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Abstract. TheOSalgebraA of a matroidM is a graded algebra related to the Whitney homology of the lattice
of flats of M. In caseM is the underlying matroid of a hyperplane arrangemérih C", A is isomorphic to
the cohomology algebra of the compleméhit\ J .A. Few examples are known of pairs of arrangements with
non-isomorphic matroids but isomorpt@Salgebras. In all known examples, the Tutte polynomials are identical,
and the complements are homotopy equivalent but not homeomorphic.

We construct, for any given simple matrdith, a pair of infinite families of matroid®, andM;,, n > 1, each
containingMg as a submatroid, in which corresponding pairs have isomo@&aigebras. If the seed matrdidy
is connected, thehl, andM|, have different Tutte polynomials. As a consequence of the construction, we obtain,
for any m, m different matroids with isomorphi©Salgebras. Suppose one is given a pair of central complex
hyperplane arrangementl and.A;. Let S denote the arrangement consisting of the hyperpi@han Ct. We
define the parallel connectioR (Ao, A1), an arrangement realizing the parallel connection of the underlying
matroids, and show that the direct sug® A; andS & P(Ap, A1) have diffeomorphic complements.
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1. Introduction

Let M be a simple matroid with ground st Associated withM is a graded-commutative
algebraA(M) called theOrlik-Solomon(OS algebra ofM. Briefly, A(M) is the quotient

of the free exterior algebra(E) on E by the ideal generated by “boundaries” of circuits in

M. If Ais an arrangement i@ realizing the matroidM, then A(M) is isomorphic to the
cohomology algebra of the complemeénit4) = C" \| J.A. So in the attempt to classify
homotopy types of complex hyperplane complements one is led to study graded algebra
isomorphisms oDSalgebras.

The structure oA(M) as a graded vector space is determined uniquely by the characteris-
tic polynomialy v (t) of M. In most cases, even for matroids having the same characteristic
polynomial, theOS algebras can be distinguished using more delicate invariants of the
multiplicative structure [4, 6]. In [5], however, two infinite families of rank three matroids
are constructed in which corresponding pairs have isomof@8Bialgebras, generalizing a
result of L. Rose and H. Terao [9, Example 3.77].
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The Tutte polynomially (X, y) is an invariant ofM that specializes tg (t) under the
substitutionx = 1 —t, y = 0. In the examples referred to above, the associated matroids
have identical Tutte polynomials. Furthermore, in [6] it is shown that, under a fairly weak
hypothesis which is satisfied in all known cases, the Tutte polynomial of a rank-three ma-
troid M can be reconstructed frol(M). It is natural to conjecture tha&(M) determines
Tm (X, y) in general. The purpose of this paper is to show that, without additional hypothe-
ses, counterexamples to this conjecture abound. Here is our main result.

Theorem 1.1 Let Mgy be an arbitrary connected matroid without loops or multiple points.
Then for each positive integer: 3, there exist matroids Mand M, of rank rk(Mg) +n—1
satisfying

(i) Mg is a submatroid of Mand M,.

(i) A(Mp) is isomorphic to AM)) as a graded algebra.
(i) Tm, (X, ¥) # Tw, (X, Y).

In the other direction, we find several examples in [6] of matroids with the same Tutte
polynomials and non-isomorph@Salgebras.

The matroidM,, of the theorem is simply the direct sumMdf, with the polygon matroid
C, of then-cycle. The matroidV;, can be taken to be the direct sum of an isthmus ity
parallel connection oMy andC,. Thus, by careful choice d¥ly, we obtain the following
corollary.

Corollary 1.2 Given any positive integer m 2, there exist m nonisomorphic simple
matroids with isomorphic OS algebras.

Note that the matroidsl,, andM/, have rank greater than three, and neither is connected.
So it remains possible tha(M) determinesTy (X, y) for matroids of rank three, or for
connected matroids.

The arrangements constructed in [5] were shown to have homotopy equivalent comple-
ments, and the isomorphism©fSalgebras is a corollary. In the last section we prove a far
more general result in the high rank setting of the present work. We define the parallel con-
nectionP (Ag, A;) of two arrangements in Section 4, as a natural realization of the parallel
connection of the underlying matroids. The direct sdmé A;, denoted by4o [ [ .A; in
[9], realizes the direct sum of the underlying matroids.

