along the same lines as the proof
of the previous casea0 = 0. Namely, first we explicitly calculate a vector of coefficients
S(β) = (S0(β), S1(β), S2(β), S3(β)), β = {β1, β2, β3}, to be used in the expression for
the coefficient corresponding to the monomialxβ1xβ2xβ3 (cf. (8)). Notice, that now we have
extended a set of coefficientsSi (β), i = 0, 1, 2, 3, by a new oneS0(β), determined by the
relationu(2Bxt ) =∑β S0(β)xβ1xβ2xβ3, whereu(x) = x3

0.
Again, just as in the casea0 = 0 the spaceS, spanned by vectors fromS(β) has dimen-

sion 2. The spaceS⊥ of vectorsa = (a0,a0,e1,a0,e2,a0,e1+e2) such that(S, a) = 0 also has
dimension 2 and its basis is(−1, 1, 0, 0), (0, 0,−1, 1).

The vectora = a(q) = (a0,a0,e1,a0,e2,a0,e1+e2) of coefficients of the polynomialq(x)
is equal to(b,a,a,a), b 6= 0,a 6= 0, and does not belong toS⊥. Therefore among four
vectorsS(β), β ∈ L2, there must be at least one, such that(S(β), a(q)) 6= 0, i.e.q(Bxt ) has
monomialxβi xβ j xβk with not identically zero coefficient and three-element set{βi , β j , βk}
of indices.

Thus, in any nontrivial invariant subspaceH there is a polynomialg(x)having at least one
monomialxαi xα j xαk with not identically zero coefficient and three-element set{α1, α2, α3}
of indices. In the groupϒ there is a matrixY, which transforms the monomialxαi xα j xαk

into monomialx0xe1xe2. Therefore in any subspaceH there is a polynomial which contains
the monomialx0xe1xe2 with not identically zero coefficient. This and Lemma C imply,
that H contains the monomialx0xe1xe2. This proves the theorem in the case of representa-
tion ρ3.

The proof of irreducibility of the representationsρ1 andρ2 is easier than the proof of
irreducibility of the representationρ3 and goes along the same lines. In particular, in the
case of the space Harm(2) (respectively Harm(1)), we prove, that any not identically zero
invariant subspace contains the monomialx0xe1 (respectivelyx0). The details are left to
reader. The theorem is proved. 2
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Theorem F For anyx ∈ SN−1 the setK(x) = Θnxt (the orbit of the groupΘn with the
initial point x or the orbit code) is a7-design.

Proof: It follows from the Theorem A, Theorem E and the identity∑
B∈Θn

F(Bxt ) = 0,

which holds for any polynomialF(x) in Hom(2k+1), since the groupΘn contains a matrix
−E, whereE is the identity matrix.

One natural question is how one can select an initial pointx in such a way that the number
of elements of the designKn(x) is minimal. Obviously|Kn(x)| = |Θn|/|Ä(x)|,whereÄ(x)
is the stabilizer of the pointx in the groupΘn. As shown in [7] (Lemma 6)

|Ä(o1)| = (2n − 1) · · · (2n − 2n−1)τn,2/2,

whereo1 = (1, 0, . . . ,0) andτn,2 = 2n(n+1)/2+1 is the number ofn-variable polynomials
of the second degree over the fieldF2.

This implies that

|K(o1)| =
n∑

m=0

2n−m

[
n

m

]
2

τm,2

It should be noted that the cardinalities|Kn(o1)| of the designsKn(o1) for dimensions
N = 8, 16, 32(n = 3, 4, 5) coincide with the cardinalities of well-know designs derived
from Barnes-Wall lattices [8].

Other natural question is whether there exists an initial pointx, for which the designK(x)
has the strength larger than 7. This question will be studied by the author in forthcoming
papers. 2
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