
Journal of Algebraic Combinatorics10 (1999), 241–278
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Symmetric Versus Non-Symmetric Spin Models
for Link Invariants
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Abstract. We studyspin modelsas introduced in [20]. Such a spin model can be defined as a square matrix
satisfying certain equations, and can be used to compute anassociated link invariant. The link invariant associated
with a symmetric spin model depends only trivially on link orientation. This property also holds forquasi-symmetric
spin models, which are obtained from symmetric spin models by certain “gauge transformations” preserving the
associated link invariant. Using a recent result of [16] which asserts that every spin model belongs to some
Bose-Mesner algebra with duality, we show that the transposition of a spin model can be realized by a permutation
of rows. We call the order of this permutation theindexof the spin model. We show that spin models of odd
index are quasi-symmetric. Next, we give a general form for spin models of index 2 which implies that they are
associated with a certain class of symmetric spin models. The symmetric Hadamard spin models of [21] belong
to this class and this leads to the introduction ofnon-symmetric Hadamard spin models. These spin models give
the first known example where the associated link invariant depends non-trivially on link orientation. We show
that a non-symmetric Hadamard spin model belongs to a certain triply regular Bose-Mesner algebra of dimension
5 with duality, and we use this to give an explicit formula for the associated link invariant involving the Jones
polynomial.
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1. Introduction

Symmetric spin modelswere introduced in [18] as basic data to compute certain invariants
of oriented links in 3-space; by construction, these invariants depend only trivially on the
link orientation. A non-symmetric generalization of a spin model was introduced in [20].
While one could hope that the associated link invariants would depend non-trivially on the
link orientation, no such examples were known until the present work. Finally, a further
generalization called 4-weight spin modelswas introduced in [1].

A 4-weight spin model can be defined as a 5-tuple(X,W1,W2,W3,W4), whereX is a
finite non-empty set and theWi are complex matrices with rows and columns indexed by
X which satisfy certain equations. WhenW1 = W2 = W+,W3 = W4 = W−, we call the
triple (X,W+,W−) a 2-weight spin model(this is exactly a “generalized spin model” as
defined in [20]). The triple(X,W+,W−) can be defined in terms of the matrixW+ alone,
and we call this matrix aspin modelfor simplicity.
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We review the basic tools used in this paper in Section 2. They include the following
results.

In [15], some transformations of 4-weight spin models, calledgauge transformations,
are introduced. These gauge transformations preserve the associated link invariant
(Theorem A). Two 4-weight spin models are said to begauge equivalentif they can be
related by gauge transformations, and this definition applies in particular to 2-weight spin
models.

In [16], generalizing previous results of [13, 22], it is shown that for any 2-weight spin
model(X,W+,W−) there exists a (commutative) Bose-Mesner algebraA which contains
W+, W− and which admits a duality9 given by the identity9(M) = a t W− ◦ (W+(W− ◦
M)), wherea is the diagonal element ofW+ and◦ denotes Hadamard product (Theorem B).

In Section 3 we introduce the concept of adual-permutation matrix. Such matrices are
defined so that in a Bose-Mesner algebraA with duality9, 9(R) is a dual-permutation
matrix wheneverR is a permutation matrix. In this situation the dual-permutation matrices
in A form an abelian groupA′1 under Hadamard product, which is isomorphic to the
groupA1 of permutation matrices inA. We show that whenA arises from a 2-weight
spin model(X,W+,W−) as in Theorem B, the matrixW+ ◦ W− belongs toA′1. By the
indexof (X,W+,W−) we mean the order ofW+ ◦W− in the abelian groupA′1. Dually,
|X|−1 t W+W− belongs toA1 and its order is the index. This leads us to introduce the
quasi-symmetric spin models, a class of 2-weight spin models which are gauge equivalent
to symmetric ones. Thus the link invariant associated with a quasi-symmetric spin model
depends only trivially on the link orientation. We show that spin models of odd index are
quasi-symmetric. The same holds whenA (given by Theorem B) is the Bose-Mesner
algebra of some abelian group.

In Section 4, we give a convenient general form of spin models of index 2. This shows that
they are closely related with a certain class of symmetric spin models of similar form. This
class contains thesymmetric Hadamard spin modelsconstructed in [21] from Hadamard
matrices.

This leads us to definenon-symmetric Hadamard spin modelsin Section 5. For each
such spin model we introduce a non-symmetric Bose-Mesner algebraA of dimension 5
which contains it; we establish that9 as given in Theorem B is a duality. The Bose-Mesner
algebraA is closely related with Bose-Mesner algebras of Hadamard graphs used in the
study of symmetric Hadamard spin models. Using this relationship, we show thatA is triply
regular(see [11]). Then, using a simple example, we show that the associated link invariant
depends non-trivially on the link orientation.

Finally, we obtain a formula for the associated link invariant which is similar to the
formula previously obtained in the symmetric case [14]. This formula essentially involves
the Jones polynomials (see [17]) of the various “sublinks” of a link. The proof is also similar
and consists of two main steps. In the first step, we show that the associated link invariant is
given by a rational function of one variableu, whereu is a parameter which gives the size
of the spin model. In the second step, we show that this rational function coincides with the
required formula for infinitely many special values ofu.

We conclude in Section 6 with some open questions.
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2. Preliminaries

2.1. Spin models for link invariants

For more details concerning this section the reader can refer to [12]. An (oriented)link is
a finite collection of disjoint simple oriented closed curves (thecomponentsof the link)
smoothly embedded in 3-space. Any such link can be represented by adiagram, which is a
generic plane projection (there are only a finite number of multiple points, each of which is
a simple crossing), together with an indication at each crossing of the corresponding spatial
structure. Alink invariant is a quantity attached to diagrams which is invariant under certain
diagram deformations called Reidemeister moves (these moves generate a combinatorial
equivalence of diagrams which represents a natural topological equivalence of links).Spin
modelsare basic data to compute link invariants in the following way.

In general, the link invariant will take the form

Z(L) = a−T(L)D−χ(L)
∑

σ :B(L)→X

∏
v∈V(L)

〈v, σ 〉 (1)

for any diagramL of a link. Here

— X is a finite non-empty set ofspins;
— a is a non-zero complex number, called themodulusof the spin model, andT(L), the

Tait numberof L, is the sum of signs of the crossings ofL, where the sign of a crossing
is defined on figure 1;

— D is some square root of|X|, called theloop variableof the spin model;
— The regions ofL (connected components ofR2− L) are colored with two colors, black

and white, in such a way that adjacent regions ofL receive different colors;B(L)denotes
the set of black regions ofL, andχ(L) denotes the Euler characteristic of the union of
these black regions; whenL is connected,χ(L) is just the number of black regions;

— V(L) is the set of crossings ofL, and forσ : B(L)→ X, v ∈ V(L), the quantity〈v, σ 〉
only depends on the values ofσ on the two black regions incident withv, and on the
geometry of this crossing-region incidence.

This dependence takes the following two forms.

Figure 1.
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Figure 2.

Figure 3.

In a 2-weight spin model, we have two matricesW+, W− in MX (the set of complex matrices
with rows and columns indexed byX) and〈v, σ 〉 is defined on figure 2 (wherex, y are the
values ofσ on the black regions incident withv).

In a 4-weight spin model, we have four matricesW1, W2, W3, W4 in MX and〈v, σ 〉 is
defined on figure 3.
In the case of 2-weight spin models, it is shown in [20] thatZ(L) defined by (1) is a link
invariant provided the following properties hold (for everyα, β, γ ∈ X):

W+(α, α) = a, W−(α, α) = a−1,
∑
x∈X

W+(α, x) =
∑
x∈X

W+(x, α) = Da−1,

(2)∑
x∈X

W−(α, x) =
∑
x∈X

W−(x, α) = Da,

W+(α, β)W−(β, α) = 1,
∑
x∈X

W+(α, x)W−(x, β) = |X|δα,β (3)

(whereδ is the Kronecker symbol),∑
x∈X

W+(α, x)W+(β, x)W−(x, γ ) = DW+(α, β)W−(β, γ )W−(γ, α). (4)
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Remark (4) can be replaced by other identities, see [20].

We shall take as our definition of 2-weight spin modela triple(X, W+, W−), whereX
is a finite non-empty set andW+, W− are two matrices inMX satisfying (2), (3), (4) for
somea, D in C− {0} with D2 = |X|.

A 2-weight spin model(X,W+,W−) is said to besymmetricif W+, W− are symme-
tric matrices. Symmetric spin models were introduced in [18], and the non-symmetric
generalization of [20] was studied later.

We observe that the link invariant associated with a symmetric 2-weight spin model
depends only trivially on the link orientation, i.e. via the factora−T(L) in (1). The main
issue addressed in this paper is the possibility of a more complicated dependence for general
2-weight spin models.

In the case of 4-weight spin models, it is shown in [1] thatZ(L) defined by (1) is a link
invariant if the following properties hold (for everyα, β, γ in X):

W1(α, α) = a, W3(α, α) = a−1,
∑
x∈X

W2(α, x) =
∑
x∈X

W2(x, α) = Da−1,

(5)∑
x∈X

W4(α, x) =
∑
x∈X

W4(x, α) = Da,

W1(α, β)W3(β, α) = 1,
∑
x∈X

W1(α, x)W3(x, β) = |X|δα,β,
(6)

W2(α, β)W4(β, α) = 1,
∑
x∈X

W2(α, x)W4(x, β) = |X|δα,β,

∑
x∈X

W2(α, x)W2(β, x)W4(x, γ ) = DW1(β, α)W3(α, γ )W3(γ, β)

=
∑
x∈X

W2(x, α)W2(x, β)W4(γ, x) = DW1(α, β)W3(β, γ )W3(γ, α). (7)

We shall take as our definition of 4-weight spin modela 5-tuple(X,W1,W2,W3,W4),
whereX is a finite non-empty set andWi , i = 1, . . . ,4 are matrices inMX satisfying (5),
(6), (7) for somea, D in C− {0} with D2 = |X|.

Remark This is only one among many possible equivalent definitions, see [1].

Given a finite non-empty setX andW+, W− in MX, one can show that(X,W+,W−)
is a 2-weight spin model with loop variableD if and only if (X,W+,W+,W−,W−) is a
4-weight spin model with loop variableD (see [1]). In this case the two spin models have
the same associated link invariant and can be identified.

For λ ∈ C − {0}, it is clear from (5), (6), (7) that if(X,W1,W2,W3,W4) is a 4-weight
spin model, then(X, λW1, λ

−1W2, λ
−1W3, λW4) is also a 4-weight spin model. These two
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4-weight spin models will be said to beproportional, and it is easy to see that they yield
the same link invariant.

We shall need more general transformations of 4-weight spin models which preserve the
associated link invariant. The following theorem sums up some results of [15] (see also [7]).
In the statement of this theorem,X is a finite non-empty set andWi andW′i (i = 1, . . . ,4)
are matrices inMX.

