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Abstract. We studyspin modelsas introduced in [20]. Such a spin model can be defined as a square matrix
satisfying certain equations, and can be used to compwssatiated link invariantThe link invariant associated

with a symmetric spin model depends only trivially on link orientation. This property also holdsdsi-symmetric

spin models, which are obtained from symmetric spin models by certain “gauge transformations” preserving the
associated link invariant. Using a recent result of [16] which asserts that every spin model belongs to some
Bose-Mesner algebra with duality, we show that the transposition of a spin model can be realized by a permutation
of rows. We call the order of this permutation timelex of the spin model. We show that spin models of odd
index are quasi-symmetric. Next, we give a general form for spin models of index 2 which implies that they are
associated with a certain class of symmetric spin models. The symmetric Hadamard spin models of [21] belong
to this class and this leads to the introductiomoh-symmetric Hadamard spin modelhese spin models give

the first known example where the associated link invariant depends non-trivially on link orientation. We show
that a non-symmetric Hadamard spin model belongs to a certain triply regular Bose-Mesner algebra of dimension
5 with duality, and we use this to give an explicit formula for the associated link invariant involving the Jones
polynomial.
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1. Introduction

Symmetric spin modelgere introduced in [18] as basic data to compute certain invariants
of oriented links in 3-space; by construction, these invariants depend only trivially on the
link orientation. A non-symmetric generalization of a spin model was introduced in [20].
While one could hope that the associated link invariants would depend non-trivially on the
link orientation, no such examples were known until the present work. Finally, a further
generalization called-dveight spin models/as introduced in [1].

A 4-weight spin model can be defined as a 5-tuple W, W,, W3, W), whereX is a
finite non-empty set and th&/; are complex matrices with rows and columns indexed by
X which satisfy certain equations. Whi#ty = W, = W+, W = W, = W, we call the
triple (X, W*, W™) a 2weight spin mode(this is exactly a “generalized spin model” as
defined in [20]). The triplé X, W*, W™) can be defined in terms of the mathix* alone,
and we call this matrix apin modefor simplicity.
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We review the basic tools used in this paper in Section 2. They include the following
results.

In [15], some transformations of 4-weight spin models, cafjadge transformations
are introduced. These gauge transformations preserve the associated link invariant
(Theorem A). Two 4-weight spin models are said todgaeige equivalenif they can be
related by gauge transformations, and this definition applies in particular to 2-weight spin
models.

In [16], generalizing previous results of [13, 22], it is shown that for any 2-weight spin
model(X, W', W™) there exists a (commutative) Bose-Mesner algebrghich contains
W+, W~ and which admits a duality given by the identityy (M) = a'W~ o (WF (W~ o
M)), wherea is the diagonal element 8/ ando denotes Hadamard product (Theorem B).

In Section 3 we introduce the concept ofliaal-permutation matrixSuch matrices are
defined so that in a Bose-Mesner algebravith duality ¥, W(R) is a dual-permutation
matrix wheneveR is a permutation matrix. In this situation the dual-permutation matrices
in A form an abelian groupd; under Hadamard product, which is isomorphic to the
group A; of permutation matrices id. We show that whemd arises from a 2-weight
spin model(X, W+, W™) as in Theorem B, the matriW/* o W~ belongs taA;. By the
indexof (X, W*, W~) we mean the order 0" o W~ in the abelian groupd;. Dually,
|X|~1'W*W~ belongs toA; and its order is the index. This leads us to introduce the
quasi-symmetric spin modeks class of 2-weight spin models which are gauge equivalent
to symmetric ones. Thus the link invariant associated with a quasi-symmetric spin model
depends only trivially on the link orientation. We show that spin models of odd index are
quasi-symmetric. The same holds whdn(given by Theorem B) is the Bose-Mesner
algebra of some abelian group.

In Section 4, we give a convenient general form of spin models of index 2. This shows that
they are closely related with a certain class of symmetric spin models of similar form. This
class contains theymmetric Hadamard spin modealenstructed in [21] from Hadamard
matrices.

This leads us to defineon-symmetric Hadamard spin modétsSection 5. For each
such spin model we introduce a non-symmetric Bose-Mesner algélmfadimension 5
which contains it; we establish thétas given in Theorem B is a duality. The Bose-Mesner
algebraA is closely related with Bose-Mesner algebras of Hadamard graphs used in the
study of symmetric Hadamard spin models. Using this relationship, we showt te&iply
regular (see [11]). Then, using a simple example, we show that the associated link invariant
depends non-trivially on the link orientation.

Finally, we obtain a formula for the associated link invariant which is similar to the
formula previously obtained in the symmetric case [14]. This formula essentially involves
the Jones polynomials (see [17]) of the various “sublinks” of a link. The proof is also similar
and consists of two main steps. In the first step, we show that the associated link invariant is
given by a rational function of one variabhlewhereu is a parameter which gives the size
of the spin model. In the second step, we show that this rational function coincides with the
required formula for infinitely many special valuesLof

We conclude in Section 6 with some open questions.
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2. Preliminaries
2.1. Spin models for link invariants

For more details concerning this section the reader can refer to [12]. An (oridinted)
a finite collection of disjoint simple oriented closed curves bhenponent®f the link)
smoothly embedded in 3-space. Any such link can be representedibgram which is a
generic plane projection (there are only a finite number of multiple points, each of which is
a simple crossing), together with an indication at each crossing of the corresponding spatial
structure. Alink invariantis a quantity attached to diagrams which is invariant under certain
diagram deformations called Reidemeister moves (these moves generate a combinatorial
equivalence of diagrams which represents a natural topological equivalence of$ipks).
modelsare basic data to compute link invariants in the following way.

In general, the link invariant will take the form

Z(L)y=a TWpx®L Z H(v,a) 1)
a:B(L)y—=> X veV (L)

for any diagranL of a link. Here

— X is afinite non-empty set a&fpins

— alis a non-zero complex number, called thedulusof the spin model, and (L), the
Tait numberof L, is the sum of signs of the crossingslgfwhere the sign of a crossing
is defined on figure 1;

— D is some square root ¢K|, called thdoop variableof the spin model;

— The regions ot (connected componentsBf — L) are colored with two colors, black
and white, in such away that adjacent regionk ofceive different colord3(L) denotes
the set of black regions df, andy (L) denotes the Euler characteristic of the union of
these black regions; whdnis connectedy (L) is just the number of black regions;

— V(L) is the set of crossings &f, and fora: B(L) — X, v € V(L), the quantity(v, o)
only depends on the values @fon the two black regions incident with and on the
geometry of this crossing-region incidence.

This dependence takes the following two forms.

N

+1 -1

Figure 1
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Figure 2

Wil y)  Wolx y) Wa(x y) W4(x, y)

Figure 3

In a 2weight spin modeive have two matriced/*, W~ in My (the set of complex matrices
with rows and columns indexed BY) and(v, o) is defined on figure 2 (wheve y are the
values ofo on the black regions incident with).

In a 4weight spin modelwe have four matrice®v;, W, W3, W, in My and(v, o) is
defined on figure 3.
In the case of 2-weight spin models, it is shown in [20] tH&L ) defined by (1) is a link
invariant provided the following properties hold (for everys, y € X):

WHa. o) =a, Wi@a)=a' Y Whex)=) W (x.e=Da"’

xeX XeX

2
> W@ x) =) W (X,) = Da, @
xeX xeX
W, AW (B, 0) =1, Y W@, W™ (X, B) = [X|8up 3

xeX
(wheres$ is the Kronecker symbal)
D W@, )WF (B, )W (X, y) = DWT (e, W (B, Y)W (¥, ). (4)

XeX
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Remark (4) can be replaced by other identities, see [20].

We shall take as our definition of\eight spin moded triple (X, W*, W™), whereX
is a finite non-empty set and/™, W~ are two matrices irMy satisfying (2), (3), (4) for
somea, D in C — {0} with D? = | X|.

A 2-weight spin model X, W*, W™) is said to besymmetridgf W+, W~ are symme-
tric matrices. Symmetric spin models were introduced in [18], and the non-symmetric
generalization of [20] was studied later.

We observe that the link invariant associated with a symmetric 2-weight spin model
depends only trivially on the link orientation, i.e. via the factor’ ) in (1). The main
issue addressed in this paper is the possibility of a more complicated dependence for general
2-weight spin models.

In the case of 4-weight spin models, it is shown in [1] tA&t ) defined by (1) is a link
invariant if the following properties hold (for eveuy; 8, y in X):

Wi, o) =a, Wa(@.a)=a ", > Wale.X) =) Wh(x,a)=Da",

xeX xXeX

®)
Zwm, X) = ZW4(X, «) = Da,
xeX xeX
Wae, BYWs(B, ) =1, D Wale, )Wa(X, B) = X844,
XeX
(6)
Wa(ar, BIWa(B, ) =1, D~ Walar, X)Wa(X, B) = | X|8,p,
xeX
> Waa, OWa(B, X)Wa(X, y) = DWa(B, @)Ws(e, y)Ws(y, B)
xeX
=) Wa(X, a)Wa(X, B)Wa(y, X) = DWi(e, B)Wa(B, y)Wa(y, @). ™
xeX

We shall take as our definition ofweight spin modeh 5-tuple(X, Wi, Wo, Ws, Wy),
where X is a finite non-empty set andli, i = 1, ..., 4 are matrices iMx satisfying (5),
(6), (7) for somea, D in C — {0} with D? = | X].

