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Abstract
For g � 2 and h � 3, we give small improvements on the maximum size of a Bh[g]-
set contained in the interval {1, 2, . . . , N}. In particular, we show that a B3[g]-set
in {1, 2, . . . , N} has at most (14.3gN)1/3 elements. The previously best known
bound was (16gN)1/3 proved by Cilleruelo, Ruzsa, and Trujillo. We also introduce
a related optimization problem that may be of independent interest.

1. Introduction

Let A ✓ [N ] := {1, 2, . . . , N} and let h and g be positive integers. We say
that A is a Bh[g]-set if for any integer n, there are at most g distinct multi-sets
{a1, a2, . . . , ah} ✓ A such that

a1 + a2 + · · · + ah = n.

Determining the maximum size of a Bh[g]-set in A ✓ [N ] is a well-studied problem in
number theory. Initial bounds on Bh[g]-sets were obtained combinatorially. Indeed,
if A is a Bh[g]-set, then consider the

�|A|+h�1
h

�
multi-sets of size h in A. The sum

of the elements in each of the multi-sets represents each integer in {1, 2, . . . , hN} at
most g times. Therefore, ✓

|A| + h� 1
h

◆
 ghN (1)

which implies |A|  (h!ghN)1/h. The breakthrough papers of Cilleruelo, Ruzsa,
Trujillo [3], Cilleruelo, Jiménez-Urroz [2], and Green [4] introduced methods from
analysis and probability to obtain significant improvements on (1). Several of the
results in these papers have yet to be improved upon. For more on Bh[g]-sets, we
recommend the survey papers of O’Bryant [5] and Plagne [6]. We will be concerned
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with Bh[g]-sets where g � 2 and h � 3. For 3  h  6 and g � 2, the best known
upper bound on the size of a Bh[g]-set A ✓ [N ] is

|A| 
✓

h!hgN

1 + cosh(⇡/h)

◆1/h

(2)

due to Cilleruelo, Ruzsa, and Trujillo [3]. For h � 7, the best known bound is

|A| 
⇣p

3hh!gN
⌘1/h

(3)

which was proved by Cilleruelo and Jiménez-Urroz [2] using an idea of Alon. For
g = 1, the best bounds can be found in [4] and [1]. In the case that h = 2 and
g � 2, Yu [7] was able to make some improvements to the results of Green [4]. In
this note we improve (2) and make a small improvement upon (3).

Theorem 1. (i) Let g � 2 and h � 4 be integers. If A ✓ [N ] is a Bh[g]-set, then

|A|  (1 + oN (1))
✓

xhh!hgN

⇡

◆1/h

where xh is the unique real number in (0,⇡) that satisfies sin xh
xh

=
⇣

4
3�cos(⇡/h) � 1

⌘h
.

(ii) If A ✓ [N ] is a B3[g]-set, then for large enough N ,

|A|  (14.295gN)1/3.

Our improvements for small h are contained in the following table.

h upper bound of [3], [2] new upper bound
3 (16gN)1/3 (14.295gN)1/3

4 (76.8gN)1/4 (71.49gN)1/4

5 (445.577gN)1/5 (413.07gN)1/5

6 (3054.7gN)1/6 (2774.16gN)1/6

7 (23096.19gN)1/7 (21294.74gN)1/7

Table 1: Upper bounds on Bh[g]-sets in {1, 2, . . . , N} for su�ciently large N .

By looking at Table 1, it is clear that Theorem 1 improves (2) for 3  h  6.
The inequality

sin(⇡
p

3/h)
⇡
p

3/h
<

✓
4

3� cos(⇡/h)
� 1
◆h

holds for all h � 3; a fact that can be verified using Taylor series. Since sin x
x is

decreasing on [0,⇡], we must have xh < ⇡
p

3/h for all h � 3 which shows that
Theorem 1 improves (3). The improvement, however, is (1�oh(1)) since xh

p
h

⇡
p

3
! 1

as h !1.
In the next section we prove Theorem 1. Our arguments rely heavily on [3] and

[4]. In Section 3 we introduce an optimization problem that is motivated by our
work in Section 2.
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2. Proof of Theorem 1.1

First we show how to improve (2) using the arguments of [3] and [4]. Let A ✓ [N ]
be a Bh[g]-set where h � 2. Define f(t) =

P
a2A eiat, th = 2⇡

hN , and

rh(n) = |{(a1, . . . , ah) 2 Ah : a1 + · · · + ah = n}|.