Theorem A Let (X,W1,W2,W3,W4) be a4-weight spin model with loop variable D.
(i) (X,W′1,W2,W′3,W4) is a4-weight spin model with loop variable D if and only if there

exists an invertible diagonal matrix1 such that W′1 = 1W11
−1, W′3 = 1W31

−1.
(ii) (X,W1,W′2,W3,W′4) is a4-weight spin model with loop variable D if and only if there

exists a permutation matrix P such that W−1
2 PW2 is also a permutation matrix and

W′2 = PW2, W′4 = W4
tP.

(iii) Two4-weight spin models related as in(i) or (ii) yield the same link invariant.

The transformation relating the two 4-weight spin models in (i) (respectively (ii)) of
Theorem A is called anodd(respectivelyeven) gauge transformation. Two 4-weight spin
models which, up to proportionality, are related by odd or even gauge transformations will
be said to begauge equivalent. Thus gauge equivalent 4-weight spin models have the same
associated link invariant.

2.2. Spin models and Bose-Mesner algebras

A Bose-Mesner algebraon a finite non-empty setX is a commutative subalgebra ofMX

which contains the identityI , which is also an algebra under the Hadamard (that is, entry-
wise) product(A, B) → A◦ B with identity J (the all-one matrix), and which is closed
under the transposition operationA→ t A. It can easily be shown that Bose-Mesner alge-
bras and (commutative) association schemes are equivalent concepts (see [6] Theorem 2.6.1
which is easily extended to the non-symmetric case). We shall only work here with the con-
cept of Bose-Mesner algebra (note that for convenience we have incorporated the commu-
tativity property of the ordinary matrix product into our definition). The reader is referred
to [4] for details on material reviewed in the rest of the section.

Every Bose-Mesner algebraA has a basis of Hadamard idempotents{Ai , i = 0, . . . ,d}
satisfying

Ai 6= 0, Ai ◦ Aj = δi, j Ai , (8)

d∑
i=0

Ai = J. (9)

It is easy to show thatI belongs to this basis and, as usual, we takeA0 = I . Similarly,A
has a basis of ordinary idempotents{Ei , i = 0, . . . ,d} satisfying

Ei 6= 0, Ei Ej = δi, j Ei , (10)

d∑
i=0

Ei = I . (11)
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It is easy to show that|X|−1J belongs to this basis and as usual we takeE0 = |X|−1J. One
can also show that

tEi = Ēi (i = 0, . . . ,d). (12)

A dualityof A is a linear map9 : A→ A such that

92(A) = |X| tA for A ∈ A, (13)

9(AB) = 9(A) ◦9(B) for A, B ∈ A. (14)

It follows easily that

9(A ◦ B) = |X|−19(A)9(B) for A, B ∈ A, (15)

9(I ) = J, 9(J) = |X|I , (16)
t9(A) = 9( tA) for A ∈ A. (17)

The main result relating spin models to Bose-Mesner algebras is the following. Here
the form of9 is obtained from [16], Theorem 11 by using the 2-weight spin model
(X, t W−, t W+) instead of(X,W+,W−), this being allowed by Proposition 2 of [20].
See also [13, 22].

Theorem B Let (X,W+,W−) be a2-weight spin model with modulus a. Then there is a
Bose-Mesner algebraA on X containing W+, W− with duality9 given by

9(A) = a t W− ◦ (W+(W− ◦ A))

for every A inA.

Remarks (i) We may rewrite (2), (3) as

I ◦W+ = aI, I ◦W− = a−1I , W+J = J W+ = Da−1J,

W−J = J W− = Da J,
(2’)

W+ ◦ t W− = J, W+W− = |X|I . (3’)

(ii) Using (3’) and (2’), one easily sees that the duality9 given by Theorem B satisfies
9( t W+) = D t W−, or equivalently9(W+) = DW− by (17). In addition,9(W−) =
D t W+ by (13).

3. Some general results on 2-weight spin models

3.1. Permutation matrices and dual-permutation matrices

A matrix R in MX is a permutation matrix if and only ifR ◦ R = R and RtR = I . The
set of permutation matrices which belong to a Bose-Mesner algebraA obviously forms an
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abelian groupA1 under ordinary matrix product. Expressing such a matrix in the basis of
Hadamard idempotents ofA we see that all coefficients, except one equal to 1, must be
zero, and henceA1 ⊆ {Ai , i = 0, . . . ,d}. It is well possible thatA1 = {I }.

On the other hand, the equalityA1 = {Ai , i = 0, . . . ,d}occurs in the following situation.
Let X be an abelian group written additively. For everyi in X, define the matrixAi in MX

by the identityAi (x, y) = δi,y−x. Then it is easy to check that{Ai , i ∈ X} is the basis of
Hadamard idempotents of a Bose-Mesner algebra onX, called theBose-Mesner algebra of
the abelian group X.

Let Ai be an element of orderk> 1 inA1. Since a permutation represented by a matrix in
{Aj , j = 1, . . . ,d} has no fixed points by (8), all the cycles of the permutation represented
by Ai have lengthk. Hence we may establish a bijection betweenX and {1, . . . , k} ×
{1, . . . , `}, wherè = |X|/k, so thatAi ((r, s), (t, u)) = 1 iff s= u andt ≡ r + 1 (modk)
(r , t ∈ {1, . . . , k}, s, u ∈ {1, . . . , `}).

Let us now consider the dual concepts. A matrixF in MX is adual-permutation matrix
if |X|−1F2 = F andF ◦ tF = J. So ifA is a Bose-Mesner algebra with duality9 and if
R ∈ A1, then9(R) is a dual-permutation matrix. Indeed, applying9 to R ◦ R = R and
using (15) we obtain|X|−19(R)2 = 9(R); applying9 to RtR = I and using (14), (16),
(17) we obtain9(R) ◦ t9(R) = J.

Proposition 1 The following properties are equivalent for a matrix F in MX:
(i) F is a dual-permutation matrix,

(ii) |X|−1F is a rank1 idempotent with constant diagonal,

(iii) There is an invertible diagonal matrix1 in MX such that F= 1J1−1.

Proof: (i)⇒ (ii): Since|X|−1F2= F, |X|−1F is an idempotent. The rank of this idempo-
tent is|X|−1 Trace(F)= |X|−1∑

x∈X F(x, x). SinceF ◦ tF = J, F(x, x)2= 1 andF 6= 0.
It follows that F(x, x) = 1 for everyx in X and|X|−1F has rank 1.
(ii) ⇒ (iii ): Since|X|−1F has rank 1, there exists functionsf , g from X to C such

that|X|−1F(x, y) = f (x)g(y) for all x, y ∈ X. The constant diagonal elementf (x)g(x)
(x ∈ X) of the matrix|X|−1F is |X|−1 Trace(|X|−1F) = |X|−1, so f (x) 6= 0 for all x ∈ X
andF(x, y)= f (x) f (y)−1 for all x, y ∈ X. Take1(x, y) = δx,y f (x) for all x, y ∈ X.
(iii ) ⇒ (i): |X|−1F2= F is immediate, F ◦ tF = J follows from F(x, y)=1(x, x)

1(y, y)−1. 2

Clearly the set of dual-permutation matrices inMX forms an abelian group under
Hadamard product (the identity element isJ and the inverse ofF is tF). Hence the set of
dual-permutation matrices which belong to a Bose-Mesner algebraA form an abelian group
A′1 under Hadamard product. ForF in A′1, let us express|X|−1F in the basis of ordinary
idempotents ofA. By (ii) of Proposition 1, taking the trace we see that all coefficients,
except one equal to 1, must be zero, and henceA′1 ⊆ {|X|Ei , i = 0, . . . ,d}. Again we
may well haveA′1 = {J}. On the other hand ifA is the Bose-Mesner algebra of an abelian
group X, then the equalityA′1 = {|X|Ei , i = 0, . . . ,d} holds, since by (11) eachEi has
rank 1 since|X| = d + 1.

Let |X|Ei be an element of orderk > 1 in A′1. Sok is the smallest positive integer`
such that(|X|Ei (x, y))` = 1 for all x, y ∈ X. It follows that{|X|Ei (x, y), x, y ∈ X} =
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{ηu, u ∈ U } whereη = exp(2π
√−1/k) andU ⊆ {0, . . . , k − 1} contains a non-zero

element which is not a proper divisor ofk.
By (10), J Ej = 0 for every element|X|Ej 6= J of the subgroup ofA′1 generated

by |X|Ei . Expressing|X|Ei in the basis of Hadamard idempotents, we see that there
exist positive integerspu (u ∈ U ) such that every column of|X|Ei takes the valueηu

exactlypu many times. Then
∑

u∈U pu(η
u)v = 0 (v = 1, . . . , k− 1). Taking pu= 0 when

u ∈ {0, . . . , k} − U , we may write
∑k−1

u=0 puη
uv = 0 (v = 1, . . . , k − 1). Thus the vector

(p0, . . . , pk−1) is orthogonal to every vector representing a non-trivial character ofZ/kZ.
Hence this vector is a multiple of the trivial character. It follows that(p0, . . . , pk−1) =
(|X|/k, . . . , |X|/k).

Now let1 be an invertible diagonal matrix such that|X|Ei = 1J1−1. Thus|X|Ei (x, y)
= 1(x, x)1(y, y)−1 for everyx, y in X. Let us fix y ∈ X and assume without loss of
generality that1(y, y) = 1. Then we see that the diagonal values of1 are the powers of
η, each repeated|X|/k times. In other words, we may establish a bijection betweenX and
{1, . . . , k} × {1, . . . , `}, where` = |X|/k, so that1((r, s), (r, s)) = ηr−1 (r ∈ {1, . . . , k},
s ∈ {1, . . . , `}). Then|X|Ei ((r, s), (t, u)) = ηr−t (r, t ∈ {1, . . . , k}, s, u ∈ {1, . . . , `}).
Note that this formula is compatible with (12).

Finally we observe that if the Bose-Mesner algebraA has a duality9, then9 is a group
isomorphism betweenA1 andA′1. Indeed we have already shown that9(A1) ⊆ A′1.
Conversely, letF belong toA′1. By (13) and (17), we may writeF = |X|−192( tF) =
9(|X|−1 t9(F)). Let us show thatR = |X|−1 t9(F) belongs toA1. First, R ◦ R =
|X|−2 t9(F) ◦ t9(F); applying9 to |X|−1 F2 = F , using (14) and transposing, we get
|X|−1 t9(F)◦ t9(F) = t9(F)and henceR◦R= R. Second,RtR= |X|−2 t9(F)9(F);
applying9 to F ◦ tF = J, using (15), (16), (17), we obtain|X|−19(F) t9(F) = |X|I , so
that RtR= I . Thus we have shown that9 is a bijection fromA1 toA′1. This bijection is
a group isomorphism by (14).

3.2. The index of a 2-weight spin model

Let(X,W+,W−)be a two-weight spin model with modulusa and letAbe the Bose-Mesner
algebra introduced in Theorem B. Exchangingα andβ in (4), we obtain:∑

x∈X

W+(α, x)W+(β, x)W−(x, γ ) = DW+(β, α)W−(α, γ )W−(γ, β). (18)

Hence, comparing (4) and (18),

W+(α, β)W−(β, γ )W−(γ, α) = W+(β, α)W−(α, γ )W−(γ, β).

