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Abstract

Let S be a sequence of integers, and let S, be a list of exactly m > 2 consecutive
terms of S. We say that S, has property P; if there exists z € S, such that
ged(z,y) = 1 for all y € S, with y # z. Define gg to be the smallest integer m,
if it exists, such that there exists .S, for which property P; fails to hold. Pillai
investigated the particular sequence S = [1,2,3,...], and showed that g = 17 in
this case. Other authors have extended this idea to arbitrary linear sequences and,
more recently, to Lucas and Lehmer sequences. In this article, we extend this idea
to quadratic sequences S whose nth term is f(n), where f(z) = az? + bx + ¢ € Z[z]
with a > 0. Among the results established is the determination of gg when

o f(z)=2+bx+c,
o f(x) = 22?4 ¢, except when k = 2 and ¢ = —17, and

o f(x) = ax® + bx + ¢, when b? — dac € {0,a?, —¢*}, where ¢ is an odd prime
and k£ > 1.

1. Introduction

Let N,,, denote a list of m > 2 consecutive positive integers. In an effort to prove
that no product of two or more consecutive positive integers greater than 1 is ever
a perfect power, Pillai [17, 18, 19, 20] investigated when N,,, contains an element
that is relatively prime to all other elements in N,,,. Saradha and Thangadurai [22]
have subsequently refereed to this property as property P;. Pillai showed that any
list N,,, with m < 17 has property P1, and he conjectured that there exist infinitely
many lists N,,, that do not have property P; for each m > 17. Initially, Pillai was
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able to verify this conjecture for all m < 430, and later extend it to all m < 12335
[19]. The full conjecture was proven by Alfred Brauer [3], and shortly thereafter,
Pillai himself [20] published a different proof. In actuality, a paper of Erdés [5] that
predates Brauer’s paper by 6 years also contains a proof. A simpler proof was given
later by Evans [6], and more recently, Gassko [10] has given another proof. Since
then, other authors have investigated various generalizations of these ideas. For
example, Y. Caro [4], and later Saradha and Thangadurai [22], extended the notion
of property P in the following way. They say N,,, has property Py if there exists an
element = € N,,, such that ged(z,y) < d for all y € N,,, with y # x. Caro [4] proved
that for any d > 1, there exist infinitely many lists N,,, which do not have property
P; whenever m exceeds an effectively computable number G(d). Denote by g(d)
the smallest integer such that there exists a set N4y for which property Py does
not hold. Caro [4] also showed that g(d) < 45dlogd and G(d) < 54dlogd. Using
a combination of a computer search and more precise estimates for m(z) due to
Rosser and Schéenfeld [21], Saradha and Thangadurai [22] improved Caro’s bounds
for g(d) and G(d). Recently, Hajdu and Saradha [11] have investigated the following
generalization of these notions. Given a non-empty set 1" of positive integers, they
say N,,, has property Pr if there exists x € N,, such that ged(x,y) € T for all
y € N, with y # z.

We are interested here in a slightly different generalization. Rather than change
the property P;, we change the list N,;,. This concept is not new and was first inves-
tigated by Evans [7], and later by Ohtomo and Tamari [16], when they changed the
focus from sets of consecutive integers to sets of consecutive terms in an arithmetic
progression. They showed that this problem in arithmetic progressions is equiva-
lent to the original problem of Pillai. More recently, Hajdu and Szikszai [12] have
investigated the original problem of Pillai when applied to sets of consecutive terms
of Lucas and Lehmer sequences. For any sequence S of integers, let S, be a list of
exactly m > 2 consecutive terms of S. We define gg to be the smallest integer m
such that there exists S, for which property P; fails to hold. It is easy to see that
Pillai’s original result applies immediately to sequences S whose nth term is n?.
That is, gg = 17 for these sequences. This observation provides the motivation for
the investigations in this article. Our focus is on the calculation of gg for sequences
S whose nth term is f(n), where f(z) = ax?® + bz + ¢ € Z[z] with a > 0. Note
that there is no loss of generality to restrict attention to a > 0. It turns out that
gs varies, depending on the values of a,b, ¢, and so we write g(a, b, ¢), or simply g,
instead of gs. We remark that a number Gg (analogous to G(1)) can be defined in
this situation, but we are not concerned with such calculations here. The main re-
sults in this article include the calculation of ¢g(1, b, ¢) for all b, ¢ € Z, g(a, 0, ¢) when
a=2%>2 (except a = 4 and ¢ = —17), and g(a, b, c) when b — 4ac € {0,a?, —¢"*},
where ¢ is a prime and & is a positive integer. All computer calculations were done
using Maple.
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Throughout this article, we let f(z) = az® + bx + ¢ € Z[z] with a > 0, and
we let A := A(f) denote the discriminant b? — 4ac of f(x). We define a sequence
S := S(f) of integers whose nth term is f(n), and we let S,,, denote a list of m > 2
consecutive terms of S. We let 7 denote the list [1,2,...,m)].