Theorem 1.3 Let Ay and . A; denote arbitrary arrangements. Let S denote the unique
nonempty central arrangement of rahkThenAy @ A; andS @& P (Ao, A1) have diffeo-
morphic complements.

The examples of [5] are generic sections of the arrangements described in Theorem 1.3,
with A and.A; of rank two. The fact that their fundamental groups are isomorphic then
follows immediately from Theorem 1.3 by the Lefshetz hyperplane theorem. For these
particular arrangements, the complements are homotopy equivalent. It is possible that for
more generaldy and A;, this construction could yield rank-three arrangements whose
complements have isomorphic fundamental groups but are not homotopy equivalent. This
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phenomenon has not been seen before, and would be of considerable interest. Also worthy
of note is the result of [7] that, for arrangements of rank three, the diffeomorphism type
of the complement determines the underlying matroid. Theorem 1.3 demonstrates that this
result is false in ranks greater than three.

The formulation of Theorem 1.3 affords a really easy proof, providing an alternative for
the proof of Theorem 1.1(ii), in caddy is a realizable matroid. The proof is based on a
simple and well-known relation [2, 9] between the topology of the complement of a central
arrangement il" and that of its projective image, which coincides with the complement
of an affine arrangement i@ 1, called the “decone” of4. The proof of Theorem 1.3
demonstrates that all the known cases where topological invariants coincide even while
underlying matroids differ are consequences of this fundamental principle.

Here is an outline of the proof of Theorem 1.1. Once the matrdddsand M/, are
constructed in the next section, we define a map at the exterior algebra level which is easily
seen to be an isomorphism. We show that this map carries relations to relations, hence
induces a well-defined map of OSalgebras. This map is automatically surjective. Then
in Section 4 we compute the Tutte polynomialsMf and M;. These are shown to be
unequal providedV is connected, but they coincide upon specializatiog to 0. Thus
Mp andM;, have identical characteristic polynomials. It follows that @®algebras have
the same dimension in each degree, soghatist be injective. In the final section we prove
Corollary 1.2 and Theorem 1.3, and close with a few comments and a conjecture.

2. The construction

We refer the reader to [10, 11] for background material on matroid theory and Tutte poly-
nomials, and to [9] for more information on arrangements @8dlgebras.

Let C, be the polygon matroid of tha-cycle. ThusC, is a matroid of rankn — 1
on n points, with one circuit, of siza. This matroid is realized by any arrangemebt
of n hyperplanes in general position @'1. The ground set o€, will be taken to be
[n] := {1, ..., n} throughout the paper.

Fix a simple matroidM with ground seg, disjoint from [n]. Thus Mg has no loops or
multiple points. LetM,, = C,, & Mq. So the circuits oM, are those oM, together with
the unique circuit ofZ,. If Ap is an arrangement realizing, in C", thenM, is realized
by the direct sum ofd, andAg in C"*"~1, denotedA, | [ Ao in [9].

Now fix €g € Eo. Let P} denote the parallel connectiéh(Cy, Mo) of C,, with M along
€o. Loosely speakingP is the freest matroid obtained fro@, and Mo by identifying
€o with the point 1 ofC,,. Here is a precise definition. Define an equivalence relation on
E :=[n] U Ep so that{1, ¢y} is the only nontrivial equivalence class. Denote the class of
anyp € Eby p. ForX C E let X be the set of classes of elementxof Then Pl is the
matroid on the seE whose set of circuits is

C = {C | Cis a circuit ofC, or Mg}

U{C—-1U C' —¢| 1eC acircuit ofC,
andeg € C’ a circuit of Mg}.

Let Sdenote an isthmus, that is, a matroid of rank one on a single point, which point will
be denotedp. Finally, letM;, be the direct suns @ P..
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M, M
Figure 1 The construction.
These two matroid#, and M), are most easily understood in terms of graphsvidfis
a graphic matroid, theM, is the polygon matroid of the union (with or without a vertex
in common) of the corresponding gra@hwith then-cycle. The parallel connectioR? is
the matroid of the graph obtained by attaching a path of lengthl to the vertices of an

edgee, of G, andM], is then obtained by throwing in a pendant eqgeThese graphs are
illustrated in figure 1, witlh = 6.