Remark This is only one among many possible equivalent definitions, see [1].

Given a finite non-empty set andW*, W~ in My, one can show thatX, W+, W~)
is a 2-weight spin model with loop variabl@ if and only if (X, W, W, W=, W) is a
4-weight spin model with loop variable (see [1]). In this case the two spin models have
the same associated link invariant and can be identified.

Fori € C — {0}, itis clear from (5), (6), (7) that it X, Wy, Wo, W3, W) is a 4-weight
spin model, therX, AWy, A=W, A~2Ws, AW,) is also a 4-weight spin model. These two
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4-weight spin models will be said to oportional and it is easy to see that they yield
the same link invariant.

We shall need more general transformations of 4-weight spin models which preserve the
associated link invariant. The following theorem sums up some results of [15] (see also [7]).
In the statement of this theorerX,is a finite non-empty set an andW/ (i =1, ..., 4)
are matrices irMy.

Theorem A Let (X, Wy, W, W3, W) be a4-weight spin model with loop variable D.
(i) (X, W], W,, W3, W) is a4-weight spin model with loop variable D if and only if there
exists an invertible diagonal matrix such that W = AW, A~ W = AW5A L,
(i) (X, Wi, W), Ws, W)) is a4-weight spin model with loop variable D if and only if there
exists a permutation matrix P such that WP W is also a permutation matrix and
W) = PWo, W, = W, 'P.
(iif) Two4-weight spin models related as i) or (ii) yield the same link invariant.

The transformation relating the two 4-weight spin models in (i) (respectively (ii)) of
Theorem A is called andd (respectivelyever) gauge transformationTwo 4-weight spin
models which, up to proportionality, are related by odd or even gauge transformations will
be said to bgauge equivalentThus gauge equivalent 4-weight spin models have the same
associated link invariant.

2.2. Spin models and Bose-Mesner algebras

A Bose-Mesner algebran a finite non-empty seX is a commutative subalgebra bfy
which contains the identity, which is also an algebra under the Hadamard (that is, entry-
wise) product(A, B) — Ao B with identity J (the all-one matrix), and which is closed
under the transposition operatiédn— 'A. It can easily be shown that Bose-Mesner alge-
bras and (commutative) association schemes are equivalent concepts (see [6] Theorem 2.6.1
which is easily extended to the non-symmetric case). We shall only work here with the con-
cept of Bose-Mesner algebra (note that for convenience we have incorporated the commu-
tativity property of the ordinary matrix product into our definition). The reader is referred
to [4] for details on material reviewed in the rest of the section.

Every Bose-Mesner algebréhas a basis of Hadamard idempotes, i =0, ..., d}
satisfying

A #0, AocAj=§;A, (8)

d
Z A =J. 9
i=0

It is easy to show thalt belongs to this basis and, as usual, we tAke= |. Similarly, A
has a basis of ordinary idempotefg, i =0, ..., d} satisfying

Ei#0, EE; =§;E, (10)

d
Y E=L (11)
i=0
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It is easy to show thaX|~1J belongs to this basis and as usual we tBke= | X|~1J. One
can also show that

'Ei=E(=0,...,d). (12)
A duality of A is a linear map¥ : A — A such that

W2(A) = |X|'A for Ae A, (13)
W(AB) = W(A) o W(B) for A Be A (14)

It follows easily that

V(Ao B) = |X|"*w(AW(B) for A, BeA, (15)
v()y=J, vl =X, (16)
(A =w('A) for Ae A. (17)

The main result relating spin models to Bose-Mesner algebras is the following. Here
the form of ¥ is obtained from [16], Theorem 11 by using the 2-weight spin model
(X, 'W—, t'w) instead of(X, W, W™), this being allowed by Proposition 2 of [20].
See also [13, 22].

Theorem B Let (X, Wt, W™) be a2-weight spin model with modulus a. Then there is a
Bose-Mesner algebral on X containing W, W~ with duality & given by

V(A =a'W o (WH(W~ o A)
for every AinA.
Remarks (i) We may rewrite (2), (3) as

oWt =al, loW-=all, W+J=JW"=DauJ,
W-J = JW- = DaJ,

WHotW- =J, WHW- = |X|I. (3)

@)

(ii) Using (3’) and (2’), one easily sees that the dualitygiven by Theorem B satisfies
V('W*) = D'W~, or equivalently(W+) = DW~ by (17). In addition,&(W™) =
D'WT by (13).

3. Some general results on 2-weight spin models
3.1. Permutation matrices and dual-permutation matrices

A matrix R in My is a permutation matrix if and only iRo R = RandR'R = |. The
set of permutation matrices which belong to a Bose-Mesner algébitaviously forms an
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abelian group4; under ordinary matrix product. Expressing such a matrix in the basis of
Hadamard idempotents of we see that all coefficients, except one equal to 1, must be
zero, and hencel; € {A;,i =0, ..., d}. Itis well possible thatd; = {I}.

Onthe other hand, the equalitiy = {A;, i =0, ..., d}occursinthe following situation.
Let X be an abelian group written additively. For eveiin X, define the matridd; in My
by the identityA (x, y) = & y—x. Then itis easy to check thé#, i € X} is the basis of
Hadamard idempotents of a Bose-Mesner algebrd aalled theBose-Mesner algebra of
the abelian group X

Let A; be an element of ordér> 1 in A;. Since a permutation represented by a matrix in
{Aj, j =1,...,d} has no fixed points by (8), all the cycles of the permutation represented
by A; have lengthk. Hence we may establish a bijection betweerand {1, ..., k} x
{1, ..., ¢}, wheret = | X|/k, so thatA ((r,s), (t,u)) = 1iff s=uandt =r + 1 (modk)
(r,tefl,...,kl,s,uef{l, ..., ¢}).

Let us now consider the dual concepts. A maffiin My is adual-permutation matrix
if [ X]7*F2 = F andF o 'F = J. Soif A4 is a Bose-Mesner algebra with dualityand if
R € A3, then¥(R) is a dual-permutation matrix. Indeed, applyigto Ro R = R and
using (15) we obtainX| ¥ (R)? = W(R); applying¥ to R'R = | and using (14), (16),
(17) we obtain¥ (R) o 'W(R) = J.

Proposition 1  The following properties are equivalent for a matrix F inkM
(i) F is a dual-permutation matrix

(i) |X|71F is a rank1 idempotent with constant diagonal

(i) There is an invertible diagonal matrix in My such that F= AJA™L,

Proof: (i) = (ii): Since|X|1F2=F, | X|~F is an idempotent. The rank of this idempo-
tentis|X|~! Trac&F) = |X|71 )", .« F(X, X). SinceF o'F = J, F(x, x)?=1 andF # 0.
It follows that F (x, x) = 1 for everyx in X and|X|~'F has rank 1.

(i) = (iii): Since|X|™*F has rank 1there exists functiond, g from X to C such
that| X|~1F (x, y) = f(x)g(y) for all x, y € X. The constant diagonal elemehtx)g(x)
(x € X) of the matrix| X|~1F is | X|~* Tracg|X|1F) = | X|™%, so f(x) # Oforallx € X
andF(x,y)= f(x)f(y)~tforall x, y € X. TakeA(x, y) = &, f (x) forall x, y € X.

(i) = (i): |X|"'F?2=F is immediate F o'F = J follows from F(x, y) = A(X, X)
Ay, )™ m

Clearly the set of dual-permutation matrices My forms an abelian group under
Hadamard product (the identity elementlisind the inverse of is 'F). Hence the set of
dual-permutation matrices which belong to a Bose-Mesner algéfyem an abelian group
A} under Hadamard product. Férin Aj, let us expresgX|~1F in the basis of ordinary
idempotents ofd. By (ii) of Proposition 1, taking the trace we see that all coefficients,
except one equal to 1, must be zero, and hedfec {|X|E;,i =0,...,d}. Again we
may well haved’| = {J}. On the other hand i#l is the Bose-Mesner algebra of an abelian
group X, then the equalityd] = {|X|E;,i = 0, ..., d} holds, since by (11) each; has
rank 1 sincd X| =d + 1.

Let | X|E; be an element of ordde > 1 in A}. Sok is the smallest positive integér
such that(| X|E; (x, y))* = 1 forallx, y € X. It follows that{|X|E; (X, y), X,y € X} =
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{n",u € U} wheren = exp2r+/—1/k) andU < {0, ...,k — 1} contains a non-zero
element which is not a proper divisor lof

By (10), JE; = O for every elementX|E; # J of the subgroup of4; generated
by |X|Ej. Expressing X|E; in the basis of Hadamard idempotents, we see that there
exist positive integerp, (u € U) such that every column diX|E; takes the value
exactly p, many times. The} ., pu(n")! =0(v =1,...,k—1). Taking p, =0 when
ueio,....k} —U, we may write}"*_8 pyn™* =0 (v = 1, ..., k — 1). Thus the vector
(po, - - -, Px_1) is orthogonal to every vector representing a non-trivial charactér &¥..
Hence this vector is a multiple of the trivial character. It follows thgg, ..., px_1) =
(XI/K, ..., 1X]/K).

Now let A be an invertible diagonal matrix such th&t E; = AJA~L. Thus|X|E; (X, y)
= A(X,X)A(y, y)~! for everyx, y in X. Let us fixy € X and assume without loss of
generality thatA(y, y) = 1. Then we see that the diagonal values\oére the powers of
n, each repeatelX|/k times. In other words, we may establish a bijection betwéemd
{1,...,k} x {1,..., €}, wheret = | X|/k, so thatA((r, s), (r,s)) =" (r € {1,...,k},
se{l,...,£). Then|X|E((r,s),t,w) =yt te(l....kl,s,ue{l...,e).
Note that this formula is compatible with (12).