2. A General Combinatorial Problem

We now describe a combinatorial problem that, at first glance, might seem unrelated
to the question of focus in this article. Let m be a fixed positive integer, and let H
be a (possibly infinite) list of positive integers. We can use £ € H to cover any two
elements u,v € m with v < v and v — v = £. Borrowing some terminology from
Gassko [10], we can think of this process of covering the integers u and v, as placing
a staple of length ¢ above 7, so that the two ends of the staple are at locations u
and v in . For example, if m = 6, a single staple of length 2 can be used to cover
any particular two elements u and v in 72, where (u,v) € {(1, 3), (2,4), (3,5), (4,6)}.
A visualization of this “stapling” is given in the following example, where we have
chosen to cover the integers 2 and 4 in 6 with a staple of length 2.

Example 2.1. A staple of length 2 can be used to cover 2 and 4 in 6:

g, 2 3 4 5 6l
We impose the following restrictions on the process of using H to cover m.
e Both ends of every staple used from H must cover only integers in .

From the definition of what it means for ¢ € H to cover the integers u and v
in T, it is clear that no ¢ € H with £ > m — 1 can be used. That is, staples of
length greater than m — 1 would have at least one end of the staple “hanging
over”. Also, for example, if we want to cover 6, a staple of length 3 cannot be
placed with its left end at location 5, since the right end of the staple would
then be at location 8, which is not an element of 6.

e Staples can overlap, and two staples can even be used to cover the same
element in .

See Example 2.3 and Example 2.4.

e We cannot reuse a staple of length ¢, unless ¢ actually appears more than once
in the list H.

In other words, if H = [3,3,5], then we get to use a staple of length 3 twice,
but a staple of length 5 only once.
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We say that H covers m if staples of lengths from some sublist of H can be used
to cover all the integers in . A natural question that arises is:

Question 2.2. Given a list H of positive integers, what is the smallest positive
integer m, if it exists, such that H covers m?

We believe that Question 2.2 is an interesting and difficult combinatorial ques-
tion. The main reason for the difficulty of this problem is in determining when a
particular list H actually covers m. We do not know if there is some sort of general
algorithm or criterion that can be used to determine whether H covers m or fails
to cover m. We illustrate some of the previously discussed ideas with the following
examples.

Example 2.3. If H = [2,3,4], then H can be used to cover 6 in the following way:

1B, 2, 3, 4 5 0o

Observe that the placement of the staples in Example 2.3 to cover 6 is not unique.
For example, the staple of length 2 can be used to cover the pair (3,5); the staple
of length 3 can be used to cover the pair (1,4); and the staple of length 4 can be
used to cover the pair (2,6). On the other hand, if we do not place the staples in
certain positions, we could fail to cover 6. The following example illustrates this
phenomenon.

Example 2.4. The following placement of the staples with staple lengths from
H = [2,3,4] results in not covering 4 in 6:

1 |

It 2. 3 2 5. 5

3. The Connection with Property P

In this section, we present the connection between the combinatorial problem de-
scribed in Section 2 and property P; defined in Section 1. Given f(x) = az?+bz+c,
it is the main goal of this article to determine the smallest positive integer g :=
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g(a, b, c) for which there exists a positive integer n such that property P fails for
the list
Sg=1f(n), f(n+1),....f(n+g—1)].

Recall that Property P fails for the list S, if there does not exist f(j) € S, such
that ged(f(j), f(¢)) = 1 for all f(i) € Sy with ¢ # j. This implies, for any pair (4, j)
with n <14 < j < n+g—1, that there exists a prime p such that ged(f(¢), f(j)) =0
(mod p). To illustrate how the combinatorial problem described in Section 2 can be
related to our polynomial problem, we give a hypothetical situation in the following
example.

Example 3.1. Suppose, hypothetically, that g := g(a,b,c) = 6 and

Suppose also that

ged(f(n), f(n+4)) =0 (mod py),
ged(f(n+1),f(n+3)) =0 (mod p2) (3.1)
and ged(f(n+2),f(n+5)) =0 (mod p3).

If we relabel the elements of Sy, replacing f(n + j) with j + 1, we can encapsulate
the previous information using a slight modification of the diagram from Example
2.3 to incorporate the divisibility of the ged’s by the various primes in (3.1):

b1 D2 b3 D2 b1 b3

Note that the staples in this diagram are redundant now since the location of
the primes p; gives us the same information. Hence, a further refinement of the
diagram leads to

1 2 3 4 5 6

b1 b2 b3 b2 b1 b3

(3.2)

Remark 3.2. We will refer to a diagram such as (3.2) as a scheme.

Thus, the connection to the combinatorial problem from Section 2 has been some-
what established. However, there are still some loose ends. The question of main
concern in this paper is not as general as Question 2.2. We are not handed some
arbitrary list H of positive integers. The list H here of “allowable” or “useable”
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staple lengths is determined by the polynomial f(z). The definition of “allowable”
also varies in the literature from problem to problem. In [10], the elements of H
must be prime numbers. In [11], the elements of H are not necessarily prime, but
they must be unique and pairwise relatively prime. In this paper, the elements of
H are not required to be prime, or even pairwise relatively prime, and repetitions
are allowed. However, other restrictions imposed by the polynomial f(z) do apply,
and they are described in detail in Section 4. To calculate g and the actual lists S,
for which property P; fails to hold, we construct H according to these restrictions.
These restrictions give us an associated list of primes that allow us to impose certain
congruence conditions on the index n of the first element in the list S,. If there
exists a list H that covers g, then, using the Chinese remainder theorem, we can
calculate infinitely many such values of n.

