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Abstract
For g > 2 and h > 3, we give small improvements on the maximum size of a By[g]-
set contained in the interval {1,2,..., N}. In particular, we show that a Bs[g]-set

in {1,2,..., N} has at most (14.3gN)'/3 elements. The previously best known
bound was (16gN)'/? proved by Cilleruelo, Ruzsa, and Trujillo. We also introduce
a related optimization problem that may be of independent interest.

1. Introduction

Let A C [N] := {1,2,...,N} and let h and g be positive integers. We say
that A is a Bp[g]-set if for any integer n, there are at most g distinct multi-sets
{a1,a2,...,ap} C A such that

ap+as+---+ap=n.

Determining the maximum size of a B [g]-set in A C [N] is a well-studied problem in
number theory. Initial bounds on By, [g]-sets were obtained combinatorially. Indeed,
if A is a Bp[g]-set, then consider the (lAHhh*l) multi-sets of size h in A. The sum
of the elements in each of the multi-sets represents each integer in {1,2,... AN} at

most g times. Therefore,
Al+h—-1
(I |+h ><ghN W

which implies |[A| < (hlghN)Y". The breakthrough papers of Cilleruelo, Ruzsa,
Trujillo [3], Cilleruelo, Jiménez-Urroz [2], and Green [4] introduced methods from
analysis and probability to obtain significant improvements on (1). Several of the
results in these papers have yet to be improved upon. For more on Bj[g]-sets, we
recommend the survey papers of O’Bryant [5] and Plagne [6]. We will be concerned
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with Bp[g]-sets where ¢ > 2 and h > 3. For 3 < h < 6 and g > 2, the best known
upper bound on the size of a By[g]-set A C [N] is

hhgN 1/h
A< | —————— 2

Al < (1 +cosh(7r/h)> @)
due to Cilleruelo, Ruzsa, and Trujillo [3]. For h > 7, the best known bound is

41 < (Varnign) " 3)

which was proved by Cilleruelo and Jiménez-Urroz [2] using an idea of Alon. For
g = 1, the best bounds can be found in [4] and [1]. In the case that h = 2 and
g > 2, Yu [7] was able to make some improvements to the results of Green [4]. In
this note we improve (2) and make a small improvement upon (3).

Theorem 1. (i) Let g > 2 and h > 4 be integers. If A C [N] is a By[g]-set, then

ephlhgN\ /"
T

Al < (1+ on(1) (

. h
where x, is the unique real number in (0, ) that satisfies S‘;Z“’h = (3—00;1(71'/h) - 1) .
(ii) If A C [N] is a Bs|g]-set, then for large enough N,
|A] < (14.295gN)Y/3.

Our improvements for small i are contained in the following table.

h | upper bound of [3], [2] | new upper bound
3 (16gN)1/3 (14.295gN)1/3
4 (76.8gN)'/4 (71.49gN)V/4

5 (445.577gN ) /5 (413.07gN)'/®
6 (3054.7gN)1/6 (2774.16gN)1/6
7 (23096.19gN)'/7 (21294.74gN)Y/7

Table 1: Upper bounds on By[g]-sets in {1,2,..., N} for sufficiently large N.

By looking at Table 1, it is clear that Theorem 1 improves (2) for 3 < h < 6.
The inequality

sin(m/3/h) _ ( 4 B 1>h
m\/3/h 3 — cos(n/h)

holds for all h > 3; a fact that can be verified using Taylor series. Since % is
decreasing on [0,7], we must have x;, < 7/3/h for all h > 3 which shows that
Theorem 1 improves (3). The improvement, however, is (1 —o0x(1)) since Iﬂh—\‘//gﬁ -1
as h — oo.

