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Abstract
In 1991, Solomon Golomb discovered a quasilinear solution to Hofstadter’s Q-
recurrence. Other authors have since found other well-behaved solutions to this
and other related recurrences. In this paper, we construct eventual quasipolyno-
mial solutions of all positive degrees to Hofstadter’s recurrence.

1. Introduction

In the 1960s, Douglas Hofstadter introduced his Q sequence [3, pp. 137-138]. This
sequence is defined by the recurrence Q(n) = Q(n�Q(n� 1)) + Q(n�Q(n� 2))
along with the initial conditions Q(1) = 1 and Q(2) = 1. Sequences defined in
this way are often referred to as meta-Fibonacci sequences [1]. Though simple to
define, this sequence appears to behave unpredictably. To this day, it is even open
whether this sequence is defined for all n. It is conceivable that Q(k) > k for some
k, in which case Q(k + 1) would be undefined, as calculating it would refer to Q of
a nonpositive number. Throughout this paper, though, we will use the convention
that Q(n) = 0 for n  0. (We will call such an occurrence an underflow.) This may
seem like cheating, but we could just as well replace the existence question about
the Q sequence by the equivalent question of whether Q(n)  n for all n. Other
authors have also used this convention [4].

In 1991, Golomb discovered a more predictable variation of Hofstadter’s Q-
sequence [2]. He used the same recurrence, but, instead of the initial conditions
Q(1) = 1 and Q(2) = 1, he used initial conditions Q(1) = 3, Q(2) = 2, and
Q(3) = 1. This leads to a quasilinear sequence that can be described as follows:

8><
>:

Q(3n) = 3n� 2
Q(3n + 1) = 3
Q(3n + 2) = 3n + 2.



INTEGERS: 16 (2016) 2

Given that one solution like this exists, it is conceivable that other related solu-
tions exist. In particular, under the aforementioned convention, it is plausible that
Hofstadter’s recurrence could have solutions where one equally-spaced subsequence
grows quadratically. This would occur if, for example, Q(qn+r) equals Q(qn+r�q)
plus a linear polynomial, as the sequence (Q(qn + r))n�1 would satisfy the recur-
rence an = an�1 + An + B for some A and B.

In this paper, we show that quadratic solutions of this form do exist for Hofs-
tadter’s Q-recurrence. In fact, we construct eventually-quasipolynomial solutions
to the Q-recurrence of all positive degrees.

2. The Construction

First, we define the following:

Definition 1. Fix integers d � 1 and k � �1. Let

pd,k(n) = 3d
✓

n + k

1 + k

◆
+

kX
i=1

(3i + 2)
✓

n� 1 + k � i

k � i

◆
.

Observe that pd,k is a polynomial in n of degree k + 1. In particular, pd,�1 = 3d,
and pd,0 = 3dn. We will prove the following theorem:

Theorem 1. Fix a degree d � 1. Define a sequence (am)m�1 as follows:

a3dn+r =

8>>>>>>>><
>>>>>>>>:

3d� 2 3dn + r = 1
0 3dn + r = 2
pd, r

3
(n) r ⌘ 0 (mod 3)

3d r ⌘ 1 (mod 3) and 3dn + r > 2
3 r ⌘ 2 (mod 3) and r 6= 3d� 1 and 3dn + r > 2
2 r = 3d� 1 and 3dn + r > 2,

where 0  r < 3d always. Then, (am) satisfies the recurrence Q(n) = Q(n�Q(n�
1)) + Q(n�Q(n� 2)) after an initial condition of length 3d + 2.

We will use the following lemmas:

Lemma 1. For all integers d � 1 and k � 0 we have pd,k(n) = pd,k�1(n)+pd,k(n�
1).
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Proof. We have

pd,k�1(n) + pd,k(n� 1) = 3d
✓

n + k � 1
k

◆
+

k�1X
i=1

(3i + 2)
✓

n� 2 + k � i

k � i� 1

◆

+ 3d
✓

n + k � 1
1 + k

◆
+

kX
i=1

(3i + 2)
✓

n� 2 + k � i

k � i

◆

= 3d
✓✓

n + k � 1
k

◆
+

✓
n + k � 1

1 + k

◆◆

+
k�1X
i=1

(3i + 2)
✓✓

n� 2 + k � i

k � i� 1

◆
+

✓
n� 2 + k � i

k � i

◆◆

+ (3k + 2)
✓

n� 2
0

◆
.