4. The General Case f(z) = az? + bz + ¢

Lemma 4.1. Let p be a prime, and suppose that f(n) =0 (mod p) for somen € Z.
Letr € Z.

1. If p=2, then f(n+7) =0 (mod 2) if and only if

r=0 (mod2) or a+b=c¢=0 (mod2).

2. Ifp>2and a =0 (mod p), then f(n+r) =0 (mod p) if and only if

r=0 (modp) or b=c=0 (mod p).

3. Ifp>2and a0 (mod p). Then f(n+r)=0 (mod p) if and only if
r=0 (modp) or r=a'z (mod p),
where 22 = A (mod p).
Proof. For any r € Z, observe that
f(n+7r)= f(n)+r(ar+2an +b). (4.1)
Hence, since f(n) =0 (mod p), we have from (4.1) that
r=0 (mod p)
fn+7r)=0 (modp) <— or (4.2)
ar+2an+b=0 (mod p)

Then (1) and (2) of the lemma follow easily from (4.2).
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To see (3), first note that since a Z 0 (mod p), p > 2 and f(n) =0 (mod p), we
have
n=—2a)"'(b+2) (mod p),

where 22 = d (mod p).

If f(n+7)=0 (mod p) and ar + 2an+ b =0 (mod p) from (4.2), we see that
r=-a'(2an+b)=—-a"" (2a(—(2a) "' (b+2)) +b) =a "'z (mod p).

Conversely, if r = 0 (mod p), then f(n+7) =0 (mod p) since f(n) =0 (mod p).
Also, if r = a7z (mod p), then since f(n) =0 (mod p), we have from (4.1) that

f(n+7r)= f(n) +r(ar + 2an + b)
=r(ar +2an+b) (mod p)

=a 2 (a (ailz) + 2a (7 (2a)"" (erb)) +b) (mod p)
=0 (mod p),
which establishes (3) and completes the proof of the lemma. O

The calculation of the values of r in (3) of Lemma 4.1 is crucial to the results
in this paper. These values are, in fact, elements of H, and Lemma 4.1 indicates
the restrictions on r such that » € H. One way to determine these values of r is
to search for primes p for which a # 0 (mod p) and (%) # —1, where (%) is the

Legendre symbol of A with respect to p. Then r = a~'z (mod p), where 2 is a
square root of A modulo p. An equivalent approach is to examine the sequence
{t,} defined by

tr=A—a*r? r=1,2.... (4.3)

For a given r, if there exists a prime p such that a Z 0 (mod p) and ¢, =0 (mod p),
then r can be used in H. We denote the list of primes corresponding to the elements
of H as P. That is, if r € H, then p appears in the corresponding location in P.

There are two items to note. First, a prime p can appear at most twice in P
since there are at most two distinct square roots of A modulo p, and hence at most
two distinct values of r in this case. If there are two distinct values r; and 7o of r
arising from the square roots of A modulo p, then both r; and 72 can be used as
staple lengths in lieu of using the staple length p, provided the staples r; and ro
are used consecutively. That is, if for some n € Z, we have f(n) = f(n+7r1) =0
(mod p), then we can use ry to get that f(n+r; 4+ r2) =0 (mod p), since

0=z1+2z=ari+ary (modp) <= ri+r2=0 (mod p). (4.4)

A straightforward calculation shows condition (4.4) implies that the two congru-
ences,

n=—2a)"Y(b+2) (modp) and n+7r =—(2a) ' (b+2) (mod p),
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for n arising from r; and ro are in fact the same congruence. Thus, we can use the
Chinese remainder theorem to compute a value of n to generate a desired list Sy.
The use of both r; and 79 will be indicated in H by placing a hat over the pair of
staple lengths. That is, if r; and 79 are staple lengths corresponding to the same
prime, and they are used with r first (reading from left to right), then the pair
71,73 would appear in H.

Secondly, we note that a given value of r can appear in H more than once, since
it is possible that the calculation of r gives the same value for distinct primes p.
This can happen, in fact, when ¢, from (4.3) is divisible by more than one odd
prime.

As indicated in Section 3, it will be convenient to use a diagram, which we call
a scheme, to represent how the list H and the corresponding list of primes P are
used to cover g. Let H = [r1,72,...,7,] and P = [p1,p2,...,p:]. Suppose that we
use 7; € H to cover u < v in g. Then this information would appear in the scheme
as follows:

2 o u e v e g
. pl . e pz - *.

Note that for each prime p; € P, the corresponding value r; € H can be computed

(4.5)

easily from (4.5). We point out that, in general, a scheme is not unique. Also, if
p; is found using (3) of Lemma 4.1, and kr; < m for some integer k > 1, then p;
divides the terms in the list S, at locations v — kr; and v + kr;.

The following lemmas are needed to establish our results. We use the sequence
{t;} defined in (4.3).

Lemma 4.2. If there exists a prime p > 2 such that a Z 0 (mod p) and t; = 0
(mod p), then g(a,b,c) = 2.

Proof. Let n = —(2a)"'(a +b) (mod p). Then

f(n) = a(—2a)" (a+1b))" +b(—(2a) " (a+b) + ¢ (mod p)
—(4a) 71 (b* — 4ac — a?) (mod p)
—(4a)"'t1 (mod p)

=0 (mod p).