Finally we observe that if the Bose-Mesner algeddrhas a duality, thenW is a group
isomorphism betweend; and.A)}. Indeed we have already shown thitA4;) < A].
Conversely, letF belong to.A;. By (13) and (17), we may writ€ = |X| 1W2('F) =
W(|X|71'W(F)). Let us show thaR = |X|~! "W (F) belongs taA;. First, Ro R =
|X|2'W(F) o "W(F); applying¥ to | X|~! F? = F, using (14) and transposing, we get
IX|"1 (F)o 'W(F) = "W (F)andhencdRoR = R. SecondR'R = |X|2'W (F)W(F);
applyingW¥ to F o 'F = J, using (15), (16), (17), we obtajiX| W (F) "W (F) = |X|I, so
thatR'R = |. Thus we have shown that is a bijection fromA, to .A}. This bijection is
a group isomorphism by (14).

3.2. The index of a 2-weight spin model

Let (X, W*, W™) be a two-weight spin model with modulagnd let4 be the Bose-Mesner
algebra introduced in Theorem B. Exchangingndg in (4), we obtain:

D W (e, OWH(B, X)W (X, ¥) = DWH(B, )W (@, Y)W (¥, B). (18)

xXeX

Hence, comparing (4) and (18),
W (a, W™ (B, Y)W (v, @) = WH (B, ) W™ (a, ¥ )W (¥, B).
Using (3), we obtain

WHe, B) _ Wi, y) Wy, B)
WH(B, @) WHy, o) WHB, )

for everya, B,y € X.
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Fixing y and defining the diagonal matrix in My by

WH(x, y)

A(X, X) = ——,
Wt(y, X)
this becomes

WH(e, ) Ale, @)
W+H(B,a)  A(B.B)’

or equivalently

Ao, @)

W (a, B)W ™ (a, B) = .
(a, )W (e, B) AG. )

Hence, by Proposition MV o W~ is a dual-permutation matrix. Le¥ be the duality
given by Theorem B. By Remark (ii) following Theorem B and (1&W™* o W™) =
X7t (WHW (W) = W~ W+, Also, since¥(A;) = A}, ¥(A) = (V*R), R €
A1} = {IX|'R, R e A;} = {|X|R, R € A1} by (13). Hence we have proved the following
result.

Proposition 2 W+ oW~ € A} and|X|"1'WHtW~ € A;.

We note thatv ({Ej, i =0,...,d}) ={A, i =0,...,d}. We shall choose the indices
sothatw(Ej) = A,i =0,...,d. We shall writeW+ o W~ = | X|Es, s € {0, ..., d}, and
consequentlyW+W— = | X| As.

SinceV is a group isomorphism from; to Aj, the order of the elemenx| = tw+w-
of the groupA; is equal to the order of the element

IXI7Tw (CWHWT) = | XTI (W) o (W) ='W o tWT

of the group.A4;, which is equal to the order &V* o W~. This positive integer will be
denoted byn and will be called théndexof the 2-weight spin modelX, W+, W™). Note
that a 2-weight spin model has index 1 if and only if it is symmetric, andrthat | A;| =
A7l <d+ 1.

Remarks (i) For 2-weight spin model$X;, W.", W™), i = 1,2, their tensor product
(X, W*, W™) is defined byX = X; x X, andW* = W;* ® W5, whereA ® B denotes
the Kronecker productt A ® B)((X1, X2), (Y1, ¥2)) = A(X1, Y1) B(X2, ¥2) for X1, y1 € X,
X2, Y2 € Xa. As easily shown(X, W, W~) is a 2-weight spin model. The inder
of (X, Wt, W) is given by the least common multiple of, andm,, wherem; denotes
the index of(X;, W", W), i = 1, 2. This fact can be shown by computing the order of
W+ o W~ with respect to Hadamard product.

(ii) In particular, the index is invariant under taking tensor product with any symmetric
2-weight spin model.
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Proposition 3 (i) There is a partition of X into m parts iX. .., X, of equal sizes such
that W (x, y) = n'JW*(y,x) foralli, j € {1,...,m}and x € X;, y € X;, where
n = exp2rv/—1/m).
(i) Letx, y € X be such that &x, y) = 1. Then Wr(z, x) = W' (y, z) for all zin X.
(iii) Write W+ = %t A and'As = Ag. Thent = to.

Proof: (i) Follows immediately from the analysis at the end of section 3.1 (applied with
i = sandk = m) and from the equalityV* o W~ = | X|Es.

(i) Let o be the permutation oK such that forx, y € X, As(X,y) = 1iff X = o (y).
We want to show that for alf, z € X, Wt(z, o (y)) = W*(y, z). We note that

(AS'WH(y, 2) = >~ "As(y, u) 'WH(u, 2)

ueX

=) AU YWz W)

ueX

= SuemWH(z u) = Wz o(y)).

ueX

On the other hand, recall theX|As = 'W* W~. Using (3’) (see Remark (i) following
Theorem B), we get

|X|tAStWJr — tW7W+tW+ — W+tW7 tw+ — W+(|X||),

that is,'As "W+ = W+, The result follows.

(iii) Take z = y in (ii)): W*(y,x) = WT(y, y) wheneverAs(x,y) = 1. From the
equalityW™ = Zid:o t A, WH(y, X) =ty wheneverAg(x, y) = 1, andWt(y, y) = to for
ally € X. O

Itis clearthat the partitioiXy, . .., Xn, in (i) above is uniquely determined up to ordering.
In particular, such a partition characterizes the indexThe significance of Proposition
(iii) is that in a non-symmetric 2-weight spin mode&d, W+, W™), the value which appears
in the diagonal ofV* also appears elsewhere in this matrix.

Part of the following result also appears in [15], Proposition 12.

Proposition 4 Let R be an element o4; and let F = W(R) € A;. Then RW and

F o W™ are scalar multiples of one another. Write'\W= A "1RW* = AF o W+ for some

non-zero complex numbgr and define W by the equality W o 'W'~ = J. Then

(i) (X, W+, W) is a2-weight spin model gauge equivalent®, W+, W™).

(i) The index of X, W'+, W'™) is the order of A('R)? in Aj;.

(i) (X, W', W'7) can be chosen symmetric iffy A a square inA; or equivalently
|X|Es is a square ind]. In this case the link invariant associated with, W+, W~)
depends only trivially on the link orientation.
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Proof: From Theorem BF = ¥(R) = a'W~ o (WT (W~ o R)). SinceR e {A;, i =
0,...,d}, there is a complex number such thatW~ o R = uR. Note thatu # 0 since
W~ has non-zero entries by (3). Thén=a'W~ o (W*(uR)) = natW- o (W*R) and
by (3), F o WH = paW*R = naRWH*.

So we may writeW'* = A"'RWt = AF o Wt for A2 = na € C — {0}. LetA
be an invertible diagonal matrix such thatx, y) = A(x, X)A(y, y)~t for all x, y € X
(see Proposition 1). TheR o Wt = AW*A~L. It follows from (3’) that('F o ‘W) o
(FoWT)=Jand hencdW =1"1('F o W), thatisW'~ =1L (FoW)=A1"1AW"
AL

We haveF o Wt = AW+tA~1 = A2RWH*. Taking the inverses and using (3’) we
obtainAW~A~! = A?W~ 'R, and henc&V'~ = AW~ 'R.

Letus consider the 4-weight spin modXl, W+, W+, W=, W~). Then (see TheoremA),

(X, AWFA™L WH, AW~ AL, W) = (X, AW, W aw'=, W)

is a 4-weight spin model obtained from it by an odd gauge transformation. Noting that
(WH~IRW* = Ris a permutation matrix, we now perform an even gauge transformation
to obtain a 4-weight spin model

(X, A7IWF, RWE AW ™, W IR) = (X, A7TW T AW AW~ A~ tw ),

which is proportional ta X, W', W, W=, W'=). Hence(X, W, W) is a 2-weight
spin model gauge equivalent ¢, W+, W™).
Finally,

IXITHWAWT = X W IR AW TRY)
= (IX|™M'WHW)('Ry?
= A('R)?

and the index of X, W', W'™) is the order of this element of;. O

A 2-weight spin model will be said to bguasi-symmetrigf As is a square ind; or
equivalently| X|Es is a square ind]. Thus the link invariant associated with a quasi-
symmetric 2-weight spin model depends only trivially on the link orientation.

Proposition 5 (i) Every2-weight spin model is gauge equivalent t8-aeight spin model
whose index is a power @&f

(i) A 2-weight spin model of odd index is quasi-symmetric. In particuda?-weight
spin model defined on a set X of odd size is quasi-symmetric.

Proof: (i) Write m = (2p + 1)2% (p > 0,k > 0). ThenAs"*! = Ag(AP)2 has order ®
and by Proposition 4 we obtain a 2-weight spin model of indewl#ich is gauge equivalent
to (X, W, W),
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(ii) In particular if mis odd,k = 0 and we obtain a symmetric 2-weight spin model gauge
equivalent ta( X, W, W™). Sincem divides|X| by Proposition 3 (i), ifi X| is odd therm
is also odd. O

When X is an abelian group with the Bose-Mesner algelirahere exists a 2-weight
spin model satisfying the situation of Theorem B (see [1, 3]). The following result also
appears as part of Proposition 13 of [15] with a different proof.