Applying Pascal’s Identity yields

pd,k�1(n) + pd,k(n� 1) = 3d
✓

n + k

1 + k

◆
+

k�1X
i=1

(3i + 2)
✓

n� 1 + k � i

k � i

◆
+ (3k + 2)

= 3d
✓

n + k

1 + k

◆
+

kX
i=1

(3i + 2)
✓

n� 1 + k � i

k � i

◆

= pd,k(n),

as required.

Lemma 2. For all integers d � 1, k � 1, and n � 0 we have

pd,k(n) � 3dn + 3k + 2.

Proof. First, we observe that

pd,k(0) = 3d
✓

k

1 + k

◆
+

kX
i=1

(3i + 2)
✓

k � i� 1
k � i

◆
.

All of these binomial coe�cients are zero, except when i = k, since
��1

0

�
= 1. So,

pd,k(0) = 3k + 2. This equals 3dn + 3k + 2, and hence is greater than or equal to
it, as required.
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Now,

pd,k(1) = 3d
✓

1 + k

1 + k

◆
+

kX
i=1

(3i + 2)
✓

k � i

k � i

◆

= 3d +
kX

i=1

(3i + 2)

= 3d + 3
✓

k2 + k

2

◆
+ 2k

=
3
2
k2 +

7
2
k + 3d.

So,

pd,k(1)� 3d · 1 + 3k + 2 =
3
2
k2 +

7
2
k + 3d� 3d� 3k � 2

=
3
2
k2 +

1
2
k � 2

=
(3k + 4) (k � 1)

2
.

This is greater than or equal to 0, since k � 1. So, pd,k(1) � 3d+3k+2, as required.
Now, observe that pd,k has nonnegative coe�cients, so it is convex. We have seen

that its average slope on the interval [0, 1] is at least 3d, so its derivative for n > 1
must be strictly larger than 3d everywhere. Therefore, since pd,k(1) � 3d + 3k + 2,
we can conclude that pd,k(n) � 3dn + 3k + 2 for all n � 0.

We will now prove Theorem 1.

Proof. We will check the three congruence classes mod 3 separately for m > 3d+2.
As usual, m = 3dn+r for 0  r < 3d. We will proceed by induction, so in each case
we will assume that all previous values of the sequence are what they should be.
Also, in all cases, since m > 3d + 2, m� 3d > 2. (This will come up when deciding
whether or not we are in the special initial conditions for the first two values.)

r ⌘ 0 (mod 3): Assume r ⌘ 0 (mod 3). Then, m = 3dn + r for some n. For conve-
nience, let ` = r

3 . We wish to show that Q(3dn + r) = pd,`(n). Let c = 2 if
r = 0; otherwise, let c = 3. We have,

Q(3dn + r) = Q(3dn + r �Q(3dn + r � 1)) + Q(3dn + r �Q(3dn + r � 2))
= Q(3dn + r � c) + Q(3dn + r � 3d)
= Q(3dn + r � c) + Q(3d(n� 1) + r)
= Q(3dn + r � c) + pd,`(n� 1).
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If r = 0, then ` = 0 and Q(3dn + r� c) = Q(3dn + r� 2) = 3d = pd,`�1(n). If
r 6= 0, then ` > 0 and Q(3dn + r� c) = Q(3dn + r� 3) = pd,`�1(n). In either
case, we have

Q(3dn + r) = pd,`�1(n) + pd,`(n� 1).

By Lemma 1, this equals pd,`(n), as required.

r ⌘ 1 (mod 3): Assume r ⌘ 1 (mod 3). Then, m = 3dn + r for some n. We wish to
show that Q(3dn + r) = 3d. For convenience, let ` = r�1

3 . We have,

Q(3dn + r) = Q(3dn + r �Q(3dn + r � 1)) + Q(3dn + r �Q(3dn + r � 2))
= Q(3dn + r � pd,`(n)) + Q(3dn + r �Q(3dn + r � 2)).

If ` = 0, then pd,`(n) = 3dn and r = 1. So, in that case, 3dn + r � pd,`(n) =
r = 1. Also, in that case Q(3dn + r � 2) = 2, so

Q(3dn + r �Q(3dn + r � 2)) = Q(3dn + r � 2) = 2.