The first lemma is a variation of inequality (40) from [4].

Lemma 1 (Green [4]). For any j 2 {1, 2, . . . , hN � 1},

|f(thj)|  (1 + oN (1))|A|
✓

sin(⇡Qh)
⇡Qh

◆1/h

where Qh = |A|h
h!hgN .

Proof. Let j 2 {1, 2, . . . , hN � 1}. Define g : [hN ] ! {0, 1, . . . } by g(n) = h!g �
rh(n). Following [3], we observe that

f(thj)h =
hNX
n=1

rh(n)e
2⇡inj

hN = �
hNX
n=1

(h!g � rh(n))e
2⇡inj

hN . (4)

Let ĝ be the Fourier transform of g so ĝ(j) =
PhN

n=1 g(n)e
2⇡inj

hN for j 2 [hN ]. From
(4) and the definition of g,

|f(thj)|h = |ĝ(j)|. (5)

Since A is a Bh[g]-set, the inequality 0  g(n)  h!g holds for all n. Furthermore,PhN
n=1 g(n) = h!ghN � |A|h. Lemma 26 of [4] gives

|ĝ(j)|  h!g

������
sin( ⇡

hN (h!hgN�|A|h
h!g + 1))

sin( ⇡
hN )

������ = h!g
���� sin(⇡Qh � ⇡

hN )
sin( ⇡

hN )

���� . (6)

By (2), the value Qh satisfies 0  Qh  1 for all N . Therefore,

|ĝ(j)|  h!g(1 + oN (1))
sin(⇡Qh)
⇡/hN

= (1 + oN (1))|A|h sin(⇡Qh)
⇡Qh

.

Combining this inequality with (5), we get

|f(thj)|  (1 + oN (1))|A|
✓

sin(⇡Qh)
⇡Qh

◆1/h

which completes the proof of the lemma.
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Again following [3], we need to choose a function F (x) =
PhN

j=1 bj cos(jx) such
that X

a2A

F

✓✓
a� N + 1

2

◆
th

◆

is large and
PhN

j=1 |bj | is small. For h � 3, the function F (x) = 1
cos(⇡/h) cosx gives

X
a2A

F

✓✓
a� N + 1

2

◆
th

◆
� |A|

and
PhN

j=1 |bj | = 1
cos(⇡/h) . This is the function that is used in [3]. We will choose a

di↵erent function G that does better than F and still has a simple form. Let

G(x) =
✓

2
3� cos(⇡/h)

◆
1

cos(⇡/h)
cos(x)�

✓
1� 2

3� cos(⇡/h)

◆
1

cos(⇡/h)
cos(hx).

(7)
The minimum value of G(x) on the interval [�⇡

h , ⇡
h ] is 1

cos(⇡/h)

⇣
4

3�cos(⇡/h) � 1
⌘

and
so X

a2A

G

✓✓
a� N + 1

2

◆
th

◆
� 1

cos(⇡/h)

✓
4

3� cos(⇡/h)
� 1
◆
|A|. (8)

Here we are using the fact that |(a�(N+1)/2)th| < ⇡
h for any a 2 A. If the constants

cj are defined by chN = 0 and G(x) =
PhN

j=1 cj cos(jx), then
PhN

j=1 |cj | = 1
cos(⇡/h) .