Proposition 6 If A is isomorphic to the Bose-Mesner algebra of an abelian grdien
the 2-weight spin mode(X, W+, W™) is quasi-symmetric.

Proof: We have (identifying{ and{0, ...,d}) A1 ={A, i =0, ..., d}andA; = {| X|E;,

i = 0,....d}. Write Aj= Y2 (PE (j=0,...,d). Let A;, A, A, be three ele-
ments ofA; such thatAj Ay = A,. Then, fori €{0, ..., d}, P Ei = Ei A, = EEAj A=
P;j Ei A= P;j PkEi, so thatP, = P Px. Hence the may; from A; to C defined by
xi(Aj) = B for every Aj in Ay is a character of4;. Let A} be the group of char-
acters of4; and lety be the mapping fromA] to A; defined bye(|X|E;) = xi for

i =0,...,d. The matrix with entries?; has no repeated rows since it is a matrix of
change of basis froMA;, i =0, ...,d} to {Ej,i = 0,...,d}, and hencep is injective.
Since|A]| =|A1|=|Aj|, ¢ is a bijection. Moreover the bijectiop is a group isomor-
phism. Indeed letX|E;, | X|Ej, | X|Ex belong taA] with | X|Ex = |X|E; o |X|E;. For A,
in Az, xk(A) Ex = ExAe = XI(Ej 0o Ej) Ar = | XI(Ej Aco Ej Ap) (sinceA; is a permutation
matrix) = | X|(xi (A Ei o xj (ADEj) = xi (A xj (Ae) Ex. Hencexx = xix;-

Thus it will be enough to prove that is a square in4;. Taking the trace in the equality
EsA = xs(A)Eswe obtainys(A) = Tracg EsA) = Y (Eso 'A), where)_ denotes the
sum of entries of a matrix.

Write W+ = 39 tj Aj. Thenby (3)W~ = Y5 t; A} LetA € Ay with AZ =1,
or equivalently!A; = A;. Then the coefficient ofX|Es = W* o W~ for 'A; is 1, and
henceEso 'A; = |X|71'A;. Itfollows thatxs(A) = Y |X|71'A; = 1. Letr be the group
homomorphism from4; to itself defined byr (A;) = AJ2 for all Aj in A;. Thusys takes
the value 1 on Kerr. Letx* be the group homomorphism fropt; to itself defined by
n*(x) = x2forall x in A;. Clearly

Imz* C {x € A7 | x(Kerz) = {1}}

sincex?(A) = x(A?) = x(I) = 1forx € A} andA € Kerr.

{x € Aj| x(Kerz) = {1}} is isomorphic to the group of characters.4f/Kerz and
hence has size4,|/|Kern| = |Im x| = |Im z*| (since4; and.A] are isomorphic). Hence
Imn* = {x € A]| x(Kerm) = {1}} andys € Imz*, that is, s is a square ;. O

We shall now look for non quasi-symmetric spin models. For this purpose, in view of
Proposition 5, we shall study the simplest case of even index, namely the case of index 2.
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4. General form of 2-weight spin models of index 2

Proposition 7 Let (X, W, W™) be a2-weight spin model of indeX Then X can be
ordered and split int@! blocks of equal sizes so thatWakes the following form

A A B —-B

Wt = AA BB ithac symmetric
‘B 'B C C ’
‘B —-B C C

Proo_f: - We first split X into two blocks X;, X, of equal sizes so thatvVt(x,y) =
(D" 'WH(y,x) for all i, j € {1,2} andx € X, y € X; (Proposition 3 (i)). We
orderX so that

X1 X2
3=

IX[Eq = WH oW~ = .
X2 —-J J

Write W+ = >0 [t A. SinceAZ = | and hencéAs = A, if As(x,y) = 1forx,y € X,
WH(x,y) = 'WH(x,y) = ts and hencdX|Es(X,y) = 1, so thatx € X1, y € Xy or
X € Xz, ¥y € Xo. Since all cycles of the permutation representedfyhave length 2
(Section 3.1), we may spliX; (respectively:X,) into two blocks of equal sizeX;;, Xi2
(respectively:X,1, X22) so that if(x, y) is such a cycle (i.eAs(x, y) = 1), x andy belong
to different blocks. We ordeX so that

X11 X2 Xa1 X2

xi, (O I 0O O

a |l 0 0 0

X21 | O 0 0o |

X22 \ O 0 | 0

Now write

X111 X2 X1 X2
X (A Az Az Ay
Wt = 2 Axi Az Az Ax

Xo1 | Azt Az Asz Az
Xoo \ A1 As2 Asz Aus
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The equalityW* = (| X|Es) o 'W* becomes

Ain Az Az Au 'Ann A —Asr —'Ax
Ay Ap Ax Au| | Az An —Ap —'Ap (19)
Asi Az Az Asa| | —'Ais Az Az 'Agg
Asr A Asz Aua —As Ao Ass Aus
and the equalitfyw+ = AsW+ becomes
'An A 'Ast 'An A1 Az Az A
Az Az Az Az | | Au A Az Au (20)
Az Az Agz Az | | A A Az Au |
Ay Aoy 'Azs 'Asg A1 Az Az Az

Combining (19) and (20) we obtain

(All A12> . (tAn tA21> _ <A21 Azz)

A1 Ax A Ay A A/

Hence'Ajr = A1l = Ao, 1Ax = Ax = Agp and Ajx = Ay, It follows that the above
matrix takes the form

(% )

with A symmetric. Similarly,

(Ass A34>_(tA33 tA43>_(A43 A44>
Az Aw) A 'Asg) \ Az Ass

shows that this matrix is of the form

¢

with C symmetric. We have also

<A13 A14> . <_tA3l —tA41> _ (-Azs —A24)
Azz Ao —'Azx —'Ag —Aiz —Aus

<A31 ABZ)_(_tAIS —tA23>_<—A41 —A42>
Agr Agp Ay —'Ax —As1 —Az/)’

and
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The last equality yields by transposition
<A13 A14) _ (tAzu tA31>
Aoz Ay Ay 'Agx)
Hence
<A13 A14)_<—A23 —A24>
Aoz Az —Aiz —Au
_ (-t/-\al —tA41> _ (tA41 tA31>
—As —'Ag A 'Ag

and this matrix is of the form

(5 %)

The result follows. O

Remarks (i) The form of W* given in Proposition 7 satisfies (19), (20), so we cannot go
further with this method.

(i) As easily shown, 2-weight spin model with the form Wt in Proposition 7 has
index 2.

In the sequel we shall use the following convenient description of 2-weight spin models.
Assuming the identityV " (o, B)W~ (B, @) = 1, which is the first part of (3), the second
part of (3) can be written

W (e, X)
W@ X) s, 21
% W B.%) | X808 (21)

and (4) can be written

Z WH(a, QW (B, x) D W (a, B)
W+ (y, X) W, )W, B)

(22)

xeX

A matrix W+ in My with non-zero entries satisfying (21) and (22) (wirf = |X|) for
all o, B, y in X will be called aspin modelwith loop variableD). Then, definingV~ in
My by the identityW* (a, B)W~ (8, @) = 1, (3) and (4) hold. Moreover, it can be shown
(see [20]) that (2) holds for some non-zero complex nunabefFhus(X, W+, W™) is a
2-weight spin model. Finally, a matri/" in My with non-zero entries satisfying (21) for
all &, g in X will be called atype Il matrix

In the following result, the parameteris used to introduce a class of symmetric spin
models closely related to the spin models of index 2 as described in Proposition 7.
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Proposition8 Lete € {1, —1} and A B, C be three matrices in Mwith non-zero entries
A and C being symmetric. Let

Y1 Y, Ys Ya
Y1 A A B -B
Y, A A -B B

;| eB —€B C c |’
va \—€B ¢'B C C

where the blocks Y Y>, Y3, Y4 are copies of Y. Then Wis a spin model with loop variable
2D, where [F = |Y|, if and only if the following(i) and(ii) hold.

(i) A, C are spin models with loop variable D and B is a type Il matrix.

(ii) The following identities hold for alk, 8, y in Y:

Ala, y)B(Y, B) B(a, B)
=D , 23
y; B(y, ) C(B,y)B(a, y) @3)
C(a, Y)B(B, Y) B(B, o)
=D : 24
y; B(.Y) AB, 7)B(r, ) 29
B(y, B)B(Y. y) C(B.y)
=D : 25
yg Al@.y) B p)B@y) (29)

L Cly  B.wBy.a)

Proof: The rows and columns &Vt are indexed by the unioK of the disjoint blocks
Yi,i =1,...,4. We must consider several cases which will be described by statements of
the forma € Y;, B € Y; and (for (22))y € Yk. To reduce the number of these cases we
introduce the following transformations.

Transformation (T1): Exchange i andY,. This transforms the study &% into the
study of the following reordering oiV*:

Y Y1 Ya Y
Yo A A —-B B
Y1 A A B -B
;| —€'B  €'B C C
vw \ eB —€B C C

We observe that this matrix can also be obtained fidr by replacingB by —B.
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Transformation (T2): Exchange ¥§ andY,. The corresponding reordering\éf™ gives
the same matrix as for (T1).