3. An algebra homomorphism
We proceed to define t@Salgebra of a matroid. Le¥l be a simple matroid with ground
setE. Let A = A(E) be the free exterior algebra generated by degree one elemdats

€ € E. The results of this paper will hold for coefficients in any commutative ring. Define
d:A(E) > A(E) by

L&) = i(—l)”elmé -
i=1
and extending to a linear map. Let= | (M) be the ideal ofA (E) generated by
{o(e, - &) | {ea, ..., &} is acircuit of M }.
Definition 3.1 TheOS algebra AM) of M is the quotientA (E)/I (M).

Since A is graded and is generated by homogeneous elemeitd\) is a graded
algebra.
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The definition ofA(M) is motivated by differential topology. Suppade= {Hg, ..., Hp}
isan arrangement of hyperplane&frealizing the matroid. LetC(A) = C" — |, Hi.
Extending work of V.I. Arnol'd and E. Brieskorn, P. Orlik and L. Solomon proved the
following theorem [8].

Theorem 3.2 The cohomology algebra HC(A), C) of the complement C4) is isomor-
phic to AM).

We now specialize to the examples constructed in the last section. For simplicity we
suppress much of the notation. Consider the integer3, the matroidVp, and the point
€o to be fixed once and for all. Unprimed symbis A, |, Awill refer to the matroidvi,,
and primed symbold’, A, 17, A’ refer toM],.

Recall the ground sets &l andM’ areE = [n] U Eg andE U {p} respectively. The
generator ofA’ corresponding t@ € E will be denoted byg. .

We define a homomorphiss : A — A’ by specifying the images of generators.
Specifically,

de)=86—6+e, fori e[n—1],
¢(en) = €p, and
pe) =8 for e € E,.

Lemma 3.3 The mapp : A — A’ is an isomorphism.

Proof: Keeping in mind thag, = &, in A’, we see thap has a well-defined inverse in
degree one given by

&> —e+e, forl<i<n,

& — e for € € Ep, and
€y — €.
It follows that¢ is an isomorphism. O

Lemma3.4 ¢(l1)C 1.

Proof: If {e1,...,€q} is a circuit of My, thenq@(aeq---eéq) = 0&, - &,. With the
observation thaﬁ(a —g;1) =6 -6, forl<i <n-2,andalsofor =n—1, we
calculate

P(der- ) = d((e1 — ) (e — €3) - - - (Bn_1 — €))
= (81— 8)(& — &) (Bn1— &)
= 96;---8,.
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Referring to the definitions d¥l and M’, we see that these computations suffice to prove
the lemma. O

Corollary 3.5 ¢ : A — A’ induces a surjectios : A — A'.

4. The Tutte polynomials

By the end of this section we will have proved Theorem 1.1. The final ingredient is the
computation of Tutte polynomials. The Tutte polynomiig{ (X, y) is defined recursively
as follows. M\ e andM /e refer to the deletion and contraction gf relative toe.

(i) Tu(x,y) =xif Mis anisthmusTy(x, y) = yif M is aloop.

(i) TmX, y) = Te(X, Y)Twe(X, y) if eis aloop or isthmus iM.
(i) Tm (X, y) = Tme(X, Y) + Tmye(X, y) otherwise.
These properties uniguely determine a polynoriiglx, y) which is a matroid-isomor-
phism invariant ofM.

We will use the following standard property of Tutte polynomials.
Lemma4.l Tuewm (X, Y) = Tu (X, V)T (X, ¥).

The characteristic polynomialy (t) of M may be defined by
xm(®) =Tu(1—1t,0).

The following result of [8] was the initial cause for interestAtM) among combinatori-
alists. We will use it to show that is injective.

Theorem 4.2 The Hilbert series

> dim(AP)tP

p=0
of A= A(M) is equal to t x (—t~1), where r = rk(M).

In fact theOSalgebra is isomorphic to the Whitney homology of the lattice of flatis,of
equipped with a natural product [1].
The next lemma is easy to prove by inductionron

Lemma4.3 Foranyn>2 Te, (X, y) = 31X +y.
Lemma 4.3 and Theorem 4.4 may be deduced from more general results proved in Section

6 of [3]. We include the proof of Theorem 4.4 here for the reader’s convenienceM Let
andM’ be the matroids of the preceding section.
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Theorem 4.4 Letn> 2, Then

n—-1
Tm(x, y) = <Zx' + y)TMO(x, y), and
i=1

n-1

TM’(Xa Y) = ( Xi)TMO(Xa Y) + XyTMo/eo(X’ y)

i=1

Proof: The first formula is a consequence of Lemmas 4.1 and 4.3. To prove the second
assertion, we establish a recursive formula for the Tutte polynommf ofAssumen > 3,

and apply property (iii) above to a point 6%, other than 1. The deletion is the direct sum

of Mg with n — 2 isthmuses, and the contractiorﬂé‘%*l. Thus we have

Ten (X, Y) = X" 2T (X, ¥) + Tena(X, Y).