Using (8), we have

1
cos(⇡/h)

✓
4

3� cos(⇡/h)
� 1
◆
|A| 

X
a2A

G

✓✓
a� N + 1

2

◆
th

◆

= Re

0
@hNX

j=1

cj

X
a2A

e(a�(N+1)/2) 2⇡ij
hN

1
A


hNX
j=1

|cj ||f(thj)|

 1
cos(⇡/h)

(1 + oN (1))|A|
✓

sin(⇡Qh)
⇡Qh

◆1/h

where in the last line we have used Lemma 1 and
PhN

j=1 |cj | = 1
cos(⇡/h) . Some

rearranging gives
✓

4
3� cos(⇡/h)

� 1
◆h

 (1 + oN (1))
sin(⇡Qh)
⇡Qh

. (9)

We remark that 4
3�cos(⇡/h) �1 > cos(⇡/h) is equivalent to (1�cos(⇡/h))2 > 0. The

point of this is that using G defined by (7) instead of F (x) = 1
cos(⇡/h) cosx (which
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would give the value 1 on the left hand side of (9)) does lead to a better upper
bound.

Recalling that 0  Qh  1, lower bounds on sin(⇡Qh)
⇡Qh

translate to upper bounds
on ⇡Qh. Let xh be the unique real number in the interval (0,⇡) that satisfies

✓
4

3� cos(⇡/h)
� 1
◆h

=
sin(xh)

xh
.

Then by (9), ⇡Qh  (1 + oN (1))xh since the function sin x
x is decreasing on [0,⇡].

We can rewrite ⇡Qh  (1 + oN (1))xh as

|A|  (1 + oN (1))
✓

xhh!hgN

⇡

◆1/h

. (10)

The upper bounds obtained from (10) for h 2 {4, 5, 6, 7} are given in Table 1.
We have chosen to round the values so that all of the bounds in Table 1 hold for
su�ciently large N . In particular, (10) implies that a B3[g]-set A ✓ [N ] has at most
(14.65gN)1/3 elements. We can improve this bound by considering the distribution
of A in the interval [N ].

Assume now that A is a B3[g]-set. Let � be a real number with 0 < � < 1
4 and

set l = b 1
2� c. For 1  k  l, let

Ck = (A \ ((k � 1)�N, k�N ]) [ (A \ [(1� k�)N, (1� (k � 1)�)N)) .

The definition of l ensures that the sets C1, . . . , Cl together with A\(l�N, (1�l�)N)
form a partition of A. Using the same counting argument that is used to obtain (1),
we show that if some Ck contains a large proportion of A, then |A|  (14.295gN)1/3.
To this end, define real numbers ↵1(�), . . . ,↵l(�) by

↵k(�)|A| = |Ck| (11)

for 1  k  l. The value ↵k(�) represents the proportion of A that is contained in
the union ((k � 1)�N, k�N ] [ [(1� k�)N, (1� (k � 1)�)N).

Lemma 2. If 0 < � < 1
4 , l = b 1

2� c, and ↵1(�), . . . ,↵l(�) are defined by (11), then
for any N > 2

� and 1  k  l,

|A| 
✓

72g�N
↵k(�)3

◆1/3

.

Proof. Let 1  k  l and consider Ck. Since Ck is a B3[g]-set,✓
|Ck| + 3� 1

3

◆
 g|Ck + Ck + Ck| (12)

where Ck + Ck + Ck = {a + b + c : a, b, c 2 Ck}. The set Ck + Ck + Ck is contained
in the union of the intervals
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[3(k � 1)�N, 3k�N ], [(1 + (k � 2)�)N, (1 + (k + 1)�)N ],

[(2� (k + 1)�)N, (2� (k � 2)�)N ], and [(3� 3k�)N, (3� 3(k � 1)�)N ].

Each of these four intervals has length 3�N so |Ck + Ck + Ck|  12�N . Combining
this inequality with (12) we have

�|Ck|+2
3

�
 12g�N which implies ↵k(�)|A| = |Ck| 

(3!12g�N)1/3.

Now we consider two cases.
Case 1: For some 0 < � < 1

4 and 1  k  l = b 1
2� c, we have

✓
72�

14.295

◆1/3

< ↵k(�).

In this case, we apply Lemma 2 to get |A|  (14.295gN)1/3 and we are done.