Using (3), we obtain

W+(α, β)
W+(β, α)

= W+(α, γ )
W+(γ, α)

· W+(γ, β)
W+(β, γ )

, for everyα, β, γ ∈ X.
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Fixing γ and defining the diagonal matrix1 in MX by

1(x, x) = W+(x, γ )
W+(γ, x)

,

this becomes

W+(α, β)
W+(β, α)

= 1(α, α)

1(β, β)
,

or equivalently

W+(α, β)W−(α, β) = 1(α, α)

1(β, β)
.

Hence, by Proposition 1,W+ ◦ W− is a dual-permutation matrix. Let9 be the duality
given by Theorem B. By Remark (ii) following Theorem B and (15),9(W+ ◦ W−) =
|X|−19(W+)9(W−) = W− t W+. Also, since9(A1) = A′1, 9(A′1) = {92(R), R ∈
A1} = {|X| tR, R ∈ A1} = {|X|R, R ∈ A1} by (13). Hence we have proved the following
result.

Proposition 2 W+ ◦W− ∈ A′1 and|X|−1 t W+W− ∈ A1.

We note that9({Ei , i = 0, . . . ,d}) = {Ai , i = 0, . . . ,d}. We shall choose the indices
so that9(Ei ) = Ai , i = 0, . . . ,d. We shall writeW+ ◦W− = |X|Es, s ∈ {0, . . . ,d}, and
consequentlyt W+W− = |X|As.

Since9 is a group isomorphism fromA1 toA′1, the order of the element|X|−1 t W+W−

of the groupA1 is equal to the order of the element

|X|−19( t W+W−) = |X|−19( t W+) ◦9(W−) = t W− ◦ t W+

of the groupA′1, which is equal to the order ofW+ ◦ W−. This positive integer will be
denoted bym and will be called theindexof the 2-weight spin model(X,W+,W−). Note
that a 2-weight spin model has index 1 if and only if it is symmetric, and thatm ≤ |A1| =
|A′1| ≤ d + 1.

Remarks (i) For 2-weight spin models(Xi , W+i , W−i ), i = 1, 2, their tensor product
(X, W+, W−) is defined byX = X1 × X2 andW± = W±1 ⊗W±2 , whereA⊗ B denotes
the Kronecker product:(A⊗ B)((x1, x2), (y1, y2)) = A(x1, y1)B(x2, y2) for x1, y1 ∈ X1,
x2, y2 ∈ X2. As easily shown,(X, W+, W−) is a 2-weight spin model. The indexm
of (X,W+,W−) is given by the least common multiple ofm1 andm2, wheremi denotes
the index of(Xi , W+i , W−i ), i = 1, 2. This fact can be shown by computing the order of
W+ ◦W− with respect to Hadamard product.

(ii) In particular, the index is invariant under taking tensor product with any symmetric
2-weight spin model.
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Proposition 3 (i) There is a partition of X into m parts X1, . . . , Xm of equal sizes such
that W+(x, y) = ηi− j W+(y, x) for all i , j ∈ {1, . . . ,m} and x ∈ Xi , y ∈ X j , where
η = exp(2π

√−1/m).
(ii) Let x, y ∈ X be such that As(x, y) = 1. Then W+(z, x) = W+(y, z) for all z in X.
(iii) Write W+ =∑d

i=0 ti Ai andtAs = As′ . Then ts′ = t0.

Proof: (i) Follows immediately from the analysis at the end of section 3.1 (applied with
i = s andk = m) and from the equalityW+ ◦W− = |X|Es.

(ii) Let σ be the permutation ofX such that forx, y ∈ X, As(x, y) = 1 iff x = σ(y).
We want to show that for ally, z ∈ X, W+(z, σ (y)) = W+(y, z). We note that

(tAs
t W+)(y, z) =

∑
u∈X

tAs(y, u)
t W+(u, z)

=
∑
u∈X

As(u, y)W+(z, u)

=
∑
u∈X

δu,σ (y)W
+(z, u) = W+(z, σ (y)).

On the other hand, recall that|X|As = t W+W−. Using (3’) (see Remark (i) following
Theorem B), we get

|X| tAs
t W+ = t W−W+ t W+ = W+ t W− t W+ = W+(|X|I ),

that is,tAs
t W+ = W+. The result follows.

(iii) Take z = y in (ii): W+(y, x) = W+(y, y) wheneverAs(x, y) = 1. From the
equalityW+ =∑d

i=0 ti Ai , W+(y, x) = ts′ wheneverAs(x, y) = 1, andW+(y, y) = t0 for
all y ∈ X. 2

It is clear that the partitionX1, . . . , Xm in (i) above is uniquely determined up to ordering.
In particular, such a partition characterizes the indexm. The significance of Proposition
(iii) is that in a non-symmetric 2-weight spin model(X,W+,W−), the value which appears
in the diagonal ofW+ also appears elsewhere in this matrix.

Part of the following result also appears in [15], Proposition 12.

Proposition 4 Let R be an element ofA1 and let F = 9(R) ∈ A′1. Then RW+ and
F ◦W+ are scalar multiples of one another. Write W′+ = λ−1RW+ = λF ◦W+ for some
non-zero complex numberλ, and define W′− by the equality W′+ ◦ t W′− = J . Then
(i) (X, W′+, W′−) is a2-weight spin model gauge equivalent to(X, W+, W−).

(ii) The index of(X, W′+, W′−) is the order of As( tR)2 in A1.
(iii) (X, W′+, W′−) can be chosen symmetric iff As is a square inA1 or equivalently
|X|Es is a square inA′1. In this case the link invariant associated with(X, W+, W−)
depends only trivially on the link orientation.
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Proof: From Theorem B,F = 9(R) = a t W− ◦ (W+(W− ◦ R)). SinceR ∈ {Ai , i =
0, . . . ,d}, there is a complex numberµ such thatW− ◦ R = µR. Note thatµ 6= 0 since
W− has non-zero entries by (3). ThenF = a t W− ◦ (W+(µR)) = µa t W− ◦ (W+R) and
by (3’), F ◦W+ = µaW+R= µaRW+.

So we may writeW′+ = λ−1RW+ = λF ◦ W+ for λ−2 = µa ∈ C − {0}. Let 1
be an invertible diagonal matrix such thatF(x, y)=1(x, x)1(y, y)−1 for all x, y ∈ X
(see Proposition 1). ThenF ◦W+ = 1W+1−1. It follows from (3’) that( tF ◦ t W−) ◦
(F ◦W+)= J and hencet W′− = λ−1( tF ◦ t W−), that isW′− = λ−1(F ◦W−)= λ−11W−

1−1.
We haveF ◦ W+ = 1W+1−1 = λ−2RW+. Taking the inverses and using (3’) we

obtain1W−1−1 = λ2W− tR, and henceW′− = λW− tR.
Let us consider the 4-weight spin model(X,W+,W+,W−,W−). Then (see Theorem A),

(X,1W+1−1,W+,1W−1−1,W−) = (X, λ−1W′+,W+, λW′−, W−)

is a 4-weight spin model obtained from it by an odd gauge transformation. Noting that
(W+)−1RW+ = R is a permutation matrix, we now perform an even gauge transformation
to obtain a 4-weight spin model

(X, λ−1W′+, RW+, λW′−,W− tR)= (X, λ−1W′+, λW′+, λW′−, λ−1W′−),

which is proportional to(X,W′+,W′+,W′−,W′−). Hence(X,W′+,W′−) is a 2-weight
spin model gauge equivalent to(X,W+,W−).

Finally,

|X|−1 t W′+W′− = |X|−1(λ−1 t W+ tR)(λW− tR)

= (|X|−1 t W+W−)( tR)2

= As(
tR)2

and the index of(X,W′+,W′−) is the order of this element ofA1. 2

A 2-weight spin model will be said to bequasi-symmetricif As is a square inA1 or
equivalently|X|Es is a square inA′1. Thus the link invariant associated with a quasi-
symmetric 2-weight spin model depends only trivially on the link orientation.

Proposition 5 (i) Every2-weight spin model is gauge equivalent to a2-weight spin model
whose index is a power of2.

(ii) A 2-weight spin model of odd index is quasi-symmetric. In particular, a 2-weight
spin model defined on a set X of odd size is quasi-symmetric.

Proof: (i) Write m = (2p+ 1)2k (p ≥ 0, k ≥ 0). ThenA2p+1
s = As(A

p
s )

2 has order 2k

and by Proposition 4 we obtain a 2-weight spin model of index 2k which is gauge equivalent
to (X,W+,W−).
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(ii) In particular ifm is odd,k = 0 and we obtain a symmetric 2-weight spin model gauge
equivalent to(X,W+,W−). Sincem divides|X| by Proposition 3 (i), if|X| is odd thenm
is also odd. 2

When X is an abelian group with the Bose-Mesner algebraA, there exists a 2-weight
spin model satisfying the situation of Theorem B (see [1, 3]). The following result also
appears as part of Proposition 13 of [15] with a different proof.

Proposition 6 If A is isomorphic to the Bose-Mesner algebra of an abelian group, then
the2-weight spin model(X, W+, W−) is quasi-symmetric.

Proof: We have (identifyingX and{0, . . . ,d})A1={Ai , i = 0, . . . ,d}andA′1={|X|Ei ,

i = 0, . . . ,d}. Write Aj =
∑d

i=0 Pi j Ei ( j = 0, . . . ,d). Let Aj , Ak, A` be three ele-
ments ofA1 such thatAj Ak= A`. Then, fori ∈ {0, . . . ,d}, Pi `Ei = Ei A` = Ei Aj Ak =
Pi j Ei Ak= Pi j Pik Ei , so thatPi `= Pi j Pik . Hence the mapχi from A1 to C defined by
χi (Aj ) = Pi j for every Aj in A1 is a character ofA1. Let A∗1 be the group of char-
acters ofA1 and letϕ be the mapping fromA′1 to A∗1 defined byϕ(|X|Ei )=χi for
i = 0, . . . ,d. The matrix with entriesPi j has no repeated rows since it is a matrix of
change of basis from{Ai , i = 0, . . . ,d} to {Ei , i = 0, . . . ,d}, and henceϕ is injective.
Since|A′1| = |A1| = |A∗1|, ϕ is a bijection. Moreover the bijectionϕ is a group isomor-
phism. Indeed let|X|Ei , |X|Ej , |X|Ek belong toA′1 with |X|Ek = |X|Ei ◦ |X|Ej . For A`
inA1,χk(A`)Ek= Ek A`= |X|(Ei ◦Ej )A` = |X|(Ei A`◦Ej A`) (sinceA` is a permutation
matrix)= |X|(χi (A`)Ei ◦ χ j (A`)Ej ) = χi (A`)χ j (A`)Ek. Henceχk = χiχ j .