Transformation (T3): Replacement ¢6f1, Yo, Y3, Ya) by (Y3, Y4, Y1, Y2). The corre-
sponding reordering ot is

Y3 Ya Y1 Yo
Y3 C C € B —€ B
w|] C C —eB €B
Y1 B -B A A
v, \-B B A A

This matrix can also be obtained from* by exchangingd andC and replacing by ¢ 'B.

It is easy to check that the conditions (i) and (ii) of Proposition 8 are invariant under the
replacement oB by —B, and are also invariant under the simultanous exchandeaofd
C and replacement d by ¢ 'B. The only non-trivial fact is that iB is a type Il matrix!B
is also a type Il matrix. To see this, defiBe € My by the identityB~(y, z) = B(z, y) L.
Then (21) withB instead ofW* andY instead ofX can be writterBB~ = |Y|I, which
gives the result by transposition.

Thus we may freely use the transformations (T1), (T2), (T3) to reduce the number of
cases.

A) Let us consider first (21). We may assumet 8.

First case « andp belong to the same block. We may assume = 1. Then (21)
becomes

A, y) B(a, y)
2 2 == 07
2 a5y P2 Bpy

yeY yeY

where now, 8 are considered as elementsyof

Second case « € Y;, g € Yj withi # j. We may assume= 1 andj e {2, 3}. For
i =1,j =2,(21) becomes

Ala,y) B(a.y)
2 -2 =0
2 AB.Y) 2 B(B.y)

yeY yeY

Fori =1, =3, (21) holds.
The pair of identities which we have obtained reduces to the identities (22)dod B,
that is to the fact thaf and B are type Il matrices.

B) Let us consider (22), wheile must now be replaced by®
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Firstcase «, 8, y belong to the same block. We may assume that= 1. Then (22)
becomes:

Ale, Y)AB, Y) Ala, B)
2 =2D ,
; Ay, Y) A, Y)Aly, B)

which is the identity (22) for the matriA. Thus the condition which we obtain is that the
type 1l matrix A is actually a spin model with loop variabl.

Second case «, 8 belong to the same block andy belongs to another block;. We
may assumé = 1 andj € {2, 3}. Fori =1, ] = 2, (22) becomes the identity (22) féx.
Fori =1, ) = 3, (22) becomes:

B(a, y)B(B,Y) Ala, B)
23 =2D ,
&  Cny B(a, y)e'B(y. B)

Z Blo, Y)BB.Y) _ <D Ale, B)
& Co.y B, ¥)B(B.7)’
which is (26) up to a change of variables.

Third case «, y belong to the same block andg belongs to another block;. We
may assumé = 1 andj € {2, 3}. Fori =1, j = 2, (22) becomes the identity (22) féx.
Fori =1, j = 3, (22) becomes the identity (24) up to a change of variables.

Fourth case B, y belong to the same block anda belongs to another block;. We
may assumeé = 1 andj € {2, 3}. Fori =1, j = 2, (22) becomes the identity (22) féx.
Fori =1, j = 3, (22) becomes the identity (24) sinfeis symmetric.

Fifth case o €Y, B € Y}, y € Y withi, j, k distinct. We may assumie= 1 and
j €1{2,3}. Fori =1, ] =2, we may assumle = 3. Then (22) becomes the identity (26)
up to a change of variables. For= 1, j = 3, we have two casedi, j,k) = (1, 3, 2)

and(, j, k) = (1, 3,4). When(i, j, k) = (1, 3, 2), (22) becomes the identity (24) up to a
change of variables. Whd, j, k) = (1, 3, 4), (22) becomes the identity (23) sin€eis
symmetric. This completes the proof. |

Remark Makoto Matsumoto (private communication) has shown that (23), (24) are equi-
valent and (25), (26) are also equivalent.

We now establish a correspondence between the symmetticlj and non-symmetric
(e = —1) spin models appearing in Proposition 8.



260 JAEGER AND NOMURA

Proposition 9 Let A B, C be three matrices in M A and C being symmetriand
assumey* = —1, D? = |Y|. Then

A A B —-B
A A —-B B
B -B C C
-B B C C

is a (symmetrig spin model with loop variabl2D if and only if

A A nB —nB
A A -nB nB
-n'B n'B C C
n'B —-nB C C

is a (non-symmetricspin model with loop variablgD.

Proof: Itis easy to check that the conditions (i), (ii) of Proposition 8 are invariant under
the simultanous multiplication d8 by n and change of sign ef. O

We shall now study an interesting example of the correspondence given by Proposition 9.

5. Symmetric and non-symmetric Hadamard spin models
5.1. Definition of the Hadamard spin models

In [21], the second author constructed symmetric spin models associated with Hadamard
matrices. To construct these spin models, we first need another, simpler spin model.

LetY beasetofsize > 2,letD?=n, andleu e C satisfy the equatioau? —u=2 = D.
Then the matrix

A=l +utd -1

in My is a symmetric spin model, calledPatts modelsee [9, 18].

Now let H be a Hadamard matrix iMy, i.e. a matrix with entries-1 or —1 such that
H'H = nl. We shall assume in the sequel that 4, and hence is a multiple of 4. Let
o be a fourth root of 1. Let

A A oH -—oH
U+ — A A —wH  oH
| oH —0oH A A

—oH  ow'H A A
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ThenU T is a symmetric spin model with loop variabl®2which we shall call symmetric
Hadamard spin modelFor the sake of completeness, we give a proof using Proposition 8
(with B = wH, C = Aande = 1).

Condition (i) is satisfied since every Hadamard matixs a type Il matrix: (21) for
H can be writtenzyGY H(a, YYH(B,y) = |Yl|ds,p, Which is equivalent to the equation
H'H =nl.

The equations (23)—(26) of condition (ii) become:

H(a, B)H (. y)

A, YH(Y. H(y. y) = D—— 0 2 23
3 Al RO HHE. ) AGy) (3)
H(B, 0)H(y, a)

A, YYH(B. y)H(y,y) = D2 PTG 24
3 Al DHE.YH.Y) ARGy @4
S RWARGY) 5 acp,y) M@, pH@ ), (25)

2o Aay)
Z HB.YHG.Y) _ DAB, y)H(B, e)H(y, ). (26)

&A@ Y)

We observe that (24") is equivalent to (23’) with replaced byH and similarly (26) is
equivalent to (25’) withH replaced byH. So it is enough to prove (23') and (25’) for any
Hadamard matrid in My.

Let A~ = —u~3l +u(J — I). ThenA~ is obtained fromA by the exchange af and
u~1, and hence is a Potts model as defined above. Moredvey, z) = A(y, z)~* for all
y, zin Y. Since (25’) is equivalent to (23’) witlA replaced byA~, it is enough to prove
(23’) for any Hadamard matriid and Potts modeh. (23’) can be rewritten as

_ H(a, BYH(a, ¥)
—UWPH (e, BH (o, y) +u™t H(y, HH(Y,y) = D—2 277,
erZ,M AB.v)

Wheng = y this becomes

D
3 -1 _
—u”+u (n—l)—?,

B +ututr+ut D) =u W+ u?).

Wheng # y the LHS is equal to

—(¥+uHH(@ HH@ y) +u™ Y HY. AHY, ¥)
yeY

=—W+uHH(e HH(@ y)
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sinceH is a Hadamard matrix, and the RHSDH (o, 8)H («, ¥) (U™ ~L. This completes
the proof.
Assumen* = —1. Let

A A nH —nH
A A —-nH nH
—n'H  n'H A A
n'H —n'H A A

Wt =

Then it follows from Proposition 9 that/™ is a non-symmetric spin model which we shall
call anon-symmetric Hadamard spin model

5.2. Two related Bose-Mesner algebras

Consider the following matrices (where the blocks beloniylto:

I 0 0O O
01 0O
B, =
°“lo o1 ol
0 0 O I
J+H  J—H
0 5= =5
0 o % um
B, = HH W o |’
J21H J+2tH 0 0
J—1 J—-1 0 0
J—1 J-1 0 0
B, —
2 0 0o J-1 J-1}|
0 0 J—1 J—-1
J-H  J4H
2 2
0 o i
Bs = ZH HH g o |’
.]+2tH J—2tH 0 O
01 0O
I 0 0O O
B:
““1o o o I
0O 01l O
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Then the symmetric Hadamard spin model of the previous section is
Ut = —uPBy+ wB; 4+ u'B, — wBs — U®B,.

Let X be the union of four copies &f which indexes the rows and columns of these matrices.
Then there is a distance-regular grdpbn the vertex-seX with intersection array

n n
nn-1 -1, 1 —,n—1n
L T

(called aHadamard graphsee [6]) such that fox, X’ in X, B;(x, X’) = 1 iff the distance
betweerx, X" inT"isi. It follows that{B;, i =0, ..., 4} is the basis of Hadamard idempo-
tents of a Bose-Mesner algelifa Properties of this Bose-Mesner algebra are extensively
used to construct symmetric Hadamard spin models in [21] and to determine the associ-
ated link invariant in [11, 14]. We now introduce another Bose-Mesner algebra to study
non-symmetric Hadamard spin models.

Let us consider the following matrices My

Ao=By, Ay=B; As= By
0 0 &M I

2 2
J-H J+H
A 0 0 2 2
R IRE R L o |’
2 2
t _t
% J 2H 0 0
J-H J+H
0 0 2 2
J+H  J-H
A 0 0 5 >
S 0 0
2 2
ot t
J-H J+H 0 0

2 2
Let A be the linear span of the matricés, i =0, ..., 4.
Proposition 10 A is a Bose-Mesner algebra.