In the next section we prove Theorem 1. Our arguments rely heavily on [3] and
[4]. In Section 3 we introduce an optimization problem that is motivated by our

work in Section 2.
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2. Proof of Theorem 1.1

First we show how to improve (2) using the arguments of [3] and [4]. Let A C [N]
be a By[g]-set where h > 2. Define f(t) =Y ., €™, t;, = 2%, and

rn(n) = [{(a1,...,an) € A" 1ay + -+ aj, =n}|.
The first lemma is a variation of inequality (40) from [4].
Lemma 1 (Green [4]). For any j € {1,2,...,hN — 1},

sin(rQp) ) L/h

TQn

()] < (14 ox(1)]A] (
|Al"
hlhgN *

Proof. Let j € {1,2,...,AN — 1}. Define g : [AN] — {0,1,...} by g(n) = hlg —
rp(n). Following [3], we observe that

where Qp =

LN ingj hN 27ing
Ftni)" =Y ra(m)e ¥ = = 3" (hlg = ry(n))e . (4)
n=1 n=1

Let g be the Fourier transform of g so g(j) = ZZ]L g(n)ezﬂgj for j € [hN]. From
(4) and the definition of g,

[F(tnd)" = 13()I- ()
Since A is a By[g]-set, the inequality 0 < g(n) < hlg holds for all n. Furthermore,
Z’gﬁl g(n) = hlghN — |A|". Lemma 26 of [4] gives

. x (hlhgN—|A]" _
SIN( =7 7_’_1 _m
) < g [P i TN @)
sin(7y) sin(+%)

By (2), the value @, satisfies 0 < @Qj, < 1 for all N. Therefore,

a(i sin(mQn) _ sin(wQp)
90| < hlg(1+on (1)) =as = (L+ on (DA = =

Combining this inequality with (5), we get

sin(wQp) ) 1/h
TQh

which completes the proof of the lemma. O

()] < (14 ox(1)]A] (
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Again following [3], we need to choose a function F(z) = 2?51 b; cos(jz) such

that N1
()
acA
is large and 2?51 |b;| is small. For h > 3, the function F(z) = W;/h) cosx gives

(e 25)1)

acA

and Z 110 = m This is the function that is used in [3]. We will choose a
dlfferent funct1on G that does better than F' and still has a simple form. Let

Glr) = <3 - coiwh)) o) ) - <1 EE c02s<w/h>) T

cos(hz).
(7)

The minimum value of G(z) on the interval [-7, 7] is Cos(ﬂ/h) (3 CO:(ﬂ/h) - 1) and

B L (O T e e L

acA
Here we are using the fact that |(a—(N+1)/2)t,| < 7 for any a € A. If the constants
¢; are defined by cpn = 0 and G(z) = Z?ivl ¢; cos(jz), then Z?ivl le;| = m
Using (8), we have

1 4 N+1
—-1)|4] < G -t
sostri) (5o ~ )M < 2 (=537 )w)
AN -
= Re | oy elemNHu/a5
j=1 a€A
AN
< D leillf )l
j=1
1 sin(wQp,) L/h
—F(1 A ———=
T ox )l (52
where in the last line we have used Lemma 1 and Z?ivl le;| = er/h) Some
rearranging gives
h .
4 sin(wQp)
— 1) <(1 1) ——. 9
(3—cos<7r/h> ) = @tov)=0, ©)

We remark that m —1 > cos(m/h) is equivalent to (1 —cos(m/h))? > 0. The
point of this is that using G defined by (7) instead of F(x) = W}r/h) cosx (which
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would give the value 1 on the left hand side of (9)) does lead to a better upper
bound.

Recalling that 0 < Qp < 1, lower bounds on % translate to upper bounds
on mQy,. Let z;, be the unique real number in the interval (0, 7) that satisfies

(m - 1>h _ Sianfh)'

Then by (9), 7Qp, < (1 + on(1))zy, since the function #22 is decreasing on [0, 7).
We can rewrite 7Qp, < (1 + on(1))zp, as

xhh!th>1/h (10)

™

4] < (1+ on (1)) (

The upper bounds obtained from (10) for h € {4,5,6,7} are given in Table 1.
We have chosen to round the values so that all of the bounds in Table 1 hold for
sufficiently large N. In particular, (10) implies that a Bs[g]-set A C [N] has at most
(14.65gN )1/ 3 elements. We can improve this bound by considering the distribution
of A in the interval [N].

Assume now that A is a Bs[g]-set. Let § be a real number with 0 < § < 1 and
set | = L%J For 1 <k <l let

Cr = (AN ((k —1)8N,kSN]) U (AN [(1 — kO)N, (1 — (k — 1)8§)N)).