Thus it will be enough to prove thatχs is a square inA∗1. Taking the trace in the equality
EsAi = χs(Ai )Es we obtainχs(Ai ) = Trace(EsAi ) =

∑
(Es ◦ tAi ), where

∑
denotes the

sum of entries of a matrix.
Write W+ =∑d

j=0 t j Aj . Then by (3’),W− =∑d
j=0 t−1

j
tAj . Let Ai ∈ A1 with A2

i = I ,
or equivalentlytAi = Ai . Then the coefficient of|X|Es = W+ ◦ W− for tAi is 1, and
henceEs ◦ tAi = |X|−1 tAi . It follows thatχs(Ai ) =

∑ |X|−1 tAi = 1. Letπ be the group
homomorphism fromA1 to itself defined byπ(Aj ) = A2

j for all Aj in A1. Thusχs takes
the value 1 on Kerπ . Let π∗ be the group homomorphism fromA∗1 to itself defined by
π∗(χ) = χ2 for all χ in A∗1. Clearly

Imπ∗ ⊆ {χ ∈ A∗1 |χ(Kerπ) = {1}}

sinceχ2(Ai ) = χ(A2
i ) = χ(I ) = 1 for χ ∈ A∗1 andAi ∈ Kerπ .

{χ ∈ A∗1 |χ(Kerπ) = {1}} is isomorphic to the group of characters ofA1/Kerπ and
hence has size|A1|/|Kerπ | = |Imπ | = |Imπ∗| (sinceA1 andA∗1 are isomorphic). Hence
Imπ∗ = {χ ∈ A∗1 |χ(Kerπ) = {1}} andχs ∈ Imπ∗, that is,χs is a square inA∗1. 2

We shall now look for non quasi-symmetric spin models. For this purpose, in view of
Proposition 5, we shall study the simplest case of even index, namely the case of index 2.
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4. General form of 2-weight spin models of index 2

Proposition 7 Let (X, W+, W−) be a2-weight spin model of index2. Then X can be
ordered and split into4 blocks of equal sizes so that W+ takes the following form:

W+ =


A A B −B

A A −B B

− tB tB C C
tB − tB C C

 with A, C symmetric.

Proof: We first split X into two blocks X1, X2 of equal sizes so thatW+(x, y) =
(−1)i− j W+(y, x) for all i , j ∈ {1, 2} and x ∈ Xi , y ∈ X j (Proposition 3 (i)). We
orderX so that

X1 X2

|X|Es = W+ ◦W− = X1

X2

(
J −J

−J J

)
.

Write W+ =∑d
i=0 ti Ai . SinceA2

s = I and hencetAs = As, if As(x, y) = 1 for x, y ∈ X,
W+(x, y) = t W+(x, y) = ts and hence|X|Es(x, y) = 1, so thatx ∈ X1, y ∈ X1 or
x ∈ X2, y ∈ X2. Since all cycles of the permutation represented byAs have length 2
(Section 3.1), we may splitX1 (respectively:X2) into two blocks of equal sizesX11, X12

(respectively:X21, X22) so that if(x, y) is such a cycle (i.e.As(x, y) = 1), x andy belong
to different blocks. We orderX so that

X11 X12 X21 X22

As =
X11

X12

X21

X22


0 I 0 0

I 0 0 0

0 0 0 I

0 0 I 0

 .

Now write

X11 X12 X21 X22

W+ =

X11

X12

X21

X22


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 .
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The equalityW+ = (|X|Es) ◦ t W+ becomes
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 =


tA11
tA21 −tA31 −tA41

tA12
tA22 −tA32 −tA42

−tA13 −tA23
tA33

tA43

−tA14 −tA24
tA34

tA44

 (19)

and the equalityt W+ = AsW+ becomes
tA11

tA21
tA31

tA41
tA12

tA22
tA32

tA42
tA13

tA23
tA33

tA43
tA14

tA24
tA34

tA44

 =


A21 A22 A23 A24

A11 A12 A13 A14

A41 A42 A43 A44

A31 A32 A33 A34

 . (20)

Combining (19) and (20) we obtain(
A11 A12

A21 A22

)
=
( tA11

tA21

tA12
tA22

)
=
(

A21 A22

A11 A12

)
.

HencetA11 = A11 = A21, tA22 = A22 = A12 and A12 = tA21. It follows that the above
matrix takes the form(

A A

A A

)
with A symmetric. Similarly,(

A33 A34

A43 A44

)
=
( tA33

tA43
tA34

tA44

)
=
(

A43 A44

A33 A34

)
shows that this matrix is of the form(

C C

C C

)
with C symmetric. We have also(

A13 A14

A23 A24

)
=
(− tA31 − tA41

− tA32 − tA42

)
=
(−A23 −A24

−A13 −A14

)
and (

A31 A32

A41 A42

)
=
(− tA13 − tA23

− tA14 − tA24

)
=
(−A41 −A42

−A31 −A32

)
.
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The last equality yields by transposition(
A13 A14

A23 A24

)
=
( tA41

tA31
tA42

tA32

)
.

Hence(
A13 A14

A23 A24

)
=
(−A23 −A24

−A13 −A14

)

=
(− tA31 − tA41

− tA32 − tA42

)
=
( tA41

tA31
tA42

tA32

)
and this matrix is of the form(

B −B

−B B

)
.

The result follows. 2

Remarks (i) The form ofW+ given in Proposition 7 satisfies (19), (20), so we cannot go
further with this method.

(ii) As easily shown, 2-weight spin model with the form ofW+ in Proposition 7 has
index 2.

In the sequel we shall use the following convenient description of 2-weight spin models.
Assuming the identityW+(α, β)W−(β, α) = 1, which is the first part of (3), the second
part of (3) can be written

∑
x∈X

W+(α, x)

W+(β, x)
= |X|δα,β (21)

and (4) can be written

∑
x∈X

W+(α, x)W+(β, x)

W+(γ, x)
= D

W+(α, β)
W+(α, γ )W+(γ, β)

. (22)

A matrix W+ in MX with non-zero entries satisfying (21) and (22) (withD2 = |X|) for
all α, β, γ in X will be called aspin model(with loop variableD). Then, definingW− in
MX by the identityW+(α, β)W−(β, α) = 1, (3) and (4) hold. Moreover, it can be shown
(see [20]) that (2) holds for some non-zero complex numbera. Thus(X, W+, W−) is a
2-weight spin model. Finally, a matrixW+ in MX with non-zero entries satisfying (21) for
all α, β in X will be called atype II matrix.

In the following result, the parameterε is used to introduce a class of symmetric spin
models closely related to the spin models of index 2 as described in Proposition 7.
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Proposition 8 Letε ∈ {1,−1} and A, B,C be three matrices in MY with non-zero entries,
A and C being symmetric. Let

Y1 Y2 Y3 Y4

W+ =

Y1

Y2

Y3

Y4


A A B −B

A A −B B

ε tB −ε tB C C

−ε tB ε tB C C

 ,

where the blocks Y1,Y2,Y3,Y4 are copies of Y . Then W+ is a spin model with loop variable
2D, where D2 = |Y|, if and only if the following(i) and(ii) hold.
(i) A, C are spin models with loop variable D and B is a type II matrix.

(ii) The following identities hold for allα, β, γ in Y:

∑
y∈Y

A(α, y)B(y, β)

B(y, γ )
= D

B(α, β)

C(β, γ )B(α, γ )
, (23)

∑
y∈Y

C(α, y)B(β, y)

B(γ, y)
= D

B(β, α)

A(β, γ )B(γ, α)
, (24)

∑
y∈Y

B(y, β)B(y, γ )

A(α, y)
= εD

C(β, γ )

B(α, β)B(α, γ )
, (25)

∑
y∈Y

B(β, y)B(γ, y)

C(α, y)
= εD

A(β, γ )

B(β, α)B(γ, α)
. (26)

Proof: The rows and columns ofW+ are indexed by the unionX of the disjoint blocks
Yi , i = 1, . . . ,4. We must consider several cases which will be described by statements of
the formα ∈ Yi , β ∈ Yj and (for (22))γ ∈ Yk. To reduce the number of these cases we
introduce the following transformations.

Transformation (T1): Exchange ofY1 andY2. This transforms the study ofW+ into the
study of the following reordering ofW+:

Y2 Y1 Y3 Y4

Y2

Y1

Y3

Y4


A A −B B

A A B −B

−ε tB ε tB C C

ε tB −ε tB C C

 ,

We observe that this matrix can also be obtained fromW+ by replacingB by−B.
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Transformation (T2): Exchange ofY3 andY4. The corresponding reordering ofW+ gives
the same matrix as for (T1).

Transformation (T3): Replacement of(Y1,Y2,Y3,Y4) by (Y3,Y4,Y1,Y2). The corre-
sponding reordering ofW+ is

Y3 Y4 Y1 Y2

Y3

Y4

Y1

Y2


C C ε tB −ε tB

C C −ε tB ε tB

B −B A A

−B B A A

 .

This matrix can also be obtained fromW+ by exchangingA andC and replacingB by ε tB.

It is easy to check that the conditions (i) and (ii) of Proposition 8 are invariant under the
replacement ofB by−B, and are also invariant under the simultanous exchange ofA and
C and replacement ofB by ε tB. The only non-trivial fact is that ifB is a type II matrix,tB
is also a type II matrix. To see this, defineB− ∈ MY by the identityB−(y, z) = B(z, y)−1.
Then (21) withB instead ofW+ andY instead ofX can be writtenB B− = |Y|I , which
gives the result by transposition.

Thus we may freely use the transformations (T1), (T2), (T3) to reduce the number of
cases.

A) Let us consider first (21). We may assumeα 6= β.

First case: α andβ belong to the same blockYi . We may assumei = 1. Then (21)
becomes

2
∑
y∈Y

A(α, y)

A(β, y)
+ 2

∑
y∈Y

B(α, y)

B(β, y)
= 0,

where nowα, β are considered as elements ofY.

Second case: α ∈ Yi , β ∈ Yj with i 6= j . We may assumei = 1 and j ∈ {2, 3}. For
i = 1, j = 2, (21) becomes

2
∑
y∈Y

A(α, y)

A(β, y)
− 2

∑
y∈Y

B(α, y)

B(β, y)
= 0.

For i = 1, j = 3, (21) holds.
The pair of identities which we have obtained reduces to the identities (21) forA andB,

that is to the fact thatA andB are type II matrices.

B) Let us consider (22), whereD must now be replaced by 2D.
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First case: α, β, γ belong to the same blockYi . We may assume thati = 1. Then (22)
becomes:

2
∑
y∈Y

A(α, y)A(β, y)

A(γ, y)
= 2D

A(α, β)

A(α, γ )A(γ, β)
,

which is the identity (22) for the matrixA. Thus the condition which we obtain is that the
type II matrix A is actually a spin model with loop variableD.

Second case: α, β belong to the same blockYi andγ belongs to another blockYj . We
may assumei = 1 and j ∈ {2, 3}. For i = 1, j = 2, (22) becomes the identity (22) forA.
For i = 1, j = 3, (22) becomes:

2
∑
y∈Y

B(α, y)B(β, y)

C(γ, y)
= 2D

A(α, β)

B(α, γ )ε tB(γ, β)
,

i.e. ∑
y∈Y

B(α, y)B(β, y)

C(γ, y)
= εD

A(α, β)

B(α, γ )B(β, γ )
,

which is (26) up to a change of variables.