Proof: First note thatzi“:O A =JandA o Aj =6 ;A (i, €{0,...,4}). HenceA
is an algebra with identity for the Hadamard product. Moreover,

Ao, As, A, are symmetric andyz = 'A;. (27)

HenceA is closed under transposition. Note that Ay € A. Thus it remains to show
that.4 is a commutative algebra under ordinary matrix product. For this it is enough to
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check the following equalities:
n

Al = 5 (A +2A),

AtAz = AcAL = (n— D)(AL + Ag),
AS = (20— 2)(Ag+ Ag) + (20 — 4) Ag,
n
ArAs = AsAL = E(AZ +2A0),
A2Az = AsAz = (n— D)(A1 + Ag),
n
AS = 5 (A2 +2A), (28)
AtAs = AgAL = Ag,
P Ay = AgA2 = Ay,
AsAy = AgAz = A,
A=A
Actually computation is needed only for the first three lines of (28). The last four lines
are easily derived by considering the permutation of rows (respectively: columns) cor-
responding to multiplication byd, on the left (respectively: right). Then left and right
multiplication of the first line byA4 yield the fourth line. The fifth line is obtained from
the second line by transposition, and the sixth line is obtained similarly from the first line.
The matrix computations for the second and third line are easy and will be left to the reader.

Finally let us consider the first line.
Let

J+H J—H
2 2
S= J-H J+H |’
2 2
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Vlz<J-;H><J—2‘H)+<J—2H><J+2tH>,
- (35 - (2)(5)
V3:<J—2H><J—2tH)+(J—;H><J+2tH):V27
V4=(J;H)(J—i—th>+(J—;H>(J—2tH)=V1’

ExpandingV; we obtain

_1-2 oty gt 2 ty oyt
Vi= 72+ HI-JH-HH+ 2 - HI+IH - HH)

1 1 n
=-(J*-HH)=ZnI-nh=-J-1).
5 )= 5( )=5-1)
Similarly
1
V2=Z(J2+HJ+J‘H+H‘H+J2—HJ—J‘H+H‘H)
1, t 1 n
=57+ HH) =SMI+nh) =S +1).
Hence
J—1 J+1
ST=9< - )
2\J+1 J-1

We observe thaBandT can be obtained from each other by exchangingnd—'H. Since
ST does not depend on the choice of the Hadamard maltyiX S= ST. Hence

J—1 J+1 0 0
e N3+ 3-1 0 0
172 0 0 J—1 J+I
0 0 J+1 J-1
n
=§(A2+2A4)7

as required. O
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Note that
W+ = —U3(Ag+ Ag) + U A + (AL — Ag), (29)
so thatW* belongs to the Bose-Mesner algebtaWe define:

W™ = —u3(Ag+ Ag) + UA + (1AL — 1Ag)
= —U3(Ag+ Ag) + U — (AL — Ag), (30)

so that(X, WT, W™) is a 2-weight spin model (with loop variablé3.
We note (using (28)) thad,W+ = 'W*. Moreover

WHoW™ = Ag+ As+ A — Al — Ag

(this also follows of course from our construction\f").
The following result together with Propaosition 10 gives an explicit form of Theorem B
for non-symmetric Hadamard spin models.

Proposition 11 A has a dualityW given by

WU(M) = —u'W~ o (WH(W™ o M)) for every M inA.

The matrix of¥ in the basiA;, i =0,...,4}is
1 n 2n—-2 n 1
1 —n7?D 0 n D -1
P=]1 0 -2 0 1
1 »?D 0 -n7°D -1
1 —n 2n—-2 —n 1
Proof: We show thatthe matrix of inthe basi§A;, i =0, ..., 4}isthe above matriye.
Observe that it is enough to compub€A;),i =0, ..., 4. These are routine computations

usingA o Aj = §i j, (28), (29) and (30). By way of example, we COmpWeA, ).

W(A) = —U3'W™ o (WH (W™ o Ay)).
W~ o Ay = —np 1AL
WHW~ o A) = —np~tWHA,
= =0 (U AAL + AL + U Ag AL — nAgAL — UPALA).
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Using (28) we obtain
WHT (W™ o Ap)
n n
=ntudA - 5 (Ao +2A0) — T n — DAL+ Ag) + 5 (Ao +2A0) + n U Ag

=nA+n W —utn—D)A + WP —uTt(n — 1) As — nA,.

Now

—u3tW™ = Ag — 7 TuBAL — Ut A + Ul As + As.
So finally

W(AD) =n(Ao— Ag) + (WP —u Tt (n— D)n MU (As — Ay).
The coefficient ofAz — A; is

n 2w —utut +ut + ) = A (—u? - u) = n7?D.
Hence

W(A) =nhAy—n °DA+ 17 °DAs — nA,.

We now show thatv is a duality.

Checking (13), i.ew?(M) = 4n'M for everyM in A, amounts to checking th&@? =
4nR, whereR is the matrix of the transposition operator in the bg#is i =0, ..., 4}.
This is an easy computation which is left to the reader.

To verify (14), we shall check thab (A Aj) = W(A) o W(A)) fori, j € {O,...,4}.
SinceW¥(l) = J thisis true ifi = 0orj = 0, so we assumg j € {1,...,4}. The
following tables give the expressions of ¢ Aj) o W(A;) inthe basi§A;, i =0, ..., 4}.
They are easily obtained from the matf@by computing entrywise products of its column
vectors.

V(A1) o W(Ap) V(A1) o W(Ag) W (Az) o W(Ag) V(A o W(Ag) W (Az) o W(Ag)
Ao n? n2n —2) (2n —2)2 n? n2n —2)
Aq —-n 0 0 n 0
Ao 0 0 4 0 0
Az -n 0 0 n 0
As n2 —n@n-12) (2n — 2)2 n? —n2n-2)
W(Az) o U(Ag) V(A1) o W(Ag) Y (Az) o W(Ag) W(Az) o W(Ag) W(Ag) 0 W(Ag)
Ao n? n 2n—2 n 1
Ay -n n=2D 0 —n72D 1
Ao 0 0 -2 0 1
As -n -n72D 0 n2D 1
As n? -n 2n—2 -n 1
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It is now easy to compare these values of 4eA;) o W(A;) with the values of the
W (A Aj) described by linear combinations of columnsRofiven by (28). We leave this
verification to the reader. O

Remark Transposition of th& (A;) is realized by the exchange of the second and fourth
row of P. Sincen~2 = 4+/—1, this amounts to complex conjugation Bf in agreement
with (12).

A Bose-Mesner algebtd on X with basis of Hadamard idempoters, i =0, ..., d}
is calledtriply regular if the following property holds [11]: for every, j,kin {0, ..., d},
the number

{x e XTAKX o) =1 Ajx, ) =1, Acx, y) =1},

wherex, 8, y € X, only depends onthe indexesv, win {0, ..., d} suchthatA,(8, y) =1,
A(v,a) =1, A, (o, B) = 1. Then this number is denoted By(ijk | uvw) and called a
triple intersection number

The Bose-Mesner algebfassociated with a Hadamard graph and introduced at the be-
ginning of this section is triply regular, as shown in [21]. To avoid confusion we shall denote
its triple intersection numbers i (ijk | uvw), wheres stands for “symmetric”. From
now on, A is again the Bose-Mesner algebra associated with a non-symmetric Hadamard
spin model.

Proposition 12 A is triply regular. Moreover its triple intersection numbers are triple
intersection numbers @.

Proof: Let us split againX into two blocksX; and X, of equal sizesX; corresponding
to the first half ofX with respect to the ordering we have chosenXowhen writing down
the matricedB; andA; (i =0, ..., 4).

We observe thaf\;(a, B) = Bs(e, B) if B € Xy andAy(e, B) = Bi(a, B) if B € Xa.
Similarly, As(«, 8) = Bi(a, B) if B € X1 and As(a, 8) = Bs(a, B) if B € X,. Denote
byi — i’ the permutation of0, 1, 2, 3, 4} which exchanges 1 and 3. Thé§(«x, 8) =
Bi (o, B) if B € X1, andA (o, B) = Bi(a, B) if B € Xo.

Atriple (u, v, w) € {0, ..., d}® will be said to befeasibleif there existx, 8, y in X such
thatAy(B, y) =1, A,(y, @) = 1, A, (a, B) = 1. Note that the triple intersection numbers
K (ijk | uvw) are defined only for feasible tripl€s, v, w). Clearly(u, v, w) is feasible iff
A, appears in the expression Af A, in the basis of Hadamard idempotents. Then (28)
shows that if(u, v, w) is feasible, there is an even number of odd indexes armipngw
(“parity rule”).

We shall need the following property of the triple intersection numbedts: dbr all i,

Iy K,u,v,win {0, ..., 4}, Ks(i’j'K' |uv'w’) = Kg(ijk |[uvw). This is becaus®s is the
adjacency matrix of a Hadamard graphon the vertex-seX such that forx, x’ in X,
Bi1(x, X) = 1 iff the distance of, x’ in I'" is 3 (exchangeH and —H in the definition

of the B;), and theKs(ijk | uvw) do not depend on the choice of Hadamard graph on the
vertex-setX (see [21]).
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Now let «, B8, y be three elements oX such thatA,(8,y) = 1, Ay(y,a) = 1,
A, (a, B) = 1, and let us compute the number

N =[{xe XIAX o) =1 AjX B)=1 AX, y) =1}
Thanks to the parity rule, we have only to consider the following two cases.
Case 1 u, v, w are all even.