Case 2: For all 0 < � < 1
4 and 1  k  l = b 1

2� c, we have

↵k(�) 
✓

72�
14.295

◆1/3

. (13)

Let H(x) = 1.6 cosx� 0.3 cos 3x + 0.1 cos 6x. Partition the interval [�⇡/3,⇡/3]
into 128 subintervals I1, . . . , I128 of equal width so

Ij =

�⇡

3
+

2⇡(j � 1)
3 · 128

,�⇡
3

+
2⇡j

3 · 128

�

for 1  j  128. Let vj = minx2Ij H(x) for 1  j  128. Since H is an even
function, vj = v128�j+1 for 1  j  64. The values vj can be approximated
numerically. They satisfy

v1 < v2 < v3 < v4 < v5 < v35  vj (14)

for all 6  j  64. The sum
X
a2A

H

✓✓
a� N + 1

2

◆
t3

◆
(15)

is minimized when J =
��

a� N+1
2

�
t3 : a 2 A

 
contains as many elements as pos-

sible in I1 [ I2 [ · · ·[ I5 and the remaining elements of J are contained in I35. This
follows from (14). Furthermore, in order to minimize (15), J must intersect I1 in
as many elements as possible, and the remaining elements in J intersect I2 in as
many elements as possible, and so on. By (13) with � = 1/128,

↵k(1/128) 
✓

72(1/128)
14.295

◆1/3

.
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Thus,

|J \ I1| 
✓

72(1/128)
14.295

◆1/3

|A|.

Similarly, by (13) with � = j/128 for j 2 {2, 3, 4, 5},

↵k(j/128) 
✓

72(j/128)
14.295

◆1/3

.

We conclude that

|J \ (I1 [ I2 [ · · · [ Ij)| 
✓

72(j/128)
14.295

◆1/3

|A|

for 1  j  5. From this inequality and (14), we deduce that

X
a2A

H

✓✓
a� N + 1

2

◆
t3

◆
�

5X
j=1

vj

0
@
 

72( j
128)

14.295

!1/3

�
 

72( j�1
128 )

14.295

!1/3
1
A |A|

+ v35

 
1�

✓
72(5/128)

14.295

◆1/3
!

|A| > 1.2455|A|.

Using 1.2455 in the derivation of (9) instead of 1
cos(⇡/3)

⇣
4

3�cos(⇡/3) � 1
⌘

gives

1.2455|A|  1
cos(⇡/3)

(1 + oN (1))|A|
✓

sin(⇡Q3)
⇡Q3

◆1/3

.

This inequality can be rewritten as
✓

1.2455
2

◆3

 (1 + oN (1))
✓

sin(⇡Q3)
⇡Q3

◆
.

Recalling that Q3 = |A|3
3!3gN , this inequality leads to the bound |A| < (14.295gN)1/3

for large enough N .

3. An Optimization Problem

In this section we introduce an optimization problem that is motivated by (8) from
the previous section.

Given integers K and h � 2, define

FK,h =

8<
:

KX
j=1

bj cos(jx) :
KX

j=1

|bj | =
1

cos(⇡/h)

9=
; .
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For A ✓ [N ] and F 2 FK,h, define

wF (A) =
X
a2A

F

✓✓
a� N + 1

2

◆
2⇡
hN

◆

and
 (N,K, h) = min

A✓[N ],A6=;
sup

⇢
wF (A)
|A| : F 2 FK,h

�
.

Our interest in  (N,K, h) is due to the following proposition.

Proposition 1. If A ✓ [N ] is a Bh[g]-set and K  hN , then

|A|  (1 + oN (1))
✓

yhh!hgN

⇡

◆1/h

where yh is the unique real number in [0,⇡] with sin yh

yh
= (cos(⇡/h) (N,K, h))h.

The function G defined by (7) shows that

 (N,h, h) � 1
cos(⇡/h)

✓
4

3� cos(⇡/h)
� 1
◆

.

When h = 3, this gives  (N, 3, 3) � 1.2 which implies  (N, 6, 3) � 1.2. This is
because the collection of functions F3,3 is a subset of F6,3. By considering more
than one function, we can improve the bound  (N, 6, 3) � 1.2. The method by
which we achieve this can be stated just as easily for general K and h so we do so.