Third case: α, γ belong to the same blockYi andβ belongs to another blockYj . We
may assumei = 1 and j ∈ {2, 3}. For i = 1, j = 2, (22) becomes the identity (22) forA.
For i = 1, j = 3, (22) becomes the identity (24) up to a change of variables.

Fourth case: β, γ belong to the same blockYi andα belongs to another blockYj . We
may assumei = 1 and j ∈ {2, 3}. For i = 1, j = 2, (22) becomes the identity (22) forA.
For i = 1, j = 3, (22) becomes the identity (24) sinceA is symmetric.

Fifth case: α ∈ Yi , β ∈ Yj , γ ∈ Yk with i , j , k distinct. We may assumei = 1 and
j ∈ {2, 3}. For i = 1, j = 2, we may assumek = 3. Then (22) becomes the identity (26)
up to a change of variables. Fori = 1, j = 3, we have two cases:(i, j, k) = (1, 3, 2)
and(i, j, k) = (1, 3, 4). When(i, j, k) = (1, 3, 2), (22) becomes the identity (24) up to a
change of variables. When(i, j, k) = (1, 3, 4), (22) becomes the identity (23) sinceC is
symmetric. This completes the proof. 2

Remark Makoto Matsumoto (private communication) has shown that (23), (24) are equi-
valent and (25), (26) are also equivalent.

We now establish a correspondence between the symmetric (ε = 1) and non-symmetric
(ε = −1) spin models appearing in Proposition 8.
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Proposition 9 Let A, B, C be three matrices in MY, A and C being symmetric, and
assumeη4 = −1, D2 = |Y|. Then

A A B −B

A A −B B
tB −tB C C

−tB tB C C


is a (symmetric) spin model with loop variable2D if and only if

A A ηB −ηB

A A −ηB ηB

−η tB η tB C C

η tB −η tB C C


is a (non-symmetric) spin model with loop variable2D.

Proof: It is easy to check that the conditions (i), (ii) of Proposition 8 are invariant under
the simultanous multiplication ofB by η and change of sign ofε. 2

We shall now study an interesting example of the correspondence given by Proposition 9.

5. Symmetric and non-symmetric Hadamard spin models

5.1. Definition of the Hadamard spin models

In [21], the second author constructed symmetric spin models associated with Hadamard
matrices. To construct these spin models, we first need another, simpler spin model.

LetY be a set of sizen ≥ 2, letD2= n, and letu ∈ C satisfy the equation−u2− u−2 = D.
Then the matrix

A = −u3I + u−1(J − I )

in MY is a symmetric spin model, called aPotts model, see [9, 18].
Now let H be a Hadamard matrix inMY, i.e. a matrix with entries+1 or−1 such that

H tH = nI . We shall assume in the sequel thatn ≥ 4, and hencen is a multiple of 4. Let
ω be a fourth root of 1. Let

U+ =


A A ωH −ωH

A A −ωH ωH

ω tH −ω tH A A

−ω tH ω tH A A

 .
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ThenU+ is a symmetric spin model with loop variable 2D, which we shall call asymmetric
Hadamard spin model. For the sake of completeness, we give a proof using Proposition 8
(with B = ωH , C = A andε = 1).

Condition (i) is satisfied since every Hadamard matrixH is a type II matrix: (21) for
H can be written

∑
y∈Y H(α, y)H(β, y) = |Y|δα,β , which is equivalent to the equation

H tH = nI .
The equations (23)–(26) of condition (ii) become:

∑
y∈Y

A(α, y)H(y, β)H(y, γ ) = D
H(α, β)H(α, γ )

A(β, γ )
, (23’)

∑
y∈Y

A(α, y)H(β, y)H(γ, y) = D
H(β, α)H(γ, α)

A(β, γ )
, (24’)

∑
y∈Y

H(y, β)H(y, γ )

A(α, y)
= D A(β, γ )H(α, β)H(α, γ ), (25’)

∑
y∈Y

H(β, y)H(γ, y)

A(α, y)
= D A(β, γ )H(β, α)H(γ, α). (26’)

We observe that (24’) is equivalent to (23’) withH replaced bytH and similarly (26’) is
equivalent to (25’) withH replaced bytH . So it is enough to prove (23’) and (25’) for any
Hadamard matrixH in MY.

Let A− = −u−3I + u(J − I ). ThenA− is obtained fromA by the exchange ofu and
u−1, and hence is a Potts model as defined above. MoreoverA−(y, z) = A(y, z)−1 for all
y, z in Y. Since (25’) is equivalent to (23’) withA replaced byA−, it is enough to prove
(23’) for any Hadamard matrixH and Potts modelA. (23’) can be rewritten as

−u3H(α, β)H(α, γ )+ u−1
∑

y∈Y−{α}
H(y, β)H(y, γ ) = D

H(α, β)H(α, γ )

A(β, γ )
.

Whenβ = γ this becomes

−u3+ u−1(n− 1) = D

−u3
,

i.e.

−u3+ u−1(u4+ u−4+ 1) = u−3(u2+ u−2).

Whenβ 6= γ the LHS is equal to

−(u3+ u−1)H(α, β)H(α, γ )+ u−1
∑
y∈Y

H(y, β)H(y, γ )

=−(u3+ u−1)H(α, β)H(α, γ )
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sinceH is a Hadamard matrix, and the RHS isDH(α, β)H(α, γ )(u−1)−1. This completes
the proof.

Assumeη4 = −1. Let

W+ =


A A ηH −ηH

A A −ηH ηH

−η tH η tH A A

η tH −η tH A A

 .
Then it follows from Proposition 9 thatW+ is a non-symmetric spin model which we shall
call anon-symmetric Hadamard spin model.

5.2. Two related Bose-Mesner algebras

Consider the following matrices (where the blocks belong toMY):

B0 =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

 ,

B1 =


0 0 J+H

2
J−H

2

0 0 J−H
2

J+H
2

J+ tH
2

J− tH
2 0 0

J− tH
2

J+ tH
2 0 0

 ,

B2 =


J − I J − I 0 0

J − I J − I 0 0

0 0 J − I J − I

0 0 J − I J − I

 ,

B3 =


0 0 J−H

2
J+H

2

0 0 J+H
2

J−H
2

J− tH
2

J+ tH
2 0 0

J+ tH
2

J− tH
2 0 0

 ,

B4 =


0 I 0 0

I 0 0 0

0 0 0 I

0 0 I 0

 .
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Then the symmetric Hadamard spin modelU+ of the previous section is

U+ = −u3B0+ ωB1+ u−1B2− ωB3− u3B4.

Let X be the union of four copies ofY which indexes the rows and columns of these matrices.
Then there is a distance-regular graph0 on the vertex-setX with intersection array{

n, n− 1,
n

2
, 1; 1,

n

2
, n− 1, n

}
(called aHadamard graph, see [6]) such that forx, x′ in X, Bi (x, x′) = 1 iff the distance
betweenx, x′ in 0 is i . It follows that{Bi , i = 0, . . . ,4} is the basis of Hadamard idempo-
tents of a Bose-Mesner algebraB. Properties of this Bose-Mesner algebra are extensively
used to construct symmetric Hadamard spin models in [21] and to determine the associ-
ated link invariant in [11, 14]. We now introduce another Bose-Mesner algebra to study
non-symmetric Hadamard spin models.

Let us consider the following matrices inMX:

A0 = B0, A2 = B2, A4 = B4,

A1 =


0 0 J+H

2
J−H

2

0 0 J−H
2

J+H
2

J− tH
2

J+ tH
2 0 0

J+ tH
2

J− tH
2 0 0

 ,

A3 =


0 0 J−H

2
J+H

2

0 0 J+H
2

J−H
2

J+ tH
2

J− tH
2 0 0

J− tH
2

J+ tH
2 0 0

 .

LetA be the linear span of the matricesAi , i = 0, . . . , 4.

Proposition 10 A is a Bose-Mesner algebra.

Proof: First note that
∑4

i=0 Ai = J and Ai ◦ Aj = δi, j Ai (i, j ∈ {0, . . . ,4}). HenceA
is an algebra with identityJ for the Hadamard product. Moreover,

A0, A2, A4 are symmetric andA3 = tA1. (27)

HenceA is closed under transposition. Note thatI = A0 ∈ A. Thus it remains to show
thatA is a commutative algebra under ordinary matrix product. For this it is enough to
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check the following equalities:

A2
1 =

n

2
(A2+ 2A4),

A1A2 = A2A1 = (n− 1)(A1+ A3),

A2
2 = (2n− 2)(A0+ A4)+ (2n− 4)A2,

A1A3 = A3A1 = n

2
(A2+ 2A0),

A2A3 = A3A2 = (n− 1)(A1+ A3),

A2
3 =

n

2
(A2+ 2A4), (28)

A1A4 = A4A1 = A3,

A2A4 = A4A2 = A2,

A3A4 = A4A3 = A1,

A2
4 = A0.

Actually computation is needed only for the first three lines of (28). The last four lines
are easily derived by considering the permutation of rows (respectively: columns) cor-
responding to multiplication byA4 on the left (respectively: right). Then left and right
multiplication of the first line byA4 yield the fourth line. The fifth line is obtained from
the second line by transposition, and the sixth line is obtained similarly from the first line.
The matrix computations for the second and third line are easy and will be left to the reader.
Finally let us consider the first line.

Let

S=
(

J+H
2

J−H
2

J−H
2

J+H
2

)
,

T =
(

J− tH
2

J+ tH
2

J+ tH
2

J− tH
2

)
,

so that

A1 =
(

0 S

T 0

)
.

Then

A2
1 =

(
ST 0

0 T S

)
.

Now

ST=
(

V1 V2

V3 V4

)
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with

V1 =
(

J + H

2

)(
J − tH

2

)
+
(

J − H

2

)(
J + tH

2

)
,

V2 =
(

J + H

2

)(
J + tH

2

)
+
(

J − H

2

)(
J − tH

2

)
,

V3 =
(

J − H

2

)(
J − tH

2

)
+
(

J + H

2

)(
J + tH

2

)
= V2,

V4 =
(

J − H

2

)(
J + tH

2

)
+
(

J + H

2

)(
J − tH

2

)
= V1.

ExpandingV1 we obtain

V1 = 1

4
(J2+ H J − J tH − H tH + J2− H J + J tH − H tH)

= 1

2
(J2− H tH) = 1

2
(n J− nI ) = n

2
(J − I ).

Similarly

V2 = 1

4
(J2+ H J + J tH + H tH + J2− H J − J tH + H tH)

= 1

2
(J2+ H tH) = 1

2
(n J+ nI ) = n

2
(J + I ).

Hence

ST= n

2

(
J − I J + I

J + I J − I

)
.