The definition of I ensures that the sets C1,. .., C; together with AN(ION, (1—16)N)
form a partition of A. Using the same counting argument that is used to obtain (1),
we show that if some Cj, contains a large proportion of A, then |A| < (14.295gN)'/3.
To this end, define real numbers a;(9), ..., a;(d) by

ay(0)|A] = |Cy| (11)

for 1 <k <. The value ay(d) represents the proportion of A that is contained in
the union ((k — 1)6N,k6N]JU[(1 — k§)N, (1 — (k —1)§)N).

Lemma 2. If0< 4§ < 1, 1= |5%], and a1(8),...,au(8) are defined by (11), then
foranyN>% and 1 < k <,

1/3
4] < (7296N> .

ag(6)3
Proof. Let 1 <k <1 and consider Cj. Since C, is a Bs[g]-set,
Cyl+3-1
(' t 5 ) < g|Ck + Ci + Ci (12)

where Cy, + Cr, + Cr, = {a+b+c: a,b,c € Cy}. The set Cy + C, + Cy, is contained
in the union of the intervals



INTEGERS: 16 (2016) 6
[3(k — 1)6N, 3k6N], [(1 + (k — 2)8)N, (1 + (k + 1)8)N],

(2= (k+ 1)0)N, (2 — (k — 2)6)N], and [(3 — 3kd)N, (3 — 3(k — 1)6)N].

Each of these four intervals has length 30N so |Cy, + Cx + Ck| < 126N. Combining
this inequality with (12) we have (lc’“g'H) < 12g0N which implies oy (§)|A] = |Ck| <
(311290 N)/3. O

Now we consider two cases.

Case 1: Forsome 0 < < 1 and 1<k <I=|g5], we have

726 \'/*
(14.295) < an(9).

In this case, we apply Lemma 2 to get |A| < (14.295gN)/3 and we are done.

Case 2: Forall 0 <é < §and1<k<I=|[g], wehave

1/3
an(6) < <%> . (13)

Let H(z) = 1.6 cosx — 0.3cos 3z + 0.1 cos 6x. Partition the interval [—7/3, 7 /3]
into 128 subintervals I, ..., I128 of equal width so

T 2m(j—1 T 2mq
TR

3 3-128 7 3 3-128

for 1 < j < 128. Let v; = minges, H(z) for 1 < j < 128. Since H is an even
function, v; = wigg—j41 for 1 < j < 64. The values v; can be approximated
numerically. They satisfy

’01<’02<’03<’U4<'U5<1)35§’Uj (14)

for all 6 < j < 64. The sum

> H <<a— %) t3) (15)

a€A

is minimized when J = {(a — %) ts:a € A} contains as many elements as pos-
sible in I; Ul U---U I5 and the remaining elements of J are contained in I35. This
follows from (14). Furthermore, in order to minimize (15), J must intersect I in
as many elements as possible, and the remaining elements in J intersect I in as

many elements as possible, and so on. By (13) with § = 1/128,

72(1/128))1/3 .

1/128) <
ax(l/ 8)—( 14.295
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Thus,
72(1/128)\/*
L| < | ———= Al.
70 1'-( 14.295 =
Similarly, by (13) with § = j/128 for j € {2,3,4,5},

. 1/3
ar(j/128) < (—721(1{./2;258)) .

We conclude that

72(j/128)\ /* Al
14.295

|Jﬂ([1UIQU"~UIj)|S<

for 1 < j < 5. From this inequality and (14), we deduce that

5 , 1/3 1\ 1/3
N+1 72(13%) 72(%55)
_ T o) 4 > . _
> H <<a 2 )t‘*) > D (14.295 14.295 14

a€A j=1
72(5/128)\ /*
1—(——— A| > 1.2455|A|.
* ”35< ( 14.295 > 4] > 1.245514]
Using 1.2455 in the derivation of (9) instead of COS(;/?’) (3_C03(7r/3) — 1) gives
1 sin(mQ3) 13
1.2455|4] < —————(1 A | —== .
A1 < oo 1+ ox ()] (2245

This inequality can be rewritten as

(1-2;‘55)3 < (1+on(1)) (%) |

3|!’;£\,, this inequality leads to the bound |A| < (14.295gN)'/3

Recalling that Q3 =
for large enough N.