To estimate  (N,K, h), we will consider finite subsets of FK,h. Given a subset
F 0

K,h ✓ Fk,h, we obviously have

sup
⇢

wF (A)
|A| : F 2 F 0

K,h

�
 sup

⇢
wF (A)
|A| : F 2 FK,h

�
(16)

for every A ✓ [N ] with A 6= ;. When F 0
K,h is finite, then the supremum on the left

hand side of (16) can be replaced with the minimum. Let m be a positive integer
and partition the interval [�⇡/h,⇡/h] into m subintervals Im

1 , . . . , Im
m where

Im
j =


�⇡

h
+

2⇡(j � 1)
hm

,�⇡
h

+
2⇡j

hm

�

for 1  j  m. Any F 2 FK,h is continuous and thus obtains its minimum value
on Im

j . Given F 2 FK,h, define

vm,j(F ) = min
x2Im

j

F (x).

Given A ✓ [N ], define

↵m,j(A) =
1
|A|

����
⇢

(a� N + 1
2

)
2⇡
hN

: a 2 A

�
\ Im

j

���� .
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With this notation, we have that for any A ✓ [N ] and F 2 FK,h,

wF (A) �
mX

j=1

↵m,j(A)|A|vm,j(F ).

Therefore, given a finite set {F1, . . . , Fn} ✓ FK,h,

 (N,K, h) � min
A✓[N ],A6=;

max

8<
:

mX
j=1

↵m,j(A)vm,j(Fk) : 1  k  n

9=
; .

We now put the above discussion to use by proving the following result.

Theorem 2. For su�ciently large N , the function  (N, 6, 3) satisfies the estimate

 (N, 6, 3) � 1.2228.

Proof. Let

F1(x) = 1.7 cosx� 0.3 cos 3x, F2(x) = 1.6 cosx� 0.3 cos 3x + 0.1 cos 6x,

F3(x) = 1.5 cosx�0.4 cos 3x+0.1 cos 6x, F4(x) = 1.2 cosx�0.6 cos 3x+0.2 cos 6x,

F5(x) = �2 cos 3x,

and F = {F1, F2, F3, F4, F5}. Observe that F ✓ F6,3. We take m = 12 and we
must compute the numbers v12,j(Fk) for 1  j  12 and 1  k  5. Since each Fk

is an even function, v12,j(Fk) = v12,12�j+1(Fk) for 1  j  6. To prove Theorem 2,
we will only need to estimate these values from below.

Let A ✓ [N ] with A 6= ;. We assume that no element of the form (a� N+1
2 ) 2⇡

3N

is contained in two of the intervals I12
1 , . . . , I12

12 . For large A, this will not a↵ect
|A|, at least in an asymptotic sense. Under this assumption, the non-negative real
numbers ↵12,1(A), . . . ,↵12,12(A) satisfy

↵12,1(A) + · · · + ↵12,12(A) = 1.

We will consider several cases which depend on the distribution of A. For notational
convenience, we write ↵j for ↵12,j(A).

Case 1: ↵1 + ↵12  0.6.

Here we will use the function F1(x). Lower estimates on the v12,j(F1) are

v12,1(F1) � 1.15, v12,2(F1) � 1.3525, v12,3(F1) � 1.4522,

v12,4(F1) � 1.4474, v12,5(F1) � 1.4143, and v12,6(F1) � 1.4.
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In fact, these values satisfy

v12,1(F1)  v12,2(F1)  v12,6(F1)  v12,5(F1)  v12,4(F1)  v12,3(F1).

Since ↵1 + ↵12  0.6, we must have

wF1(A) � (0.6v12,1(F1) + 0.4v12,2(F1))|A| � (0.6(1.15) + 0.4(1.3525))|A| > 1.23|A|.

Case 2: 0.6  ↵1 + ↵12  0.7.

Here we use the function F2(x). A close look at Case 1 shows that if v12,1(F2) is
one of the two smallest values in the set {v12,j(F2) : 1  j  6}, then essentially the
same estimate applies. The two smallest values are v12,1(F2) � 1.2 and v12,4(F2) �
1.2834. Since 0.6  ↵1 + ↵12  0.7,

wF2(A) � (0.7(1.2) + 0.3(1.2834))|A| > 1.225|A|.

