Galois Graphs: Walks, Trees and Automorphisms
Josep M. Brunat
and Joan-C. Lario
DOI: 10.1023/A:1018723511986
Abstract
Given a symmetric polynomial [ `( k)] \bar k as the vertex set and adjacencies corresponding to the zeroes of [ `( k)] \bar k / k) to the automorphism group of certain classes of Galois graphs. Finally, an application concerning modular curves classifying pairs of isogeny elliptic curves is revisited.
Pages: 135–148
Keywords: Galois; graph; digraph; tree; automorphism
Full Text: PDF
References
1. G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd edition, Chapman & Hall, London, 1996.
2. P.M. Cohn, Algebra, Vol.1/2, John Wiley & Sons, Chichester, 1989.
3. N.D. Elkies, “A Remark on Elliptic K -Curves,” 1993, Preprint.
4. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.
5. J.H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New York, 1986.
6. J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer-Verlag, New York, 1994.
2. P.M. Cohn, Algebra, Vol.1/2, John Wiley & Sons, Chichester, 1989.
3. N.D. Elkies, “A Remark on Elliptic K -Curves,” 1993, Preprint.
4. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.
5. J.H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New York, 1986.
6. J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer-Verlag, New York, 1994.