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Abstract
In 1991, Solomon Golomb discovered a quasilinear solution to Hofstadter’s Q-
recurrence. Other authors have since found other well-behaved solutions to this
and other related recurrences. In this paper, we construct eventual quasipolyno-
mial solutions of all positive degrees to Hofstadter’s recurrence.

1. Introduction

In the 1960s, Douglas Hofstadter introduced his @ sequence [3, pp. 137-138]. This
sequence is defined by the recurrence Q(n) = Q(n — Q(n — 1)) + Q(n — Q(n — 2))
along with the initial conditions Q(1) = 1 and Q(2) = 1. Sequences defined in
this way are often referred to as meta-Fibonacci sequences [1]. Though simple to
define, this sequence appears to behave unpredictably. To this day, it is even open
whether this sequence is defined for all n. It is conceivable that Q(k) > k for some
k, in which case Q(k + 1) would be undefined, as calculating it would refer to @ of
a nonpositive number. Throughout this paper, though, we will use the convention
that @(n) = 0 for n < 0. (We will call such an occurrence an underflow.) This may
seem like cheating, but we could just as well replace the existence question about
the @ sequence by the equivalent question of whether Q(n) < n for all n. Other
authors have also used this convention [4].

In 1991, Golomb discovered a more predictable variation of Hofstadter’s Q-
sequence [2]. He used the same recurrence, but, instead of the initial conditions
Q(1) = 1 and Q(2) = 1, he used initial conditions Q(1) = 3, Q(2) = 2, and
Q(3) = 1. This leads to a quasilinear sequence that can be described as follows:

QBn)=3n-2

Q(Bn+1)=3
QBn+2)=3n+2.
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Given that one solution like this exists, it is conceivable that other related solu-
tions exist. In particular, under the aforementioned convention, it is plausible that
Hofstadter’s recurrence could have solutions where one equally-spaced subsequence
grows quadratically. This would occur if, for example, Q(gn+7) equals Q(gn+r—gq)
plus a linear polynomial, as the sequence (Q(gn + 1)), ~,; would satisfy the recur-
rence a, = a,—1 + An + B for some A and B. B

In this paper, we show that quadratic solutions of this form do exist for Hofs-
tadter’s @Q-recurrence. In fact, we construct eventually-quasipolynomial solutions
to the Q-recurrence of all positive degrees.

2. The Construction

First, we define the following:
Definition 1. Fix integersd > 1 and k > —1. Let

k
k
pan(n) = zacz(”+ ) +

n—1+k—1
1+k — '

(3¢+2)( s

Observe that pg i is a polynomial in n of degree k£ + 1. In particular, pg,—1 = 3d,
and pgo0 = 3dn. We will prove the following theorem:

Theorem 1. Fiz a degree d > 1. Define a sequence (am)m21 as follows:

3d—2 3dn+r=1
0 3dn+1r =2
I pa,z(n) 7 =0(mod3)
3d r=1(mod3) and 3dn+r > 2
3 r=2(mod3) andr #3d—1 and 3dn +r > 2
2 r=3d—1 and 3dn+r > 2,

where 0 < r < 3d always. Then, (a,) satisfies the recurrence Q(n) = Q(n — Q(n —
1))+ Q(n — Q(n — 2)) after an initial condition of length 3d + 2.

We will use the following lemmas:

Lemma 1. For all integers d > 1 and k > 0 we have py r(n) = pak—1(n)+par(n—
1).
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Proof. We have

1

k_ .
kE—1 ) —-24k-
Pak-1(n) +par(n —1) = 3d(n+k ) +2_ (Bi+2) <” k—i—1 Z)
i=1

T e ()
s (D (MTEY)

S () (1)

+(3k +2) (”82)

Applying Pascal’s Identity yields

Pak_1(n) + pag(n—1) = 3d<"+k> +§(3i—|—2) ("_ ! H?_i) + 3k +2)

1+k 1 k—1
E .
n+k n—1+k—1
= i+ 2
3d<1+k>+;(3z+ )< b )
= pa,k(n),
as required. O

Lemma 2. For all integers d > 1, k> 1, and n > 0 we have
pd,k(n) > 3dn + 3k + 2.

Proof. First, we observe that

k

pan(0) = 3d<1ik> +Zl(3z'+2) (’C;Z; 1).

1=

All of these binomial coefficients are zero, except when i = k, since (Bl) = 1. So,
pa,k(0) = 3k + 2. This equals 3dn + 3k + 2, and hence is greater than or equal to
it, as required.
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Now,

=3d+ > (3i+2)

i=1

k2 4+ k
3d+3< ;>+2k

7

5

3

= §k2+fk+3d.

So,

3 7
par(1) —3d-1+3k+2= §k2+§k+3d—3d—3k—2
3 1
=k k-2
2 + 2
Bk +4)(k—-1)
= 5 .
This is greater than or equal to 0, since k > 1. So, pg (1) > 3d+3k+2, as required.
Now, observe that pg , has nonnegative coeflicients, so it is convex. We have seen
that its average slope on the interval [0, 1] is at least 3d, so its derivative for n > 1
must be strictly larger than 3d everywhere. Therefore, since pq (1) > 3d + 3k + 2,
we can conclude that pg(n) > 3dn + 3k + 2 for all n > 0. O

We will now prove Theorem 1.