Case 3: 0.7  ↵1 + ↵12  0.8.

Here we use the function F3(x). In this range of ↵1 + ↵12, our estimate behaves
a bit di↵erently. Lower estimates on the v12,j(F3) are

v12,1(F3) � 1.25, v12,2(F3) � 1.299, v12,3(F3) � 1.199,

v12,4(F3) � 1.1595, v12,5(F3) � 1.1595, and v12,6(F3) � 1.18.

In this case, wF3(A) will be minimized when ↵1 +↵12 is as small as possible. In the
previous two cases, wFi(A) was minimized when ↵1 + ↵12 was as large as possible.
We conclude that

wF3(A) � (0.7(1.25) + 0.3(1.1595))|A| > 1.2228|A|.

Case 4: 0.8  ↵1 + ↵12  0.9.

In this case we use the function F4(x). Lower estimates on the v12,j(F4) are

v12,1(F4) � 1.3909, v12,2(F4) � 1.1192, v12,3(F4) � 0.8392,

v12,4(F4) � 0.7276, v12,5(F4) � 0.7264, and v12,6(F4) � 0.7621.

We have
wF4(A) � (0.8(1.3909) + 0.2(0.7264))|A| > 1.25|A|.

Case 5: 0.9  ↵1 + ↵12  1.

Lower estimates on the v12,j(F5) are

v12,1(F5) � 1.73, v12,2(F5) � 1, v12,3(F5) � �.01,

v12,4(F5) � �1, v12,5(F5) � �1.8, and v12,6(F5) � �2.
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As in Cases 3 and 4, wF5(A) is minimized when ↵1 + ↵12 is as small as possible.
Hence,

wF5(A) � (0.9(1.73) + 0.1(�2))|A| > 1.35|A|.

In all five cases, we can find a function Fi 2 F such that wFi(A) > 1.2228|A|.
This completes the proof of Theorem 2.

4. Concluding Remarks

Although it is an improvement of  (N, 6, 3) � 1.2, Theorem 2 is not enough to prove
part (ii) of Theorem 1. The improvement on B3[g]-sets uses the B3[g] property to
increase the 1.2 to 1.2455 which exceeds the 1.2228 provided by Theorem 2. Similar
arguments can be done for Bh[g]-sets with h > 3, but the improvements in the
results of Table 1 are minimal. Aside from B3[g]-sets, the bounds in Table 1 come
from lower bounds on  (N,h, h) together with Lemma 1.

The function  (N,K, h) is relevant to an inequality of Cilleruelo. Let A be a
finite set of positive integers. For an integer h � 2, let

rh(n) = |{(a1, . . . , ah) 2 Ah : a1 + · · · + ah = n}| and Rh(m) =
mX

n=1

rh(m).

Generalizing the argument of [3], Cilleruelo proved the following result.

Theorem 3 (Cilleruelo [1]). Let A ✓ [N ], h � 2 be an integer, and µ be any real
number. For any positive integer H = o(N),

hN+HX
n=h

|Rh(n)�Rh(n�H)� µ| � (Lh + o(1))H|A|h

where L2 = 4
(⇡+2)2 and Lh = cosh(⇡/h) for h > 2.

By slightly modifying the argument in [1] that is used to prove Theorem 3, it is
easy to prove the next proposition.

Proposition 2. Let A ✓ [N ], h � 2 be an integer, and µ be a real number. For
any positive integers H = o(N) and K  N

H ,

hN+HX
n=h

|Rh(n)�Rh(n�H)� µ| � ( (N,K, h)hLh + o(1))H|A|h

where L2 = 4
(⇡+2)2 and Lh = cosh(⇡/h) for h > 2.
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For instance, Theorem 2 gives

3N+HX
n=3

|R3(n)�R3(n�H)� µ| � (1.22283L3 + o(1))H|A|3.

Acknowledgment. The author would like to thank Mike Tait for helpful discus-
sions.
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