Since Q(1) = 3d�2, we obtain Q(3dn+ r) = 3d�2+2 = 3d in the case when
r = 1.

Otherwise, we have ` � 1. In that case, pd,`(n) � 3dn + 3` + 2 by Lemma 2.
But, 3` + 2 = r + 1 so, 3dn + r� pd�1(n)  �1. This causes the first term to
underflow, so Q(3dn + r � pd,`(n)) = 0. Hence, Q(3dn + r) = Q(3dn + r �
Q(3dn + r � 2)). In this case, we know r 6= 1, so Q(3dn + r � 2) = 3. This
means that

Q(3dn + r �Q(3dn + r � 2)) = Q(3dn + r � 3) = 3d.

So, Q(3dn + r) = 3d, as required.

r ⌘ 2 (mod 3): Assume r ⌘ 2 (mod 3). Then, m = 3dn + r for some n. Let c = 2 if
r = 3d � 1; otherwise, let c = 3. We wish to show that Q(3dn + r) = c. For
convenience, let ` = r�2

3 . We have,

Q(3dn + r) = Q(3dn + r �Q(3dn + r � 1)) + Q(3dn + r �Q(3dn + r � 2))
= Q(3dn + r � 3d) + Q(3dn + r � pd,`(n))
= Q(3d(n� 1) + r) + Q(3dn + r � pd,`(n))
= c + Q(3dn + r � pd,`(n)).

If ` = 0, then pd,`(n) = 3dn and r = 2. So, in that case, 3dn + r � pd,`(n) =
r = 2. Since Q(2) = 0, we obtain Q(3dn + r) = c in the case when r = 2.

Otherwise, we have ` � 1. In that case, pd,`(n) � 3dn + 3` + 2 by Lemma 2.
But, 3` + 2 = r so, 3dn + r � pd�1(n)  0, an underflow in the second term.
This implies that Q(3dn + r � pd,`(n)) = 0, so Q(3dn + r) = c, as required.
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Note that the only place we used the 3i + 2 in the definition of pd,k(n) was to
obtain the lower bound of r + 2 on the polynomials that we needed when proving
Theorem 1. So, 3i + 2 could be replaced by any larger expression, and the proof
would still go through. Also, observe that this construction is not a direct general-
ization of Golomb’s construction, as the d = 1 case has two constant pieces and one
linear piece, unlike Golomb’s, which has one constant piece and two linear pieces.
Also, Golomb’s example is purely quasilinear, whereas our d = 1 example is only
eventually quasilinear. It is unknown whether there exist purely quasipolynomial
solutions to the Hofstadter Q-recurrence of degrees greater than 1.

2.1. An Example

As an example, we will construct a solution to Hofstadter’s recurrence with a cubic
subsequence. To do this, we set d = 3, which means that the sequence values will
depend on the congruence class mod 9 of the index. We observe that

p3,0 = 9n

p3,1 = 9
✓

n + 1
2

◆
+ 5

✓
n� 1

0

◆
=

9
2
n (n + 1) + 5

=
9
2
n2 +

9
2
n + 5

p3,2 = 9
✓

n + 2
3

◆
+ 5

✓
n

1

◆
+ 8

✓
n� 1

0

◆
=

9
6
n (n + 1) (n + 2) + 5n + 8

=
3
2
n3 +

9
2
n2 + 8n + 8.

So, our sequence is defined by a1 = 7, a2 = 0, and for 9n + r > 2,

a9n+r =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9n r = 0
9 r = 1
3 r = 2
9
2n2 + 9

2n + 5 r = 3
9 r = 4
3 r = 5
3
2n3 + 9

2n2 + 8n + 8 r = 6
9 r = 7
2 r = 8.
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After the initial condition 7, 0, 5, 9, 3, 8, 9, 2, 9, 9, 3, repeated applications of the Hof-
stadter Q-recurrence produce the sequence

7, 0, 5, 9, 3, 8, 9, 2, 9, 9, 3, 14, 9, 3, 22, 9, 2, 18, 9, 3, 32, 9, 3, 54,
9, 2, 27, 9, 3, 59, 9, 3, 113, 9, 2, . . .
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