Let us assume first that belongs toX;. Then, sincev andw are eveng andy also
belong toX;. Hence

N =|{x € X|Bi(x,a) =1, Bji(x, ) =1, Bu(X,y) = 1}I.
Also By (8, y) = 1,B,(y,a) =1, By (o, 8) = 1. It follows that
N = Kg(i'j'K [Uv'w") = Kg(ijk | uvw).
Assume now thak € X5. Theng € X5, ¥ € X,. Hence
N =[{xe X|Bi(X,a) =1, Bj(x,8) =1, Bu(X,y)=1}|.
Also By(8,y) = 1,B,(y,a) =1, B, (a, B) = 1. It follows that
N = Ks(ijk |uvw).
Thus we may defin& (ijk | uvw) which is equal tdKs(ijk | uvw).
Case 2 exactly one of the indexas v, w is even.

We may assume without loss of generality théd even and), w are odd. Let us assume
first thata belongs toX;. Theng, y belong toX,. Hence

N =[{x e X|Bi(x,a) =1, Bj(x, ) =1, Bu(X, y) =1}|.
Also By(8, v) = 1,By,(y,a) =1, B, (a, B) = 1. It follows that
N = Kg(i'jk | uv'w).
Assume now that € X,. Theng € Xi, y € X;. Hence
N =[{xe X|Bi(x,a) =1, Bj(X, ) =1, Be(x,y) =1}|.
Also By (8, y) = 1,B,(y,a) =1, By (o, 8) = 1. It follows that
N = Kg(ij 'K |uvw") = Kg(i'jk | uv'w).

Thus we may defin& (ijk | uvw) which is equal tdKs(i’jk | uv'w). O
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5.3. Behaviour of the associated link invariant with respect to orientation

Could a non-symmetric Hadamard spin model be quasi-symmetric? The answer is no, as
shown by the following result.

Proposition 13 The link invariant Z associated with a non-symmetric Hadamard spin
model depends non-trivially on the link orientation.

Proof: A simple example will do. Consider the links given by the following diagrams
andL,, which differ only by their orientation (figure 4).

We have chosen a black and white coloring of the regigny;denote the values taken
by a mapping from the set of black regionsXo

We shall show that—u®)T0Z (L) # (—u®)TE2Z(L,). Sincey (L1) = x(Ly), this
amounts to

DOWIY 0T #E Y WX Y)W (Y, X)

X,yeX X,yeX

(see (1) and figure 2).

Notethaf) ", ,ox W (y, x)2= 32 W~ oW~and)_, ,.x W (X, )W (y, X)= > W~o
YW, where)_ denotes the sum of entries of a matrix.

Recall that

W™= —uAg—n tAr+ube+ A — u3A
Hence

W™ oW~ =u®Ag+ 7 2A1+ UPAr + 1 *Ag + U O A,
We have also

W™= —uSA AL F UM — A - UT3A

QD @

L Ly

Figure 4
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Hence
W™ o "W~ =u8A) — n72A1 + U?A, — n2As + U PA,.
Now W~ o W~ — W~ o 'W~ = 272(A; 4+ A3) and
DWW =D W o'W =272 (A + Ag).

It easily follows from Section 5.2 that (A; + Ag) = 8n? # 0. O

5.4. An explicit formula for the associated link invariant

In [14], using results of [11], an explicit formula was obtained for the link invariant associ-
ated with a symmetric Hadamard spin model. In this section we follow the same approach
for the link invariant associated with a non-symmetric Hadamard spin model, denafed by

The following result is similar to Proposition 13 of [14], and its proof will be essentially
the same.

Proposition 14 With every diagram L is associated a one variable rational functign Q
such that ZL) = Q_(u).

Proof: Let G be a directed graph with vertex-9é{G) and edge-selE (G). We denote
by i(e) (respectively:t(e)) the initial (respectively: terminal) end of the edgelLet w be
a mapping fromE(G) to Mx. Then we write

ZGw= Y ][] we@ie)st®), (31)

o:V(G)— X ecE(G)

an empty product being equal to 1.
Let L be a diagram with a black and white coloring of the regions such that adjacent
regions have opposite color. By (1),

Z(L) = (¥ TP —u) 3 [T o),

o:B(L)—»>XveV (L)
where(v, o) is defined on figure 2. We must show that

(v, o)
o:B(L)y—=> X veV (L)

is given by a rational function af.

We may construct a directed planar graBh and a mappingyv. from E(G.) to
{(WH, W~} € A C My (A denotes the Bose-Mesner algebra associated with the non-
symmetric Hadamard spin model) such that

[] (v.o)=2GL, wo).

o:B(L)—>XveV(L)
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Just take the set of black regions lofas the set of vertices @&, , and for each cross-
ing of L join the vertices ofG_ corresponding to the black regions incident with this
crossing by an oriented edge (the orientation is defined by that of the upper part of the
link). Then, to definaw, , assignW™* or W~ to each edge according to the prescription of
figure 2.

The mapZg : w — Z(G, w) given by (31) is multilinear in the componenige),
e € E(G), of w. We introduce for every directed plane grapla vector spacels which
is a tensor product of copies of, one copy for each edge &. Each mappingyv from
E(G) ={ey, ..., &} to Ais represented by the elemente;) ® - - - ® w(e) of Ag. Then
Zg can be identified with a linear form aAg.

The vector spacelg has a natural basB = {A, ® - - @ A, |i1,...,ik €{0, ..., 4}}.

Let L be a diagram. If we express, in the basisB, we see that the coefficients are
given by rational functions ofi, since this is true for the coefficients ¥f* andW~ in
the basidA;, i =0, ..., 4}. HenceZ(G_, w. ) = Zg, (wL) is a linear combination, with
coefficients given by rational functions of of terms of the fornZg, (b), b € B. Thus it
will be enough to prove that for every directed plane gr&phandb € B, Zg(b) is given
by a rational function oti. If G has connected componer@s, ..., G, andby, ..., by
denote the restrictions dif to these connected components, tienb) = ]_[ip:1 Zg, (by).
Hence we may assume thHatis connected.

A slightly modified form of a result by Epifanov [8] asserts that there is a sequence
Go, G1, ..., Gk = G of directed plane graphs such th@ is the trivial graph with one
vertex and no edge and for= 1,...,k, Gj_; is obtained fromG; by an elementary
local transformation of one of the following types: reversal of the orientation of an edge,
deletion of a loop, contraction of a pendant edge, deletion of an edge parallel to another
one (the ordered pairs of ends of the two edges are the same), contraction of an edge in
series with another one (its terminal end has in-degree and out-degree &laatréhngle
transformationsthat is, replacement of a triangle by a “star” (three edges incident to a
common vertex) or the converse operation (for more details on star-triangle transformations,
see section 5.4 of [11]). Itis shown in [11] that, provided tHas exactly triply regular for
i=1,...,k Zg = Zg,_,pi for some easily described linear mgpfrom Ag, to Ag, ;.
Since A is triply regular by Proposition 12 and admits a duality A is indeed exactly
triply regular by Proposition 9(iii) of [11]. Eachp; consists in the action of one of certain
linearmaps : A > A,0 . A—>C,0*  A>Cu: AQA—> A u* : AQA — A,
kK T ARARA—-> AQAQA 1 A9 AR A~ A® AR A on appropriate factors
of the tensor productlg,. Note thatZg = Zg,p1- - - px. The mapZg, from Ag, ~ C to
C consists in scalar multiplication 4| = 4n = 4(u* + u=* + 2). We want to show that
the matrix ofZg with respect to the basB of Ag and the basi§l} of C has entries given
by rational functions ofi. It will be enough to show that the matrices«fé, 6*, u, u*,

Kk, k* with respect to bases appropriately chosen am{@hdor C, {Ai,i =0,..., 4} for
A {A @ Aj,i,j€{0,...,4)for A® Aand{A ® Aj ® A i, j,k € {0,...,4}} for
A® A ® A have entries given by rational functionsiof

The mapr : A — A is the transposition map (it corresponds to the reversal of the
orientation of an edge). Its matrix with respect to the b&sisi = 0,...,4} of Aisa
permutation matrix.
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Themap : A — Cgivesforeach matrid in Aits (constant) diagonal elemehtM) (6
corresponds to the deletion of aloop). Its matrix with respect tothe pasis =0, ..., 4}
of A and the basil} of C has entries equal to 0 or 1.

The map* : A — C gives for each matrisM in A its (constant) row sum*(M) (6*
corresponds to the contraction of a pendant edge). It easily follows from Section 5.2 that
0*(Ag) = 0*(As) = 1,0*(A1) = 0*(A3) = n, 6*(Az) = 2n— 2, wheren = u* +u=*+2.
Hence the entries of the matrix 6f with respect to the bas{#\, i =0, ..., 4} of Aand
the basig1} of C are given by rational functions of.

The mapu : A® A — Ais defined by the identity (M ® M") = MM’ (i corresponds
to the contraction of an edge in series with another one). Then (28) shows that the entries of
the matrix ofy with respect to the bas{s\ ® A, i, j € {0, ..., 4}} of A® A and the basis
{A,i =0,...,4)of Aare given by polynomials of degree at most hig: u* +u*+ 2.

The mapu* : A® A — A is defined by the identityy*(M @ M) = M o M’ (u*
corresponds to the deletion of an edge parallel to another one). By (8), the matrix of
with respecttothe basfg\ ® Aj,i, j =0, ..., 4} of A® Aandthe basigA,i =0, ..., 4}
of A has entries equal to O or 1.