Now consider the cage= 2. Deleting the poin2 yields My, while contracting yields
the direct sum oMg/€g with a loop. Thus

Te2 (X, Y) = Ty (X, Y) 4 Y T 0 (X, Y).
Then one can prove inductively that
n-2
Ten (X, Y) = (Z X'>Tmo(x, Y) + Y To/eo-
i=0
SinceM'is the direct sum oP? with anisthmus, right-hand side of this formulais multiplied
by x to obtainTy/ (X, y). O
Corollary 4.5 xm(t) = xm (1).

Proof: The two formulas in Theorem 4.4 yield the same expression upon sgttng.
The assertion then follows from the definitionaf (t) above. O

Corollary 4.6 The mapp: A — A’ is an isomorphism.

Proof: According to Theorem 4.2, the last corollary implies dih = dim(A")P. Since
¢ is surjective by Corollary 3.5, and all spaces are finite-dimensignakist be an isomor-
phism. O

In casen = 3 and My = Cgs, the map¢ is a modified version of the isomorphism
discovered by L. Rose and H. Terao [9, Example 3.77] for the rank three truncatibhs of
andMj.

With the next result, we complete the proof of Theorem 1.1.

Corollary 4.7 If Mg is connectedthen Ty (X, y) # Tw (X, Y).
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Proof: AssumeTy (X, y) = Tw/ (X, y¥). By Theorem 4.4 this implies

TMO(X7 y) = XTMQ/G[)(X7 y)'

By hypothesisg is not an isthmus. Deleting and contracting aleggand evaluating at
(x,y) = (1, 1), we obtain

TMQ\Eo(ls 1) + TMQ/Eo(ls 1) = TMQ/Go(la 1)a

which impliesTu,\¢, (1, 1) = 0. Coefficients of Tutte polynomials are non-negative, so this
implies Ty, (X, ¥) = 0, which is not possible. O

The proof of the last corollary uses only the fact thds not an isthmus. Thus Theorem 1.1
remains true for any simple matroly which is not the uniform matroid of rank on
m points (realized by the boolean arrangement of coordinate hyperplanes), in which every
point is an isthmus.

Remark The proof of Corollary 4.7 specializes, upon settixgy) = (1 —t,0), to a
proof of the result of H. Crapo that a connected matroid has nonzero beta invariant [11].

5. Concluding remarks

We start this section with a proof of Corollary 1.2. L®f, be the graph with vertex set
Zom and edgesi,i +1}forl <i <2m—21and{0,i}forl <i < 2m. ThenG, has 2n
vertices and th — 3 edges. The grapB, is illustrated in figure 2.

Theorem 5.1 Letn > 2m+ 1. Then the parallel connections of,&wvith C, along the
edged0, i } of G, result in mutually non-isomorphic grapherm <i < 2m— 1.

Proof: Fixi in the specified range. Then the parallel conneckg@,, Gn,) along{1,i}
has longest circuit of lengttn — 1) + i. The assertion follows. O

Proof of Corollary 1.2:  Let Mg be the polygon matroid &&.,. The proof of Theorem 5.1
actually shows that the parallel connectid®® of My with C, along{1, i} yield m non-
isomorphic matroids dsranges fromm to 2m. The same holds true when they are extended
by an isthmus, resulting im non-isomorphic matroids; ;. But the proof of Corollary 4.6
did not depend on the choice &f. So theOS algebra'ofM,’Li is isomorphic to theDS
algebra ofM,, = C, & Mg independent off. This completes the proof of Corollary 1.2.

O

We close with some topological considerations. We will see that part of Theorem 1.1, in
the case thatly is realizable ovet, is a consequence of a general topological equivalence.
This equivalence follows from a well-known relationship between the complements of a
central arrangement and its projective image. The proof is quite trivial, but requires us to
introduce explicit realizations, with apologies for the cumbersome notation. We will need
a few easy facts about hyperplane complements, which may be found in [9].
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Figure 2 The graphGa.