Letting z = a in (3) of Lemma 4.1, we conclude that modulo p, f(z) has the two
zeros n and n + 1. Hence, it follows that g(a,b,c) = 2. ]

Corollary 4.3. If A = a?, then g(a,b,c) = 2.
Proof. Let p > 2 be any prime such that p > a. Then a Z 0 (mod p) and
t1=A-a’>=0=0 (mod p).

Thus, we see that the corollary is just a special case of Lemma 4.2. O
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Remark 4.4. An alternate and somewhat more transparent proof of Lemma 4.2
can be given using the scheme notation with H = [1] and P = [p]. The scheme is

then
1 2

p b.
Thus, g(a,b,c) = 2.

Lemma 4.5. Ifa=1 (mod 2) and A =1 (mod 8), then g(a,b,c) = 2.
Proof. Observe that b =1 (mod 2) so that b> =1 (mod 8). Thus,
0=A—-1=—4ac (mod 8),

and hence ¢ = 0 (mod 2). Therefore, a +b = ¢ = 0 (mod 2) so that f(1) =0
(mod 2). Letting r =1 in (1) of Lemma 4.1, we conclude that g(a,b,c) = 2. O

Lemma 4.6. There exists no f(x) such that g(a,b,c) = 3.

Proof. 1If g(a,b,c) = 3, then there exists a list [f(n), f(n + 1), f(n + 2)] for which
property P; fails to hold. Thus,

either ged(f(n+1),f(n))>1 or ged(f(n+1),f(n+2))>1,
which implies that g(a, b, c) = 2. O
Lemma 4.7. If A =0, then g(a,b,c) = 17.

Proof. Since A = 0, we can write f(x) = (Ax + B)?, for some A, B € Z. Hence,
the lemma follows from the original result of Pillai and its extension to arithmetic
progressions. ]

Lemma 4.8. Suppose that gcd(a,b,c) =1 and either a+b =1 (mod 2) orc=1
(mod 2). Assume also that every odd prime divisor of t1 divides a, and that there
are distinct odd primes T2, 73 and 14 such that t; =0 (mod 7;) and a £ 0 (mod 7;)
for each i. Then g(a,b,c) € {4,5,6}. Moreover,

1. If to has an odd prime divisor p # T2, then g(a,b,c) = 4.

2. Ifts has an odd prime divisor ¢ & {12, T3}, and 12 is the only odd prime divisor
of ta, then g(a,b,c) = 5.

3. If 7; is the only odd prime divisor of t; for all i, then g(a,b,c) = 6.
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Proof. First note, by Lemma 4.1, that the hypotheses here imply that » = 1 cannot
be used as a staple length, and hence g(a, b, c) # 2.

To prove 1., we use
H= [272] and P = [p7 7—2]7

from which we get the scheme

1 2 3 4
p T2 p 72.

Thus, g(a,b,¢) < 4. By Lemma 4.6, g(a,b,c) # 3. Since g(a,b,c) # 2, it follows
that g(a, b, c) = 4. Indeed, it is easy to see that this scheme is the only possible way
to have g(a,b,c) = 4.
For 2., we use
H=12,3,3] and P =|[m,q,73],

from which we construct the scheme

1 2 3 4 5
q 73 T2 q T3
T2

Thus, g(a,b,c) < 5. Since the staple length r = 2 cannot appear in H more than
once, we see that g(a,b, ¢) # 4. By Lemma 4.6, g(a, b, ¢) # 3, and since g(a, b, c) # 2,
we conclude that g(a,b,c) = 5.

Finally, for 3., we use

H=[2,3,4 and P = [re, 73,74,
from which we get the scheme

1 2 3 4 ) 6
T4 T2 T3 T2 T4 T3.

Thus, g(a, b, c) < 6. As before, we see that g(a, b, c) £ 4. Suppose that g(a, b, c) =5,
and let
V =[f(n), f(n+1), f(n+2), f(n+3), f(n+4)]

be a list for which property P; fails to hold. Since g(a,b,c) # 2, we have that

ged(f(n+1), f(n+2) =ged(f(n+2), f(n+3)) =1.

Hence, since f(n + 2) cannot be coprime to all other elements of V', there exists an
odd prime 3 such that a Z 0 (mod ) and either

f(n+2)=f(n+4)=0 (mod B) or f(n+2)=f(n)=0 (modg), (4.6)
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by (3) of Lemma 4.1. Suppose that
ged(f(n), f(n+2)) =0 (mod ).
Now, if ged(f(n + 1), f(n+3)) > 1, then, by (3) of Lemma 4.1, we have that
ged(f(n+1),f(n+3)) =0 (mod 3).

But then
ged(f(n+1), f(n+2))=0 (mod ),

which contradicts the fact that g(a, b, c) # 2. Hence,
ged(f(n+1), f(n+3)) = 1.

Therefore, since f(n + 1) cannot be coprime to all other elements of V, it follows
from (3) of Lemma 4.1 that there exists some odd prime - such that a # 0 (mod )
and

ged(f(n+1), f(n+4)) =0 (mod 7).