We observe thatSandT can be obtained from each other by exchangingH and−tH . Since
ST does not depend on the choice of the Hadamard matrixH , T S= ST. Hence

A2
1 =

n

2


J − I J + I 0 0

J + I J − I 0 0

0 0 J − I J + I

0 0 J + I J − I


= n

2
(A2+ 2A4),

as required. 2
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Note that

W+ = −u3(A0+ A4)+ u−1A2+ η(A1− A3), (29)

so thatW+ belongs to the Bose-Mesner algebraA. We define:

W− = −u−3(A0+ A4)+ u A2+ η−1( tA1− tA3)

= −u−3(A0+ A4)+ u A2− η−1(A1− A3), (30)

so that(X,W+,W−) is a 2-weight spin model (with loop variable 2D).
We note (using (28)) thatA4W+ = t W+. Moreover

W+ ◦W− = A0+ A4+ A2− A1− A3

(this also follows of course from our construction ofW+).
The following result together with Proposition 10 gives an explicit form of Theorem B

for non-symmetric Hadamard spin models.

Proposition 11 A has a duality9 given by

9(M) = −u3 t W− ◦ (W+(W− ◦ M)) for every M inA.

The matrix of9 in the basis{Ai , i = 0, . . . ,4} is

P =


1 n 2n− 2 n 1

1 −η−2D 0 η−2D −1

1 0 −2 0 1

1 η−2D 0 −η−2D −1

1 −n 2n− 2 −n 1

 .

Proof: We show that the matrix of9 in the basis{Ai , i = 0, . . . ,4} is the above matrixP.
Observe that it is enough to compute9(Ai ), i = 0, . . . , 4. These are routine computations
usingAi ◦ Aj = δi, j , (28), (29) and (30). By way of example, we compute9(A1).

9(A1) = −u3 t W− ◦ (W+(W− ◦ A1)).

W− ◦ A1 = −η−1A1.

W+(W− ◦ A1) = −η−1W+A1

= −η−1
(−u3A0A1+ ηA2

1+ u−1A2A1− ηA3A1− u3A4A1
)
.
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Using (28) we obtain

W+(W− ◦ A1)

= η−1u3A1− n

2
(A2+ 2A4)− η−1u−1(n− 1)(A1+ A3)+ n

2
(A2+ 2A0)+ η−1u3A3

= n A0+ η−1(u3− u−1(n− 1))A1+ η−1(u3− u−1(n− 1))A3− n A4.

Now

−u3 t W− = A0− η−1u3A1− u4A2+ η−1u3A3+ A4.

So finally

9(A1) = n(A0− A4)+ η−1(u3− u−1(n− 1))η−1u3(A3− A1).

The coefficient ofA3− A1 is

η−2(u3− u−1(u4+ u−4+ 1))u3 = η−2(−u−2− u2) = η−2D.

Hence

9(A1) = n A0− η−2D A1+ η−2D A3− n A4.

We now show that9 is a duality.
Checking (13), i.e.92(M) = 4n tM for everyM in A, amounts to checking thatP2 =

4nR, whereR is the matrix of the transposition operator in the basis{Ai , i = 0, . . . ,4}.
This is an easy computation which is left to the reader.

To verify (14), we shall check that9(Ai Aj ) = 9(Ai ) ◦ 9(Aj ) for i , j ∈ {0, . . . ,4}.
Since9(I ) = J this is true if i = 0 or j = 0, so we assumei , j ∈ {1, . . . ,4}. The
following tables give the expressions of the9(Ai )◦9(Aj ) in the basis{Ai , i = 0, . . . ,4}.
They are easily obtained from the matrixP by computing entrywise products of its column
vectors.

9(A1) ◦9(A1) 9(A1) ◦9(A2) 9(A2) ◦9(A2) 9(A1) ◦9(A3) 9(A2) ◦9(A3)

A0 n2 n(2n− 2) (2n− 2)2 n2 n(2n− 2)

A1 −n 0 0 n 0

A2 0 0 4 0 0

A3 −n 0 0 n 0

A4 n2 −n(2n− 2) (2n− 2)2 n2 −n(2n− 2)

9(A3) ◦9(A3) 9(A1) ◦9(A4) 9(A2) ◦9(A4) 9(A3) ◦9(A4) 9(A4) ◦9(A4)

A0 n2 n 2n− 2 n 1

A1 −n η−2D 0 −η−2D 1

A2 0 0 −2 0 1

A3 −n −η−2D 0 η−2D 1

A4 n2 −n 2n− 2 −n 1
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It is now easy to compare these values of the9(Ai ) ◦ 9(Aj ) with the values of the
9(Ai Aj ) described by linear combinations of columns ofP given by (28). We leave this
verification to the reader. 2

Remark Transposition of the9(Ai ) is realized by the exchange of the second and fourth
row of P. Sinceη−2 = ±√−1, this amounts to complex conjugation ofP, in agreement
with (12).

A Bose-Mesner algebraA on X with basis of Hadamard idempotents{Ai , i = 0, . . . ,d}
is calledtriply regular if the following property holds [11]: for everyi , j , k in {0, . . . ,d},
the number

|{x ∈ X | Ai (x, α) = 1, Aj (x, β) = 1, Ak(x, γ ) = 1}|,

whereα,β, γ ∈ X, only depends on the indexesu, v,w in {0, . . . ,d} such thatAu(β, γ )= 1,
Av(γ, α) = 1, Aw(α, β) = 1. Then this number is denoted byK (i jk | uvw) and called a
triple intersection number.

The Bose-Mesner algebraB associated with a Hadamard graph and introduced at the be-
ginning of this section is triply regular, as shown in [21]. To avoid confusion we shall denote
its triple intersection numbers byKs(i jk | uvw), wheres stands for “symmetric”. From
now on,A is again the Bose-Mesner algebra associated with a non-symmetric Hadamard
spin model.

Proposition 12 A is triply regular. Moreover its triple intersection numbers are triple
intersection numbers ofB.

Proof: Let us split againX into two blocksX1 andX2 of equal sizes,X1 corresponding
to the first half ofX with respect to the ordering we have chosen forX when writing down
the matricesBi andAi (i = 0, . . . ,4).

We observe thatA1(α, β) = B3(α, β) if β ∈ X1 and A1(α, β) = B1(α, β) if β ∈ X2.
Similarly, A3(α, β) = B1(α, β) if β ∈ X1 and A3(α, β) = B3(α, β) if β ∈ X2. Denote
by i 7→ i ′ the permutation of{0, 1, 2, 3, 4} which exchanges 1 and 3. ThenAi (α, β) =
Bi ′(α, β) if β ∈ X1, andAi (α, β) = Bi (α, β) if β ∈ X2.

A triple (u, v, w) ∈ {0, . . . ,d}3 will be said to befeasibleif there existα, β, γ in X such
that Au(β, γ ) = 1, Av(γ, α) = 1, Aw(α, β) = 1. Note that the triple intersection numbers
K (i jk | uvw) are defined only for feasible triples(u, v, w). Clearly(u, v, w) is feasible iff
tAw appears in the expression ofAu Av in the basis of Hadamard idempotents. Then (28)
shows that if(u, v, w) is feasible, there is an even number of odd indexes amongu, v, w
(“parity rule”).

We shall need the following property of the triple intersection numbers ofB: for all i ,
j , k, u, v, w in {0, . . . ,4}, Ks(i ′ j ′k′ | u′v′w′) = Ks(i jk | uvw). This is becauseB3 is the
adjacency matrix of a Hadamard graph0′ on the vertex-setX such that forx, x′ in X,
B1(x, x′) = 1 iff the distance ofx, x′ in 0′ is 3 (exchangeH and−H in the definition
of the Bi ), and theKs(i jk | uvw) do not depend on the choice of Hadamard graph on the
vertex-setX (see [21]).
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Now let α, β, γ be three elements ofX such thatAu(β, γ ) = 1, Av(γ, α) = 1,
Aw(α, β) = 1, and let us compute the number

N = |{x ∈ X | Ai (x, α) = 1, Aj (x, β) = 1, Ak(x, γ ) = 1}|.

Thanks to the parity rule, we have only to consider the following two cases.

Case 1: u, v, w are all even.

Let us assume first thatα belongs toX1. Then, sincev andw are even,β andγ also
belong toX1. Hence

N = |{x ∈ X | Bi ′(x, α) = 1, Bj ′(x, β) = 1, Bk′(x, γ ) = 1}|.

Also Bu′(β, γ ) = 1, Bv′(γ, α) = 1, Bw′(α, β) = 1. It follows that

N = Ks(i
′ j ′k′ | u′v′w′) = Ks(i jk | uvw).

Assume now thatα ∈ X2. Thenβ ∈ X2, γ ∈ X2. Hence

N = |{x ∈ X | Bi (x, α) = 1, Bj (x, β) = 1, Bk(x, γ ) = 1}|.
Also Bu(β, γ ) = 1, Bv(γ, α) = 1, Bw(α, β) = 1. It follows that

N = Ks(i jk | uvw).
Thus we may defineK (i jk | uvw) which is equal toKs(i jk | uvw).

Case 2: exactly one of the indexesu, v, w is even.

We may assume without loss of generality thatu is even andv,w are odd. Let us assume
first thatα belongs toX1. Thenβ, γ belong toX2. Hence

N = |{x ∈ X | Bi ′(x, α) = 1, Bj (x, β) = 1, Bk(x, γ ) = 1}|.

Also Bu(β, γ ) = 1, Bv′(γ, α) = 1, Bw(α, β) = 1. It follows that

N = Ks(i
′ jk | uv′w).

Assume now thatα ∈ X2. Thenβ ∈ X1, γ ∈ X1. Hence

N = |{x ∈ X | Bi (x, α) = 1, Bj ′(x, β) = 1, Bk′(x, γ ) = 1}|.

Also Bu′(β, γ ) = 1, Bv(γ, α) = 1, Bw′(α, β) = 1. It follows that

N = Ks(i j
′k′ | u′vw′) = Ks(i

′ jk | uv′w).

Thus we may defineK (i jk | uvw) which is equal toKs(i ′ jk | uv′w). 2



270 JAEGER† AND NOMURA

5.3. Behaviour of the associated link invariant with respect to orientation

Could a non-symmetric Hadamard spin model be quasi-symmetric? The answer is no, as
shown by the following result.

Proposition 13 The link invariant Z associated with a non-symmetric Hadamard spin
model depends non-trivially on the link orientation.

Proof: A simple example will do. Consider the links given by the following diagramsL1

andL2, which differ only by their orientation (figure 4).
We have chosen a black and white coloring of the regions;x, y denote the values taken

by a mapping from the set of black regions toX.
We shall show that(−u3)T(L1)Z(L1) 6= (−u3)T(L2)Z(L2). Sinceχ(L1) = χ(L2), this

amounts to∑
x,y∈X

W−(y, x)2 6=
∑

x,y∈X

W−(x, y)W−(y, x)

(see (1) and figure 2).
Note that

∑
x,y∈X W−(y, x)2= ∑W− ◦W− and

∑
x,y∈X W−(x, y)W−(y, x)= ∑W−◦

t W−, where
∑

denotes the sum of entries of a matrix.
Recall that

W− = −u−3A0− η−1A1+ u A2+ η−1A3− u−3A4.