Themapr : AQRARA > A® AQ® A (which corresponds to the replacement of a
star by a triangle) is defined by Eq. (52) of [11], which takes the form

EQE®@E)= ) cijk| wnA®A @A,
uvweF(A)

where F (A) is the set of feasible triples ofl and thec(ijk /uvw) are certain complex
coefficients. Hence there is a corresponding equation of the form

KARA ®A)= Y Cck|uwwA @A ®A,.
uvweF (A)

It then follows from Section 5.3 of [11] that
c'(ikj | uvw) = K(ijk | uvw)

foralli, j,k,u,v,win{0, ..., 4}. By Proposition 12, these numbers are triple intersection
numbers of3; they have been computed in [21] and are given by polynomials of degree at
most 1 inn = u* + u=* + 2. Hence the entries of the matrix ofwith respect to the basis
{A QA ®AI j, ke {0,...,4}} of A® A® A are given by rational functions of.

Finally the mapc* : AQ AR A - AR A® A (which corresponds to the replacement
of a triangle by a star) is defined by Eq. (53) of [11]. We shall need several steps.

(i) Ais generated byv* and!l under Hadamard product.
It is enough to show that if we writ&/* = Zf‘zo ti A, thetj with i # 0 are distinct.
So we check that, u=t, —», —u® are distinct. Ifu=t € {5, —n} orif u=! = —ud,
thenu = —1 and henca = u* + u= + 2 = 0, a contradiction. If-u® e {5, —n},
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thenu? = —1 and hence
DP=W+u*+2(-?>—u?d=—wl+u®+3W?+u?)=3D,

a contradiction.

(i) A has a unique duality such thatv (W) = DW~.
The existence oW follows from Theorem B and Remark (ii) following Theorem B.
The uniqueness follows from (i) above.

(i) k*=@N PRV R WKV RV QW).

By Proposition 12 and 18 of [11] and by (i) and (ii) above, we obtain
WRUVRUVk =d* 1Rt T)(VRV QR V).

Right multiplying byV @ ¥ @ ¥ we get
(VRUQWk(W RV QW) =4nk*(t¥? ® tW? Q rv?).

Then the required equality (iii) follows from (13). Since the entries of the marixf

W with respect to the basisd,i = 0,..., 4} (see Proposition 11) are given by rational
functions ofu, we know that the entries of the matricescaind¥ ® ¥ ® W with respect to
the basiqA ® Aj ® A i, j,ke {0, ..., 4}} of A® A® Aare given by rational functions
of u. By equation (iii), the same holds fer. O

The following definitions were introduced in Section 6.1 of [14] with a slightly different
presentation. Consider a link with set of componédfiteepresented by a diagram For
any setC of crossings ofL we denote bys(C) the sum of signs of crossings @ (see
figure 1). For any subs&of K, we denote by s the diagram obtained fromn by keeping
only the part ofL which represents components3nL s is called asubdiagranof L. We
shall allow the empty diagrathand defind_; = @. ForanyS C K, letC(S; K) denote the
set of crossings involving a component fr@and a component frod \ S. Now consider
two link invariantsf, g which take their values in a commutative rifgand an invertible
elements of Q. The A-composition of fg is the link invariant denoted byf, g), and
defined as follows:

(. @a(L) = Y A5CEOf(Lgg(Lk,s).
ScK

The Jones polynomiak a link invariant introduced in [17]. Up to a change of variable
and normalization, it can be defined as follows (see [19]). Consider a didgnaithout
its orientation and the following operationssrhoothingpf a crossing depicted on figure 5
(which gives thesignsof the smoothings):

A stateof L is a diagram without crossings obtained by smoothing every crossihg of
Let S(L) be the set of states df. Foro in S(L), we denote byk(o) the sum of signs
of smoothings which have createdfrom L, and byc(o) the number of loops of. The



SYMMETRIC VERSUS NON-SYMMETRIC SPIN MODELS 275

X0 X=X

+1 -1

Figure 5

bracket polynomiabf L, denoted by(L ), is the Laurent polynomial in the variahlalefined
by:

<L> — Z uk(a)(_uz _ ufz)C(G).
oeS(L)

We set() = 1. ThenV (L) = (—u®)~TMO(L) (with V(@) = 1) defines a link invariant
which is the Jones polynomial (up to a change of variables and normalization). It is shown
in [18] (see also [9, 10]) that the link invariant associated with a Potts model as defined at
the beginning of Section 5.1 is given by the Jones polynomial as defined above.

Proposition 15 The linkinvariant associated with a non-symmetric Hadamard spin model
is given by th&—»~'u~%)-composition of two Jones polynomials.

Proof: Proposition 11 of [14] folY = Z, (=Z/2Z) states essentially the following (see
the Remark following this result). L&(Z2)%, Wy, Wo, W5, W,) (k > 1) be a 4-weight
spin model with loop variable*2 modulusy and associated link invariarit, such that the
four matricesw, i = 0, ..., 4, belong to the Bose-Mesner algebra of the grazip .

Let 1 be a non-zero complex number. Then there exists a symmetric Hadamard Hhatrix
of size 2 such that the matrice8/ (i = 1, ..., 4) given by

W, W aH  —aH

W, W —aH  A°H

' AMH  —2H W W
—AH  AH W W,

wheree = 1ifi = 1, 4 ande = -1 ifi = 2, 3, define a 4-weight spin model
((Z2)%*+2, W;, W5, W3, W,) with loop variable 8+, modulusy and associated link in-
variant(f, f); 1.

We apply this result to the case whéhg = W, = Ais a Potts model (see Section 5.1).
Thatis,A = —u®l +u=2(J — 1), where—u? — u=2 = 2k, Then we must také/; = W, =
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A~ = —u3l +u(J — 1). Moreover we take. = n~1. We then obtain the following
matrices:
A A r]‘lH —r]_lH
, A A —n7'H  p'H
Wl = ,1H _1 s
n —n—H A A
—n~'H p~H A A

A A nH —nH
A A —nH nH
nH —nH A A
—-nH nH A A

Wj, W, satisfy the equationd/; Wj = 2221, Wy W, = 22+2| which can be used to define
them.
Consider the following invertible diagonal matrix (the blocks have sije 2

nl 0 0 0
0 nl 0 0
0 0 n7Y1 o0
0 0 0 gl

A =

It is easy to check that (using> = —y and'H = H)

A A nH —nH
A A -nH nH
—nH  n'H A A
nH —n'H A A

AW, A =

which is a non-symmetric Hadamard spin modét. SinceW+tW- = 2%+2| it must be
the case thadAW,A~1 = W~
Consider now the permutation matrices (with blocks of s&g 2

0 1
I 0
) S =
0 0
0 0

It is easy to check thaRW, = W,S = W+. Note thatW, 'RW, = Sis a permutation
matrix and thatV; 'R = W~. Hence, by Theorem A, the 4-weight spin model

(Z)*F2, W, WH W™, W) = ((Z)*2, AW, A, RW, AW,A™Y W, 'R)
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is gauge equivalent t&(Z,)%*2, W/, W, W3, W,). Since the link invariant associated
with ((Z»)%, A, A, A~, A™) is the Jones polynomial, andu = —u®, the link invariant
associated with((Z2)%+2, W+, W+, W=, W™) is (V, V)_,-1,-3. This implies that, for
every diagrani.,

QL) = [(V, V)3 (L) ] W)
(see Proposition 14) wheneveiis a complex number such thau? — u=2 is of the form

2%, k > 1. Since the rational function®_ and(V, V) p-1u-3 (L) are equal for infinitely
many values of the variablg they are equal. O

Thus the link invariant associated with a non-symmetric Hadamard spin model is given,
for every link with set of components and diagrani, by:

Z(L) =Y (—n 'uHCEOV(LgV(Lks)
ScK

— Z(_u—3)S(C(S:K))+T(Ls)+T(LK\s) x (n—l)S(C(S:K))<LS)(LK\S>
SCcK

_ (_us)—T(L) Z n_S(C(S;K))“—S)(LK\S)-
ScK

We illustrate this formula on the examples of figure 4, Section 5.3. We dendtg the
link diagram with no crossings and one loop. Thenifef 1, 2,

Z(Li) = (U T (L)) + @) (Li) + 207 T (Lo)).
Clearly (L) = —u? — u~2 and an easy computation gives
(L1) = (Lp) =uP 4+ u?+u24u®
It follows that
Z(Ly) =2(—u) 2l + P +u 24 u b+ 2wt +2+u)
and
Z(Ly) =2(—2We + P +u 2+ u+ 2 + 24+ u™).
One can easily check these results using the the method of Section 5.3.
6. Concluding remarks

We believe that the notion of index could be a useful tool for studying non-symmetric spin
models. Itwould be of interest to obtain new results on the structure of spin models of index
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m =£ 2. One might expect to obtain new non-symmetric spin models in the case mhere
is a power of 2. The case af = p (odd prime) would also be of interest.

For index 2, it would also be nice to be able to answer the following questions. Keeping
the notations of Proposition 8, can one find a spin mydelofindex 2 withA # C, or with
B not a Hadamard matrix? Note that by Proposition 9 this would also yield new symmetric
spin models. Can one find an expression for the associated link invariant involving the link
invariants associated with andC, similar to the expression we have obtained in the case
of non-symmetric Hadamard spin models?
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