Since g(a,b,c) # 2, we see that
ged(f(n +3), f(n+2)) = 1 = ged(f(n +3), f(n+4)).
Since f(n + 3) cannot be coprime to all other elements of V', we must have that
either ged(f(n+3), f(n)) >1 or ged(f(n+3), f(n+1)) > 1.

However, again using (3) of Lemma 4.1, it follows that if ged(f(n + 3), f(n)) > 1,
then

ged(f(n+3), f(n)) =0 (mod ),
which yields the contradiction that

ged(f(n+3), f(n+4)) =0 (mod ).

A similar contradiction occurs if ged(f(n +3), f(n+1)) > 1. Thus, we have shown
that f(n+3) is coprime to all other elements of V', which contradicts the assumption
that property P fails to hold for V. A similar argument shows that the assumption

f(n+2)=f(n+4)=0 (mod 3)
from (4.6) produces a contradiction as well, and hence g(a,b, c) = 6. O

Proposition 4.9. Let a be an odd square-free integer, and suppose that p > 2 is a
prime such that

a=0 (modp) and A—a®>=0 (mod p?). (4.7)

Then g(a,b,c) = 2.
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Proof. Conditions (4.7) imply that a =b=c¢ =0 (mod p). Hence, we immediately
have that g(a,b,c) = 2. O

Corollary 4.10. Let a be a fized odd square-free integer and, for n € Z, define

A=n}.

Then there are at most finitely many n € Z for which D,(a) contains f(x) with
g(a,b,c) > 2.

Da(a) = { @)

Proof. If there exists an odd prime p with @ Z 0 (mod p) and A —a? =0 (mod p),
then g(a,b,c) = 2 by Lemma 4.2. Suppose now that

A —a®=2"pPps? - pft,
where each p; is an odd prime dividing a. If g(a,b,c) # 2, then Proposition 4.9

implies that each e; = 1, and Lemma 4.5 implies that k£ < 2. Hence, there are only
finitely many possibilities for A when g(a, b, ¢) > 2. O

5. The Case f(x) = a2?+br +c

The main result of this section is the following.

Theorem 5.1. Let f(x) = 2% +bx +c. Then

6 ifA=-3
17 ifA=0
9iL.bc) =1 15 z';A:5

2 otherwise.

Proof. We begin by showing that g(1,b,¢) = 2 if and only if A & {—3,0,5}. Suppose
first that A € {—3,0,5}. Note that

A= { 0 (mod4) ifb=0 (mod 2) (5.1)

1 (mod4) ifb=1 (mod 2).

We know from Lemma 4.2 that if A—1 is divisible by any odd prime, then g(1, b, c) =
2. So suppose that A — 1 = +2* for some nonnegative integer k. It follows from
Lemma 4.5 that g(1,b,¢) =2 if k > 2. If kK <2, then A € {—1,2,3}. However, this
is impossible by (5.1). Hence, g(1,b,¢) = 2.

Now suppose that g(1,b,¢) = 2. Then there exists some prime p dividing f(n)
and f(n + 1) for some integer n. Hence, by (3) of Lemma 4.1, we have A = 1
(mod p). It follows that if A € {—3,0,5}, then p = 2 and A € {-3,5}. However,
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by (1) of Lemma 4.1, if p = 2, then b is odd and c¢ is even, which implies that A =1
(mod 8), and so A & {—3,5}. Therefore, A ¢ {—3,0,5}.

We consider next the three cases of A € {—3,0,5}. In the case of A = —3, we can
apply Lemma 4.8 to conclude that g(1,b,¢) = 6. The case of A = 0 is immediate
from Lemma 4.7. So, suppose that A = 5. We use

H =1[7,4,5,6,8,9,11,12,13,14, 16]

and P =]11,11,5,31,59,19,29,139,41, 191, 251]
to construct the scheme

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
11 191 59 29 5 139 31 11 19 5 59 11 31 41 29 191 251 19
41 139.
251

Hence, g(1,b,¢) < 18. Although an argument similar to the arguments used in the
proof of Lemma 4.8 can be used to show that g(1,b,c) £ 18, we defer to a computer
check in this situation because of the length of the argument. O

We illustrate in the following example how to use Theorem 5.1 to construct a list
Sis for a particular f(x) with A = 5.

Example 5.2. Let f(x) = 22 +2—1. We use H and P as in the proof of Theorem
5.1 for A = 5. We let L[i] denote the position of the first appearance of the prime
P[i] in the scheme, reading from left to right. For example, L[11] = 1 and L[31] = 7.
Thus, L =[1,5,7,3,9,4,6,1,2,1]. Then, according to (3) of Lemma 4.1, we use the
Chinese remainder theorem to solve the system of congruences

1+ HJi]
-

to get that the smallest positive integer solution is n = 4332242442083508. Thus,
property P; fails to hold for the list

[fn), fln+1),..., f(n+17)].

—Lli]—1 (mod P[i])

6. The Case f(z) = 2kx2 + ¢

The case K = 0 has been addressed in Section 5, so we assume that & > 1. As
before, our result depends on an analysis of the sequence {¢.} given in (4.3). We
see here that

_ 2,2 _ —4(2c+1?%) k=1
tr = A —a’r { —oH2 (042 22) if k> 2. (6.1)

The main theorem of this section is the following.
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Theorem 6.1. Let f(z) = 2%22 + ¢, where k € Z with k > 1. If k # 2, then
g(2F,0,¢) = 2. If k = 2, then, with the exception of c = —17, either g(4,0,c) €
{2,4,5,6} or
15 ife=Torc=-3
9(4,0,c)={ 18 ife=-5
8 ifc=—65.