Let A = {Hy, ..., Hy} be an arrangement of affine hyperplane€inLetg; : C" — C
be a linear polynomial function withl; = {x € C" | ¢; (X) = 0}. Thedefining polynomial
of A is the producQ(A) = [, #i. If all of the ¢; are homogeneous linear form4, is
said to be aentralarrangement.

RecallC(A) denotes the complement b A in C". The connection between central
arrangements it" and affine arrangements@i —* goes as follows. Assum4 is central.
Change variables so that(x) = X1, and writeQ(A)(X) = xlé(xl, ..., X). Consider
(X2, ..., %) to be coordinates 08" 1. Then letd. 4 denote the affine arrangementGh—
with defining ponnomiaIQ(l, X2, oty %)

Lemma5.2 C(A) is diffeomorphic taC* x C(d.A).

Supposed, and.A; are affine arrangements with defining polynomi@tgx) andQ1(y)
in disjoint sets of variables = (xi, ..., X,) andy = (y1,..., ¥,). Let Ao & Az be the
arrangement i€+ with defining polynomialQq(x) Q1(y).

Lemma5.3 C(Ap @ A,) is diffeomorphic to CAg) x C(Ay).

If Ap and .A; are central arrangements, with underlying matrdidis and M1, then
Ao & A, is a realization of the direct suig & M.
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Now let. Ay and.A; be arbitrary central arrangements, with underlying matrgsind
M;. Torealize the parallel connectiéd( My, M;) change coordinates so that the hyperplane
x; = 0 appears in bothly and.A;. These will be the hyperplanes that get identified in the
parallel connection. Write

Quy) = YlQl(yls V)

With (X4, . . ., X, Y2, - - - » Yr,) @S coordinatesii’o*":~1 the parallel connectioR (Ao, A1)
is the arrangement i@"+":~1 defined by the polynomial

QO(X].» ceey Xro) Ql(xl’ Y2, ..., le)

We are now prepared to prove Theorem 1.3. Eatenote the arrangement @ with
defining polynomiak. SoS has as underlying matroid the isthmBsandC(S) = C*.

Proof of Theorem 1.3: Write Qo(X) = xléo(xl, ..., Xr,). Following the recipe given
above for dehomogenizing an arrangement, and using the given defining polynomial for
P(Ap, A1), we see that the affine arrangemeéitdo, .A;) has defining polynomial

Qo(l, X2, ..., Xro)Ql(la Yo, ..., yl’l)’

which is precisely the defining polynomial d{d, & d.4;. By the preceding lemmas we
have

C(S ® P(Ag, A1) = C(S) x C(P(Ao, A1)
= C* x C* x C(P(Ao, A1)
= C* x C* x C(dAg) x C(dAy).
On the other hand,
CAg® A1) =C(Ag) x C(A) =EC* x C(dAg) x C* x C(dAy).

This proves the result. O

Returning to Theorem 1.1, if we assume the matidiglis realizable ovefC , we can
take such a realization fod, and any general position arrangemenhdfyperplanes in
C"1 for A;. Then Theorems 1.3 and 3.2 together imply that@8algebrasA(M,) and
A(M)) overC are isomorphic.

The arrangements constructed in [5] are generic 3-dimensional sections of the arrange-
ments of Theorem 1.3, with the seed arrangemglgtand.4; both of rank two. The fact
that their fundamental groups are isomorphic is then an immediate consequence of the
Lefschetz Hyperplane Theorem. This theorem does not imply that the sections are homo-
topy equivalent; this is proved in [5] by constructing an explicit isomorphism of canonical
presentations of the fundamental groups, using Tietze transformations only of type | and
Il. We do not know if the diffeomorphic arrangements constructed in Theorem 1.3 will in
general have homotopy equivalent generic 3-dimensional sections.
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The question whether arrangements with different combinatorial structure could have
homotopy equivalent complements was originally restricted to central arrangements be-
cause Lemma 5.2 provides trivial counter-examples in the affine case. The constructions
presented in this paper are now seen from the proof of Theorem 1.3 to arise again from
Lemma 5.2. So the examples of [5] also come about in some sense from Lemma 5.2. We
feel compelled to again narrow the problem to rule out these other, not quite so trivial
counter-examples.

Conjecture 5.4 For central arrangements whose underlying matroid is connected and
not erectible the homotopy type of the complement determines the underlying matroid
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