Hence

W− ◦W− = u−6A0+ η−2A1+ u2A2+ η−2A3+ u−6A4.

We have also

t W− = −u−3A0+ η−1A1+ u A2− η−1A3− u−3A4.

Figure 4.
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Hence

W− ◦ t W− = u−6A0− η−2A1+ u2A2− η−2A3+ u−6A4.

Now W− ◦W− −W− ◦ t W− = 2η−2(A1+ A3) and∑
W− ◦W− −

∑
W− ◦ t W− = 2η−2

∑
(A1+ A3).

It easily follows from Section 5.2 that
∑
(A1+ A3) = 8n2 6= 0. 2

5.4. An explicit formula for the associated link invariant

In [14], using results of [11], an explicit formula was obtained for the link invariant associ-
ated with a symmetric Hadamard spin model. In this section we follow the same approach
for the link invariant associated with a non-symmetric Hadamard spin model, denoted byZ.

The following result is similar to Proposition 13 of [14], and its proof will be essentially
the same.

Proposition 14 With every diagram L is associated a one variable rational function QL

such that Z(L) = QL(u).

Proof: Let G be a directed graph with vertex-setV(G) and edge-setE(G). We denote
by i (e) (respectively:t (e)) the initial (respectively: terminal) end of the edgee. Letw be
a mapping fromE(G) to MX. Then we write

Z(G, w) =
∑

σ :V(G)→X

∏
e∈E(G)

w(e)(σ (i (e)), σ (t (e))), (31)

an empty product being equal to 1.
Let L be a diagram with a black and white coloring of the regions such that adjacent

regions have opposite color. By (1),

Z(L) = (−u3)−T(L)(2(−u2− u−2))−χ(L)
∑

σ :B(L)→X

∏
v∈V(L)

〈v, σ 〉,

where〈v, σ 〉 is defined on figure 2. We must show that∑
σ :B(L)→X

∏
v∈V(L)

〈v, σ 〉

is given by a rational function ofu.
We may construct a directed planar graphGL and a mappingwL from E(GL) to
{W+,W−} ⊆ A ⊆ MX (A denotes the Bose-Mesner algebra associated with the non-
symmetric Hadamard spin model) such that∑

σ :B(L)→X

∏
v∈V(L)

〈v, σ 〉 = Z(GL , wL).
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Just take the set of black regions ofL as the set of vertices ofGL , and for each cross-
ing of L join the vertices ofGL corresponding to the black regions incident with this
crossing by an oriented edge (the orientation is defined by that of the upper part of the
link). Then, to definewL , assignW+ or W− to each edge according to the prescription of
figure 2.

The mapZG : w 7→ Z(G, w) given by (31) is multilinear in the componentsw(e),
e ∈ E(G), of w. We introduce for every directed plane graphG a vector spaceAG which
is a tensor product of copies ofA, one copy for each edge ofG. Each mappingw from
E(G) = {e1, . . . ,ek} toA is represented by the elementw(e1)⊗ · · · ⊗w(ek) ofAG. Then
ZG can be identified with a linear form onAG.

The vector spaceAG has a natural basisB = {Ai1 ⊗ · · · ⊗ Aik | i1, . . . , i k ∈ {0, . . . ,4}}.
Let L be a diagram. If we expresswL in the basisB, we see that the coefficients are
given by rational functions ofu, since this is true for the coefficients ofW+ andW− in
the basis{Ai , i = 0, . . . ,4}. HenceZ(GL , wL) = ZGL (wL) is a linear combination, with
coefficients given by rational functions ofu, of terms of the formZGL (b), b ∈ B. Thus it
will be enough to prove that for every directed plane graphG andb ∈ B, ZG(b) is given
by a rational function ofu. If G has connected componentsG1, . . . ,Gp andb1, . . . ,bp

denote the restrictions ofb to these connected components, thenZG(b) =
∏p

i=1 ZGi (bi ).
Hence we may assume thatG is connected.

A slightly modified form of a result by Epifanov [8] asserts that there is a sequence
G0, G1, . . . ,Gk = G of directed plane graphs such thatG0 is the trivial graph with one
vertex and no edge and fori = 1, . . . , k, Gi−1 is obtained fromGi by an elementary
local transformation of one of the following types: reversal of the orientation of an edge,
deletion of a loop, contraction of a pendant edge, deletion of an edge parallel to another
one (the ordered pairs of ends of the two edges are the same), contraction of an edge in
series with another one (its terminal end has in-degree and out-degree 1), andstar-triangle
transformations, that is, replacement of a triangle by a “star” (three edges incident to a
common vertex) or the converse operation (for more details on star-triangle transformations,
see section 5.4 of [11]). It is shown in [11] that, provided thatA is exactly triply regular, for
i = 1, . . . , k, ZGi = ZGi−1ρi for some easily described linear mapρi fromAGi toAGi−1.
SinceA is triply regular by Proposition 12 and admits a duality9, A is indeed exactly
triply regular by Proposition 9(iii) of [11]. Eachρi consists in the action of one of certain
linear mapsτ : A→ A, θ : A→ C, θ∗ : A→ C, µ : A⊗A→ A, µ∗ : A⊗A→ A,
κ : A⊗A⊗A→ A⊗A⊗A, κ∗ : A⊗A⊗A→ A⊗A⊗A on appropriate factors
of the tensor productAGi . Note thatZG = ZG0ρ1 · · · ρk. The mapZG0 fromAG0 ' C to
C consists in scalar multiplication by|X| = 4n = 4(u4+ u−4+ 2). We want to show that
the matrix ofZG with respect to the basisB ofAG and the basis{1} of C has entries given
by rational functions ofu. It will be enough to show that the matrices ofτ , θ , θ∗, µ, µ∗,
κ, κ∗ with respect to bases appropriately chosen among{1} for C, {Ai , i = 0, . . . ,4} for
A, {Ai ⊗ Aj , i, j ∈ {0, . . . ,4}} for A ⊗ A and{Ai ⊗ Aj ⊗ Ak, i, j, k ∈ {0, . . . ,4}} for
A⊗A⊗A have entries given by rational functions ofu.

The mapτ : A → A is the transposition map (it corresponds to the reversal of the
orientation of an edge). Its matrix with respect to the basis{Ai , i = 0, . . . ,4} of A is a
permutation matrix.
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The mapθ : A→ C gives for each matrixM inA its (constant) diagonal elementθ(M) (θ
corresponds to the deletion of a loop). Its matrix with respect to the basis{Ai , i = 0, . . . ,4}
of A and the basis{1} of C has entries equal to 0 or 1.

The mapθ∗ : A→ C gives for each matrixM in A its (constant) row sumθ∗(M) (θ∗

corresponds to the contraction of a pendant edge). It easily follows from Section 5.2 that
θ∗(A0) = θ∗(A4) = 1, θ∗(A1) = θ∗(A3) = n, θ∗(A2) = 2n− 2, wheren = u4+ u−4+ 2.
Hence the entries of the matrix ofθ∗ with respect to the basis{Ai , i = 0, . . . ,4} of A and
the basis{1} of C are given by rational functions ofu.

The mapµ : A⊗A→ A is defined by the identityµ(M⊗M ′) = M M ′ (µ corresponds
to the contraction of an edge in series with another one). Then (28) shows that the entries of
the matrix ofµwith respect to the basis{Ai ⊗ Aj , i, j ∈ {0, . . . ,4}} ofA⊗A and the basis
{Ai , i = 0, . . . ,4} ofA are given by polynomials of degree at most 1 inn = u4+ u−4+ 2.

The mapµ∗ : A ⊗ A → A is defined by the identityµ∗(M ⊗ M ′) = M ◦ M ′ (µ∗

corresponds to the deletion of an edge parallel to another one). By (8), the matrix ofµ∗

with respect to the basis{Ai⊗Aj , i, j = 0, . . . ,4}ofA⊗Aand the basis{Ai , i = 0, . . . ,4}
of A has entries equal to 0 or 1.

The mapκ : A ⊗ A ⊗ A → A ⊗ A ⊗ A (which corresponds to the replacement of a
star by a triangle) is defined by Eq. (52) of [11], which takes the form

κ(Ei ⊗ Ej ⊗ Ek) =
∑

uvw∈F(A)
c(i jk | uvw)Au ⊗ Av ⊗ Aw,

where F(A) is the set of feasible triples ofA and thec(i jk/uvw) are certain complex
coefficients. Hence there is a corresponding equation of the form

κ(Ai ⊗ Aj ⊗ Ak) =
∑

uvw∈F(A)
c′(i jk | uvw)Au ⊗ Av ⊗ Aw.

It then follows from Section 5.3 of [11] that

c′(ik j | uvw) = K (i jk | uvw)

for all i , j , k, u, v,w in {0, . . . ,4}. By Proposition 12, these numbers are triple intersection
numbers ofB; they have been computed in [21] and are given by polynomials of degree at
most 1 inn = u4+ u−4+ 2. Hence the entries of the matrix ofκ with respect to the basis
{Ai ⊗ Aj ⊗ Ak, i, j, k ∈ {0, . . . ,4}} of A⊗A⊗A are given by rational functions ofu.

Finally the mapκ∗ : A⊗A⊗A→ A⊗A⊗A (which corresponds to the replacement
of a triangle by a star) is defined by Eq. (53) of [11]. We shall need several steps.

(i) A is generated byW+ and I under Hadamard product.
It is enough to show that if we writeW+ =∑4

i=0 ti Ai , theti with i 6= 0 are distinct.
So we check thatη, u−1, −η, −u3 are distinct. Ifu−1 ∈ {η,−η} or if u−1 = −u3,
thenu−4 = −1 and hencen = u4+ u−4+ 2= 0, a contradiction. If−u3 ∈ {η,−η},
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thenu12 = −1 and hence

D3 = (u4+ u−4+ 2)(−u2− u−2) = −(u6+ u−6+ 3(u2+ u−2)) = 3D,

a contradiction.
(ii) A has a unique duality9 such that9(W+) = DW−.

The existence of9 follows from Theorem B and Remark (ii) following Theorem B.
The uniqueness follows from (i) above.

(iii) κ∗ = (4n)−4(9 ⊗9 ⊗9)κ(9 ⊗9 ⊗9).

By Proposition 12 and 18 of [11] and by (i) and (ii) above, we obtain

(9 ⊗9 ⊗9)κ = 4nκ∗(τ ⊗ τ ⊗ τ)(9 ⊗9 ⊗9).

Right multiplying by9 ⊗9 ⊗9 we get

(9 ⊗9 ⊗9)κ(9 ⊗9 ⊗9) = 4nκ∗(τ92⊗ τ92⊗ τ92).