In addition, g(4,0,—17) < 35.

Proof. First note that if ¢ =0 (mod 2), then g(2*,0,¢) = 2. So, assume that ¢ = 1
(mod 2). If k =1 or k > 2, then we see from (6.1) that A — a? has an odd prime
divisor. Thus, 7 = 1 € H, and by Lemma 4.1, we have that g(2¥,0,c) = 2 in these
cases.

Assume then that & = 2, so that a = 4, and consider first the case when ¢ > 0.
If ¢ # 2% — 1 for some integer z > 1, then ¢+ 1 has an odd prime divisor, and again
by Lemma 4.1, we have that ¢(4,0,c¢) = 2. Thus, we can assume that ¢ = 2* — 1
for some integer z > 1, so that

tr=—16 (2" —1+7%).

Note that » = 1 ¢ H in this case. If all of the hypotheses of Lemma 4.8 are satisfied,
then g(4,0,¢) € {4,5,6}. So assume that there do not exist distinct odd primes
T2, T3 and 74 such that t; = 0 (mod 7;) for all ¢ € {2,3,4}. So, either some t; is
a power of 2 or not. It is straightforward to show that t; = 2% for some integer
w > 1if and only if i = z = 3. Thus ¢ = 7. Using H = [2,4,6,7,8,10,12,14] and
P =[11,23,43,7,71,107,151,29], we can construct the scheme

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
29 151 107 71 43 23 11 7 11 23 43 71 107 151 29
7

Thus, g(4,0,7) = 15 since it is easily verified that g(4,0,7) < 15 is impossible.

Another possible situation is that, for all ¢ € {2,3,4}, no t; is a power of 2 and
each t; has a single odd prime divisor 7;, but that two or three of the 7; are the
same. Suppose first that 75 = 73. Then 75 = 5, and hence we see that 2% + 3 = 5%
and 2% + 8 = 5Y. But subtracting these equations shows that this is impossible.
Similarly, if 75 = 74, then 7o = 3, which is also impossible; and finally, if 73 = 74,
then 73 = 7, which is again impossible. This completes the proof when ¢ > 0.

Now we assume that ¢ < 0. If ¢ # —(2% + 1) for some integer z > 1, then —c—1
has an odd prime divisor, and so by Lemma 4.1, we have that g(4,0,c) = 2. Thus,
we can assume that ¢ = —(2% + 1) for some integer z > 1, so that

ty=16 (2 +1—17).

Note that » = 1 ¢ H in this case. As in the case of ¢ > 0, if all of the hypotheses
of Lemma 4.8 are satisfied, then ¢(4,0,¢) € {4,5,6}. So assume that there do not
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exist distinct odd primes 75, 73 and 74 such that ¢; =0 (mod ;) for all ¢ € {2,3,4}.
This phenomenon can occur in several ways. Either |¢;| is a power of 2 for some 4
or not. We see that [ta| is a power of 2 exactly when z = 1 or z = 2. Similarly,
|ts| is a power of 2 exactly when z = 2 and z = 4, and |¢4] can never be a power of
2. Other possibilities are when, for all i € {2,3,4}, no ¢; is a power of 2 and each
t; has a single odd prime divisor 7;, but that two or three of the 7; are the same.
Observe that ged(2% — 3,2% — 15) = 1 so that 75 # 74. If 79 = 73, then 75 = 5 and
we have that

22 —-3=5% and 2*-8=2".5Y, (6.2)

for some positive integers u, v, w, z. To see that (6.2) is impossible, we subtract the
equations to get
5=5"(5""" —2),

from which we conclude that w = 1 and 5! — 2¥ = 1. By Mihsilescu’s theorem
(Catalan’s conjecture) [15], the only solution is u = v = 2. But we see that this is
impossible in (6.2). Now suppose that 73 = 74. Then 75 = 7 and we have the two
cases:

1. 22 —=8=2%.7"and 2* — 15 =T"%, or
2. 22 —8=2%.7" and 2% — 15 = —7%, for some positive integers u, v, w, z.
An analysis of 1. similar to before gives that w = 1 and

1 = 2¢ 7711)71

)

which, by Mihailescu’s theorem, has only the two solutions: v = w =1, and u = 3
with w = 2. The first of these solutions is impossible in 1., but the second solution
yields z = 6.

Subtracting the equations in 2. gives

7:274,.711_’_71117

which is clearly impossible.

To complete the proof of the theorem, we analyze these exceptional cases z €
{1,2,4,6} separately.
6.1. z=1

In this case we use
H=1[4,9,3,5,7,8,10,11,12,13, 14]

and P =[13,13,3,11,23,61,97,59, 47,83, 193]
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to construct the scheme

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
97 13 23 11 3 13 61 3 11 23 97 59 47 83 13
59
83
47

Using a computer, we verify that g(4,0,—3) £ 15. Hence, ¢g(4,0,—3) = 15.