Proof. We will check the three congruence classes mod 3 separately for m > 3d+ 2.
As usual, m = 3dn+r for 0 < r < 3d. We will proceed by induction, so in each case
we will assume that all previous values of the sequence are what they should be.
Also, in all cases, since m > 3d 4+ 2, m — 3d > 2. (This will come up when deciding
whether or not we are in the special initial conditions for the first two values.)

r =0 (mod3): Assume r = 0(mod 3). Then, m = 3dn + r for some n. For conve-
nience, let £ = £. We wish to show that Q(3dn +r) = pa,e(n). Let ¢ = 2 if
r = 0; otherwise, let ¢ = 3. We have,

QBdn+r)=QBdn+r—QBdn+r—1))+ QBdn+r — QBdn+r —2))
=Q@Bdn+r—c)+Q(3dn+r — 3d)
=QBdn+r—c)+QBdn—1)+r)
=Q@Bdn+r—c)+pgen—1).
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Ifr=0,then{=0and QBdn+r—c)=Q@Bdn+r—2)=3d=pge_1(n). If
r#0, then £ > 0 and Q(3dn+ 1 —c) = Q(3dn+ 17— 3) = pae—1(n). In either
case, we have

QBdn+ 1) = pae—1(n) + pae(n —1).

By Lemma 1, this equals pq ¢(n), as required.

r =1 (mod3): Assume r = 1(mod 3). Then, m = 3dn + r for some n. We wish to
show that Q(3dn + r) = 3d. For convenience, let £ = 1. We have,

QBdn+7r)=QBdn+r—QBdn+r—1))+ Q3dn +r — Q(3dn +r — 2))
=QBdn+r—pgs(n))+QBdn+r — Q(3dn +r — 2)).

If ¢ = 0, then pg(n) = 3dn and r = 1. So, in that case, 3dn + 1 — pge(n) =
r = 1. Also, in that case Q(3dn +r —2) = 2, so

QBdn+r—QBdn+r—2))=QBdn+r —2)=2.

Since Q(1) = 3d — 2, we obtain Q(3dn+r) = 3d —2+2 = 3d in the case when
r=1.

Otherwise, we have ¢ > 1. In that case, pge(n) > 3dn + 3¢ + 2 by Lemma 2.
But, 3¢+ 2 =1r+1 so, 3dn+r — pg—1(n) < —1. This causes the first term to
underflow, so Q(3dn + r — pge(n)) = 0. Hence, Q(3dn +r) = Q(3dn + r —
Q(3dn + r — 2)). In this case, we know r # 1, so Q(3dn + r — 2) = 3. This
means that

QBdn+r—QBdn+r—2)) =Q(3dn+r —3) = 3d.
So, Q(3dn + r) = 3d, as required.

r = 2(mod3): Assume r = 2 (mod 3). Then, m = 3dn + r for some n. Let ¢ = 2 if
r = 3d — 1; otherwise, let ¢ = 3. We wish to show that Q(3dn + r) = ¢. For

convenience, let £ = % We have,

QBdn+r)=Q@Bdn+r—-QBdn+r—1))+ QBdn+r — Q(3dn +r —2))
Q(3dn + 1 —3d) + Q(3dn +r — pa,e(n))

Qd(n —1) +7) 4+ Q(3dn + 1 — pge(n))

c+ QBdn +r —pgr(n)).

If ¢ =0, then pg(n) = 3dn and r = 2. So, in that case, 3dn + 1 — pge(n) =
r = 2. Since Q(2) = 0, we obtain Q(3dn + r) = ¢ in the case when r = 2.

Otherwise, we have ¢ > 1. In that case, pq¢(n) > 3dn + 3¢ + 2 by Lemma 2.
But, 3¢ + 2 = r so, 3dn + 1 — pg—1(n) < 0, an underflow in the second term.
This implies that Q(3dn + r — pge(n)) = 0, so Q(3dn + r) = ¢, as required.
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O

Note that the only place we used the 3¢ + 2 in the definition of pg x(n) was to
obtain the lower bound of » 4+ 2 on the polynomials that we needed when proving
Theorem 1. So, 3¢ + 2 could be replaced by any larger expression, and the proof
would still go through. Also, observe that this construction is not a direct general-
ization of Golomb’s construction, as the d = 1 case has two constant pieces and one
linear piece, unlike Golomb’s, which has one constant piece and two linear pieces.
Also, Golomb’s example is purely quasilinear, whereas our d = 1 example is only
eventually quasilinear. It is unknown whether there exist purely quasipolynomial
solutions to the Hofstadter @)-recurrence of degrees greater than 1.

2.1. An Example

As an example, we will construct a solution to Hofstadter’s recurrence with a cubic
subsequence. To do this, we set d = 3, which means that the sequence values will
depend on the congruence class mod 9 of the index. We observe that

3,0 = 9N
n+1 n—1 9
P3,1—9< 5 >+5< 0 )—in(n+1)+5
9, 9

2 -1
p3,2=9<n; >+5<T)+8(n0 ):%n(n+l)(n+2)+5n+8

9
:gn3+§n2+8n+8.

So, our sequence is defined by a; = 7, ag = 0, and for 9n + r > 2,

In r=20
9 r=1
3 r=2
%n2+%n+5 r=3
Agnt+r =< 9 r=4
3 r=2>5
584+ 9n?4+8n+8 r==6
9 r=7
2 r=38.
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After the initial condition 7,0,5,9,3,8,9,2,9,9, 3, repeated applications of the Hof-
stadter ()-recurrence produce the sequence
7,0,5,9,3,8,9,2,9,9,3,14,9,3,22,9,2,18,9, 3,32,9, 3, 54,
9,2,27,9,3,59,9,3,113,9,2, ...
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