3. An Optimization Problem

In this section we introduce an optimization problem that is motivated by (8) from
the previous section.
Given integers K and h > 2, define

K

K
Z . Z 1
e by cos(je) = 151 = cos(m/h)

=1
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For A C [N] and F € Fk , define
N+1\ 27
acA
and

. wr(A)
N. K. h) = F .
Y(N, K, h) Agunvlﬁﬂsup{ A € fK,h}

Our interest in (N, K, h) is due to the following proposition.

Proposition 1. If A C [N] is a By|g]-set and K < hN, then

ynhlhgN \ /"
™

A < (1+ on (1)) (

where yp, s the unique real number in [0, 7] with 5‘2% = (cos(m/h)(N, K, h))".

The function G defined by (7) shows that

1 4
YN, h) 2 cos(m/h) (3 —cos(m/h) 1) '

When h = 3, this gives ¥(N,3,3) > 1.2 which implies (N, 6,3) > 1.2. This is
because the collection of functions F3 3 is a subset of Fg 3. By considering more
than one function, we can improve the bound (N, 6,3) > 1.2. The method by
which we achieve this can be stated just as easily for general K and h so we do so.

To estimate ¢(IN, K, h), we will consider finite subsets of Fx . Given a subset
Fren © Fi,hy we obviously have

sup { wié(”A) :Fe }'}(’h} < sup { wFf(lj|4) :Fe fK,h} (16)

for every A C [N] with A # (). When Fj , is finite, then the supremum on the left
hand side of (16) can be replaced with the minimum. Let m be a positive integer
and partition the interval [—m/h, 7/h] into m subintervals I7*, ..., I"" where

DA€ D N )

J h hm h  hm
for 1 < j <m. Any F € Fg is continuous and thus obtains its minimum value
on I7". Given F' € Fk p, define

Um,j(F) = min F(z).
J

Given A C [N], define

1 N+1 27 .
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With this notation, we have that for any A C [N] and F € Fk s,
wp(A) 2 ), (A)| Ao, ; (F).
j=1

Therefore, given a finite set {Fi,...,F,} C Fi p,

(N, K, h) > Agrjnv]i&ﬂ max ;am,j(A)um,j(Fk) 1<k<n

We now put the above discussion to use by proving the following result.

Theorem 2. For sufficiently large N, the function ¢(N,6,3) satisfies the estimate
P(N,6,3) > 1.2228.

Proof. Let
Fi(z) = 1.7cosz — 0.3 cos 3z, Fa(z) = 1.6 cosx — 0.3 cos 3z + 0.1 cos 6z,
Fs3(x) = 1.5cosx—0.4 cos 3x+0.1 cos 6z, Fy(x) = 1.2 cos —0.6 cos 3x+0.2 cos 6,
Fs5(x) = —2cos 3z,

and F = {F1, F», F3, Fy, F5}. Observe that F C Fg 3. We take m = 12 and we
must compute the numbers vp j(F)) for 1 < j <12 and 1 < k < 5. Since each F,
is an even function, vi2 ;(Fi) = vi2,12—j4+1(F%) for 1 < j < 6. To prove Theorem 2,
we will only need to estimate these values from below.

Let A C [N] with A # (. We assume that no element of the form (a — 23)2%
is contained in two of the intervals I12,... I]2. For large A, this will not affect
|Al, at least in an asymptotic sense. Under this assumption, the non-negative real
numbers ai2.1(A4), ..., a1212(A) satisfy

a121(A) + -+ a12,12(4) = 1.

We will consider several cases which depend on the distribution of A. For notational
convenience, we write o for ayz j(A).

Case 1: a1 + a2 <0.6.

Here we will use the function Fi(x). Lower estimates on the vig ;j(F}) are
U12,1(F1) Z 115, 1)1272(F1) Z 13525, 1}1273(F1) Z 14522,
U12’4(F1) Z 14474, ’1}12’5(F1) 2 14143, and 7)12’6(F1) Z 1.4.
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In fact, these values satisfy
v12,1(F1) < v122(F1) < v12,6(F1) < v12,5(F1) < v12.4(F1) < v12,3(F1).
Since a1 + a1 < 0.6, we must have
wr, (A) > (0.6v12,1(F1) + 0.4v12,2(F1))|A] > (0.6(1.15) + 0.4(1.3525))| A| > 1.23|A|.