6.2. z =2

In this case we use
H=1[4,7,56,8,9,11,12,13,14,16,17]

and P =][11,11,5,31,59,19,29,139,41,191, 251, 71]
to construct the scheme

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
139 191 59 11 5 31 20 11 19 5 59 31 139 41 11 191 71 19
41 29
71

Using a computer, we verify that g(4,0, —5) £ 18. Hence, g(4,0,—5) = 18.
6.3. z =4
In this case we use
H =2,11,6,13,8,10,12,14, 16,17, 18,19, 20, 21, 22, 26, 27, 28,29,30] and
P = [13,13,19, 19,47, 83,127,179, 239, 17, 307, 43, 383, 53, 467, 659, 89, 59, 103, 883]
to construct the scheme

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
883 59 659 103 467 383 307 239 179 127 83 47 19 53 13 43 13 17
17 89

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

10 47 83 127 179 239 307 383 467 13 659 59 883 10 103 89 53

19 89 43.
We conclude that ¢g(4,0, —17) < 35, but we are unable to verify that g(4,0, —17) =

35.
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6.4. z=6
In this case we use
H=[2,3,5,6] and P =[61,7,5,29]

to construct the scheme

1 2 3 4 ) 6 7 8
29 7 5 61 7 61 29 O.

Thus, g(4,0,—65) = 8. O

7. The Case A = —¢*

In this section we compute g(a,b,c) when A = —¢*, where ¢ is an odd prime and
k > 1 is an integer. We consider first the case when g > 5.

Theorem 7.1. Let ¢ > 5 be prime, and suppose that A = —q* for some integer
k> 1. Then g(a,b,c) = 2.

Proof. First observe that b= 1 (mod 2) so that b> = 1 (mod 8). Next, note that if
k=0 mod 2or ¢g=1 (mod 8), then

l—4ac=A=—¢"=-1 (mod8),

which is impossible. Hence, k =1 (mod 2) and ¢ # 1 (mod 8).

Now, either a =1 (mod 2) or a =0 (mod 2). Assume first that a =1 (mod 2).
If c =0 (mod 2), then A =1 (mod 8), and so g(a,b,c) = 2 by Lemma 4.5. Thus,
assume that ¢ =1 (mod 2). Then a =b=c=1 (mod 2), which implies that

—("+a*>)=A—-d’>=—-4 (mod 8).

Hence,
q" + a® = 4m, (7.1)

for some m =1 (mod 2), and so ¢* = 3 (mod 8). Thus, ¢ = 3 (mod 8) since k = 1
(mod 2). If m = 1, then ¢ = 3, which we have excluded from consideration here.
So, assume that m > 3. If there exists an odd prime p such that m = 0 (mod p)
and a Z 0 (mod p), then g(a,b,c) = 2 by Lemma 4.2. Thus, suppose for every odd
prime p with

A—a?=—("+a*)=0 (mod p),

we have that ¢ = 0 (mod p). It follows that p = ¢q. Hence, since ¢ > 3, and
q* +a? =4 (mod 8), we can write

¢ +a*=4-q", (7.2)
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for some integer v > 1.
If u > k, then
a® =g~ (4_qu—k_1)7
which implies that ¢* is a square since ged(¢¥, 4-¢*~%—1) = 1. But this is impossible
since k is odd.
If u <k, then
CL2 — q’u (4 _ qk—u> ,
which implies that u = k since ¢ > 3. But then a? = 3 - ¢¥, which is impossible
since ¢ > 3, and the proof is complete when a is odd.

Now assume that ¢ = 0 (mod 2). Then A —a? =1 (mod 2) and if A —a? =0
(mod p), for some odd prime p with a Z 0 (mod p), then g(a,b,c) = 2 by Lemma
4.2, If

a=0=A—da* (mod p),
for some odd prime p, then p = ¢ since
A —a? = —(¢" + d?).
Therefore, since A — a? =1 (mod 2), it follows that
¢ +a? = g%, (7.3)
for some integer v > 1. Note that k < u in (7.3). Thus,
Cl2 = qk(quik - 1)a

which implies that ¢* is a square since ged(q*,¢*~* — 1) = 1. But ¢* cannot be a
square since k = 1 (mod 2), which completes the proof of the theorem. O

It turns out that the case of ¢ = 3 not covered in Theorem 7.1 is the most
interesting case, and we address this case in the next theorem.

Theorem 7.2. If A = —3*, for some integer k > 1, then

6 if a=30F"1/2
gla,b,c) =< 8 if a=3Kk+N/2
2  otherwise.

Proof. Note that if a = 1 and A = —3, then this case is covered in Theorem 5.1. So
we assume that a > 1. As in the proof of Theorem 7.1, we see that b> = 1 (mod 8)
and k=1 (mod 2).

Assume first that ¢ = 1 (mod 2) so that a =b=c¢ =1 (mod 2). If there exists
an odd prime p such that a # 0 (mod p) and A—a? =0 (mod p), then g(a,b,c) = 2
by Lemma 4.2. So, assume for every odd prime p with

A—a>=—(3"+4a?)=0 (mod p),
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we have that a = 0 (mod p). It follows that p = 3, and since 3% +a? =4 (mod 8),
we can write
3F+a?=4-3" (7.4)

for some integer u > 1.

If £ < u, then

a? =3%(4.3"7F —1),

which implies that 3* is a square since ged(3%,4-3“~% —1) = 1. But this is impossible
since k is odd.