Then the required equality (iii) follows from (13). Since the entries of the matrixP of
9 with respect to the basis{Ai , i = 0, . . . ,4} (see Proposition 11) are given by rational
functions ofu, we know that the entries of the matrices ofκ and9⊗9⊗9 with respect to
the basis{Ai ⊗ Aj ⊗ Ak, i, j, k ∈ {0, . . . ,4}} ofA⊗A⊗A are given by rational functions
of u. By equation (iii), the same holds forκ∗. 2

The following definitions were introduced in Section 6.1 of [14] with a slightly different
presentation. Consider a link with set of componentsK represented by a diagramL. For
any setC of crossings ofL we denote bys(C) the sum of signs of crossings inC (see
figure 1). For any subsetSof K , we denote byLS the diagram obtained fromL by keeping
only the part ofL which represents components inS; LS is called asubdiagramof L. We
shall allow the empty diagram∅ and defineL∅ = ∅. For anyS⊆ K , letC(S; K ) denote the
set of crossings involving a component fromSand a component fromK\S. Now consider
two link invariants f , g which take their values in a commutative ringÄ and an invertible
elementλ of Ä. Theλ-composition of f, g is the link invariant denoted by( f, g)λ and
defined as follows:

( f, g)λ(L) =
∑
S⊆K

λs(C(S;K )) f (LS)g(L K\S).

TheJones polynomialis a link invariant introduced in [17]. Up to a change of variable
and normalization, it can be defined as follows (see [19]). Consider a diagramL without
its orientation and the following operations ofsmoothingof a crossing depicted on figure 5
(which gives thesignsof the smoothings):

A stateof L is a diagram without crossings obtained by smoothing every crossing ofL.
Let S(L) be the set of states ofL. For σ in S(L), we denote byk(σ ) the sum of signs
of smoothings which have createdσ from L, and byc(σ ) the number of loops ofσ . The
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Figure 5.

bracket polynomialof L, denoted by〈L〉, is the Laurent polynomial in the variableu defined
by:

〈L〉 =
∑
σ∈S(L)

uk(σ )(−u2− u−2)c(σ ).

We set〈∅〉 = 1. ThenV(L) = (−u3)−T(L)〈L〉 (with V(∅) = 1) defines a link invariant
which is the Jones polynomial (up to a change of variables and normalization). It is shown
in [18] (see also [9, 10]) that the link invariant associated with a Potts model as defined at
the beginning of Section 5.1 is given by the Jones polynomial as defined above.

Proposition 15 The link invariant associated with a non-symmetric Hadamard spin model
is given by the(−η−1u−3)-composition of two Jones polynomials.

Proof: Proposition 11 of [14] forY = Z2 (=Z/2Z) states essentially the following (see
the Remark following this result). Let((Z2)

2k,W1,W2,W3,W4) (k ≥ 1) be a 4-weight
spin model with loop variable 2k, modulusµ and associated link invariantf , such that the
four matricesWi , i = 0, . . . ,4, belong to the Bose-Mesner algebra of the group(Z2)

2k.
Let λ be a non-zero complex number. Then there exists a symmetric Hadamard matrixH
of size 22k such that the matricesW′i (i = 1, . . . ,4) given by

W′i =


Wi Wi λεH −λεH
Wi Wi −λεH λεH

λεH −λεH Wi Wi

−λεH λεH Wi Wi

 ,

where ε = 1 if i = 1, 4 andε = −1 if i = 2, 3, define a 4-weight spin model
((Z2)

2k+2,W′1,W
′
2,W

′
3,W

′
4) with loop variable 2k+1, modulusµ and associated link in-

variant( f, f )(λµ−1).
We apply this result to the case whereW1 = W2 = A is a Potts model (see Section 5.1).

That is,A = −u3I +u−1(J− I ), where−u2−u−2 = 2k. Then we must takeW3 = W4 =
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A− = −u−3I + u(J − I ). Moreover we takeλ = η−1. We then obtain the following
matrices:

W′1 =


A A η−1H −η−1H

A A −η−1H η−1H

η−1H −η−1H A A

−η−1H η−1H A A

 ,

W′2 =


A A ηH −ηH

A A −ηH ηH

ηH −ηH A A

−ηH ηH A A

 .
W′3, W′4 satisfy the equationsW′1W′3 = 22k+2I , W′2W′4 = 22k+2I which can be used to define
them.

Consider the following invertible diagonal matrix (the blocks have size 2k)

1 =


η I 0 0 0

0 η I 0 0

0 0 η−1I 0

0 0 0 η−1I

 .
It is easy to check that (usingη−3 = −η andtH = H )

1W′11
−1 =


A A ηH −ηH

A A −ηH ηH

−η tH η tH A A

η tH −η tH A A


which is a non-symmetric Hadamard spin modelW+. SinceW+W− = 22k+2I , it must be
the case that1W′31

−1 = W−.
Consider now the permutation matrices (with blocks of size 22k)

R=


I 0 0 0

0 I 0 0

0 0 0 I

0 0 I 0

 , S=


0 I 0 0

I 0 0 0

0 0 I 0

0 0 0 I

 .

It is easy to check thatRW′2 = W′2S = W+. Note thatW′−1
2 RW′2 = S is a permutation

matrix and thatW′4
tR= W−. Hence, by Theorem A, the 4-weight spin model

((Z2)
2k+2,W+,W+,W−,W−) = ((Z2)

2k+2,1W′11
−1, RW′2,1W′31

−1,W′4
tR
)
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is gauge equivalent to((Z2)
2k+2,W′1,W

′
2,W

′
3,W

′
4). Since the link invariant associated

with ((Z2)
2k, A, A, A−, A−) is the Jones polynomialV , andµ = −u3, the link invariant

associated with((Z2)
2k+2,W+,W+,W−,W−) is (V,V)(−η−1u−3). This implies that, for

every diagramL,

QL(u) =
[
(V,V)(−η−1u−3)(L)

]
(u)

(see Proposition 14) wheneveru is a complex number such that−u2 − u−2 is of the form
2k, k ≥ 1. Since the rational functionsQL and(V,V)(−η−1u−3)(L) are equal for infinitely
many values of the variableu, they are equal. 2

Thus the link invariant associated with a non-symmetric Hadamard spin model is given,
for every link with set of componentsK and diagramL, by:

Z(L) =
∑
S⊆K

(−η−1u−3)s(C(S;K ))V(LS)V(L K\S)

=
∑
S⊆K

(−u−3)s(C(S;K ))+T(LS)+T(L K\S) × (η−1)s(C(S;K ))〈LS〉〈L K\S〉

= (−u3)−T(L)
∑
S⊆K

η−s(C(S;K ))〈LS〉〈L K\S〉.

We illustrate this formula on the examples of figure 4, Section 5.3. We denote byL0 the
link diagram with no crossings and one loop. Then fori = 1, 2,

Z(Li ) = (−u3)−T(Li )
(〈Li 〉〈∅〉 + 〈∅〉〈Li 〉 + 2η−T(Li )〈L0〉2

)
.

Clearly〈L0〉 = −u2− u−2 and an easy computation gives

〈L1〉 = 〈L2〉 = u6+ u2+ u−2+ u−6.

It follows that

Z(L1) = 2(−u3)−2(u6+ u2+ u−2+ u−6+ η−2(u4+ 2+ u−4))

and

Z(L2) = 2(−u3)2(u6+ u2+ u−2+ u−6+ η2(u4+ 2+ u−4)).

One can easily check these results using the the method of Section 5.3.

6. Concluding remarks

We believe that the notion of index could be a useful tool for studying non-symmetric spin
models. It would be of interest to obtain new results on the structure of spin models of index
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m 6= 2. One might expect to obtain new non-symmetric spin models in the case wherem
is a power of 2. The case ofm= p (odd prime) would also be of interest.

For index 2, it would also be nice to be able to answer the following questions. Keeping
the notations of Proposition 8, can one find a spin modelW+ of index 2 withA 6= C, or with
B not a Hadamard matrix? Note that by Proposition 9 this would also yield new symmetric
spin models. Can one find an expression for the associated link invariant involving the link
invariants associated withA andC, similar to the expression we have obtained in the case
of non-symmetric Hadamard spin models?

References

1. E. Bannai and Et. Bannai, “Generalized generalized spin models (four-weight spin models),”Pacific J. Math.
170(1995), 1–16.

2. E. Bannai and Et. Bannai, “Spin models on finite cyclic groups,”J. Alg. Combin.3 (1994), 243–259.
3. E. Bannai, Et. Bannai, and F. Jaeger, “On spin models, modular invariance, and duality,”J. Alg. Combin., 6

(1997), 203–228.
4. E. Bannai and T. Ito,Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
5. Et. Bannai and A. Munemasa, “Duality maps of finite abelian groups and their applications to spin models,”

J. Alg. Combin., to appear.
6. A.E. Brouwer, A.M. Cohen, and A. Neumaier,Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg,

1989.
7. T. Deguchi, “Generalized generalized spin models associated with exactly solvable models,” inProgress in

Algebraic Combinatorics, E. Bannai and A. Munemasa (Eds.),Advanced Studies in Pure Math.Mathematical
Society of Japan, 1996, Vol. 24, pp. 81–100.

8. G.V. Epifanov, “Reduction of a plane graph to an edge by a star-triangle transformation,”Soviet Math. Doklady
7 (1966), 13–17.

9. P. de la Harpe, “Spin models for link polynomials, strongly regular graphs and Jaeger’s Higman-Sims model,”
Pacific J. Math.162(1994), 57–96.

10. F. Jaeger, “Strongly regular graphs and spin models for the Kauffman polynomial,”Geom. Dedicata44(1992),
23–52.

11. F. Jaeger, “On spin models, triply regular association schemes, and duality,”J. Alg. Combin.4 (1995), 103–144.
12. F. Jaeger, “Spin models for link invariants,” inSurveys in Combinatorics 1995, P. Rowlinson (Ed.),London

Mathematical Society Lecture Notes Series, Cambridge University Press, 1995, Vol. 218, pp. 71–101.
13. F. Jaeger, “Towards a classification of spin models in terms of association schemes,” inProgress in Algebraic

Combinatorics, E. Bannai and A. Munemasa (Eds.),Advanced Studies in Pure Math.Mathematical Society
of Japan, 1996, Vol. 24, pp. 197–225.

14. F. Jaeger, “New constructions of models for link invariants,”Pacific J. Math.176(1996), 71–116.
15. F. Jaeger, “On four-weight spin models and their gauge transformations,”J. Alg. Combin., to appear.
16. F. Jaeger, M. Matsumoto, and K. Nomura, “Bose-Mesner algebras related to type II matrices and spin models,”

J. Alg. Combin.8 (1998), 39–72.
17. V.F.R. Jones, “A polynomial invariant for knots via von Neumann algebras,”Bull. Am. Math. Soc.12 (1985),

103–111.
18. V.F.R. Jones, “On knot invariants related to some statistical mechanical models,”Pacific J. Math.137(1989),

311–336.
19. L.H. Kauffman, “State models and the Jones polynomial,”Topology26 (1987), 395–407.
20. K. Kawagoe, A. Munemasa, and Y. Watatani, “Generalized spin models,”J. of Knot Theory and its Ramifica-

tions3 (1994), 465–475.
21. K. Nomura, “Spin models constructed from Hadamard matrices,”J. Combin. Theory Ser. A68 (1994),

251–261.
22. K. Nomura, “An algebra associated with a spin model,”J. Alg. Combin.6 (1997), 53–58.