Case 2: 0.6 <aj + a2 <0.7.

Here we use the function Fp(x). A close look at Case 1 shows that if v121(F») is
one of the two smallest values in the set {'Ulg,j (Fy) : 1 < j <6}, then essentially the
same estimate applies. The two smallest values are vi2 1(F2) > 1.2 and vy 4(F>) >
1.2834. Since 0.6 < a1 + a2 < 0.7,

wr, (A) > (0.7(1.2) + 0.3(1.2834)) | A| > 1.225|A].

Case 3: 0.7 < a3 +aj2 <0.8.

Here we use the function F3(x). In this range of oy + a2, our estimate behaves
a bit differently. Lower estimates on the vi5 ;(F3) are

U12,1(F3) 2 1.25, 1)12’2(F3) Z 1.299, ’01273(F3) Z 1.1997
1)1274(F3) Z 11595, 1}1275(F3) Z 115957 and 1)1276(F3) Z 1.18.

In this case, wp, (A) will be minimized when oy + a2 is as small as possible. In the
previous two cases, wg, (A) was minimized when o7 + ;2 was as large as possible.
We conclude that

W, (A) > (0.7(1.25) + 0.3(1.1595))| A] > 1.2228|A|.
Case 4: 0.8 < aj + ajs <0.9.
In this case we use the function Fy(z). Lower estimates on the v1a j(Fy) are
vi2,1(F1) > 1.3909, wvig2(Fy) > 1.1192, wvi23(Fy) > 0.8392,
’U12,4(F4) Z 07276, U12,5(F4) Z 07264, and 121276(F4) Z 0.7621.

We have
wp, (A) > (0.8(1.3909) + 0.2(0.7264))| A| > 1.25|A|.

Case 5: 09< a; +a12 < 1.

Lower estimates on the vis ;(F5) are
vig,1(F5) > 1.73, wvig2(F5) > 1, wviz23(F5) > —.01,
v12,4(F5) > =1, vi125(F5) > —1.8, and wv126(F5) > —2.
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As in Cases 3 and 4, wg, (A) is minimized when a; + aj2 is as small as possible.
Hence,
wry (A) > (0.9(1.73) + 0.1(-2))|A| > 1.35]A].

In all five cases, we can find a function F; € F such that wg, (4) > 1.2228|A|.
This completes the proof of Theorem 2. O

4. Concluding Remarks

Although it is an improvement of ¢(N, 6,3) > 1.2, Theorem 2 is not enough to prove
part (i) of Theorem 1. The improvement on Bs[g]-sets uses the Bs[g] property to
increase the 1.2 to 1.2455 which exceeds the 1.2228 provided by Theorem 2. Similar
arguments can be done for Bp[g]-sets with h > 3, but the improvements in the
results of Table 1 are minimal. Aside from Bjs[g]-sets, the bounds in Table 1 come
from lower bounds on ¢(N, h, h) together with Lemma 1.

The function (N, K, h) is relevant to an inequality of Cilleruelo. Let A be a
finite set of positive integers. For an integer h > 2, let

ro(n) = {(a1,...,an) € A" iay + -+ ap =n}| and Ry(m) = Zrh(m).

n=1

Generalizing the argument of [3], Cilleruelo proved the following result.

Theorem 3 (Cilleruelo [1]). Let A C [N], h > 2 be an integer, and {1 be any real
number. For any positive integer H = o(N),

hN+H
> |Ru(n) = Ru(n— H) = p| = (L + (1)) H|A["
n=h

where Ly = ﬁ and Ly, = cos"(w/h) for h > 2.

By slightly modifying the argument in [1] that is used to prove Theorem 3, it is
easy to prove the next proposition.

Proposition 2. Let A C [N], h > 2 be an integer, and p be a real number. For
any positive integers H = o(N) and K < %,

hN+H
> |Ru(n) = Bu(n — H) — p| > ((N, K, h)" Ly, + o(1)) H|A|"

n=~h

where Ly = ﬁ and Ly, = cos"(w/h) for h > 2.
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For instance, Theorem 2 gives

3N+H
> |Rs(n) — Rs(n — H) — | > (1.2228°Ls + o(1)) H| AJ*.

n=3

Acknowledgment. The author would like to thank Mike Tait for helpful discus-
sions.
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