If £ > u, then

a’® =3"(4-3"""),

which implies that k —u € {0, 1}, and therefore

3D iy =k -1
CT 3kHD2 g = k.

Since u > 1, we have that
a=0=—(3"+4d?) =b*> —4dac—a® (mod 3),

and thus b = 0 (mod 3). If ¢ = 0 (mod 3), then ged(a,b,¢) = 0 (mod 3) and
g(a,b,c) = 2. So, assume that ¢ Z 0 (mod 3).
Consider the first case in (7.5). Then

G)-GHE)-G)

for each prime p € {7,19}. Thus, z = 3(*=1/22 is a square root of A, where 2
is a square root of —3 modulo p. This implies that any scheme we develop for
A = —3 can be applied to the general case A = —3*. When p = 7, we choose 2 = 2
(mod 7), and when p = 19, we choose 2 = 4 (mod 19). Since a~'z = 2 (mod p) in
each of these cases, we have r = 2,4 € H by (3) of Lemma 4.1. By (2) of Lemma
4.1, we also have that r = 3 € H corresponding to p = 3. Thus, H = [2,3,4] and
P =17,3,19], and we get the scheme

1 2 3 4 5 6
19 7 3 7 19 3.

Hence, g(a,b,c) < 6. To see that g(a,b,c) = 6, we first note that the factorization
of t, = A —a?r? for r € {1,2,3,4} is

r  Factorization of ¢,
1 —22. 3h1

2 —3k=1.7
3
4

_22 . 3k
—3k-1.19.
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Hence, we deduce from (3) of Lemma 4.8 that g(a,b,c) = 6.
Now consider the case a = 3(*+1)/2 from (7.5). Suppose first that u = k = 1, so
that a = 3. Consider the scheme

1 2 3 4 ) 6 7 8
109 7 3 13 7 13 109 )

(7.6)

with H = [2,3,5,6] and P = [13,7,19,109]. Note that (*73) — 1 for cach prime

p € P, and choose the square root z, of —3 modulo p as follows:

p | 13 7 19 109
2|6 2 15 18.

Then let 7, be the corresponding value of  using (3) in Lemma 4.1. The scheme
(7.6) can be applied to the general case, a = 3(*+1)/2 with k > 1, since, as before,

(2)-(3)+

Let z, be a square root of —3* modulo p, and let rp be the corresponding value of
r. Then, in the general case, we have

rp =a "tz =37 FD/2, = 3=k D)/23(k—1)/25 — 3=12 =7 (mod p).
Thus, we have shown that g(a,b,c) < 8. To show that g(a,b,c) = 8, we fist note
that the factorization of ¢, = A — a?r? for r € {1,2,3,4,5,6} is

r  Factorization of ¢,
1 —22. 3k
2 —3k.13
3 —22.3k.7
4
5

_3k 3 72
—22.3k.19
6 —3k.109.

Then an argument similar to the one used in the proof of (3) of Lemma 4.8 can be
used to complete the proof. We omit the details.

In the case of a = 0 (mod 2), the same argument used in the proof of Theorem
7.1 when a = 0 (mod 2) applies here as well. Thus, g(a,b,c) = 2 in this case, which
completes the proof of the theorem. O

8. Comments, Conclusions, and Conjectures

One question that we did not address in this article up to this point is whether or
not g(a,b,c) always exists. The answer to this question in general depends on the
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availability of “enough” odd prime divisors of the terms of the quadratic sequence
{t,-} defined in (4.3). Since we can only use the same prime more than once in very
special situations, we are prompted to define the concept of a primitive divisor.
A primitive divisor of t, is an odd prime p such that ¢, = 0 (mod p) and ¢; #Z 0
(mod p) for all ¢ < r. This idea is not new, and in fact, primitive divisors have
been studied extensively for various sequences by many authors. For a good history
of these studies and a comprehensive bibliography, see [9]. The monumental paper
of Bilu, Hanrot and Voutier [2] settled this question for all Lucas and Lehmer
sequences by showing that all terms beyond n = 30 of all such sequences have
a primitive divisor. However, for quadratic sequences this subject, for the most
part, remains a mystery. Everest and Harman [8] have investigated the existence
of primitive divisors for the sequence @ := {n? + b}. Unfortunately, unlike the
situation for Lucas and Lehmer sequences, they showed, using a result of Schinzel
[24], that there are infinitely many terms of @) that do not have primitive divisors.
Everest and Harman also showed that if —b is not a square, then

5324 < # < 0.905,

for all sufficiently large =, where

po(x) = Hn <z

n? +0b has a primitive divisor}’ .

While these results are certainly interesting, they do not seem strong enough alone to
guarantee the existence of g(a, b, ¢) in every case. Nevertheless, based on computer
evidence, we conjecture that g(a, b, c) always exists, and moreover that

g(a,b,c) < g(4,0,—17) < 35.

Additional evidence to support the existence of g(a, b, ¢) is that, for fixed a, b and
c with A # 0, the Diophantine equations t, = +2" in the variables r and u have
only finitely many solutions [24]. Furthermore, in the case t, = —2% with A odd,
all the solutions are known. This fact follows from the combined efforts of Beukers
and Le [1, 13, 14].
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