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Abstract

An interesting 2-adic property of the Stirling numbers of the second kind S(n, k)
was conjectured by the author in 1994 and proved by De Wannemacker in 2005:
va(S(2™, k) = da(k) — 1,1 < k < 2". Tt was later generalized to vo(S(c2™,k)) =
do(k) — 1,1 < k < 2" ¢ > 1 by the author in 2009. Here we provide full and two
partial alternative proofs of the generalized version. The proofs are based on non-
standard recurrence relations for S(n, k) in the second parameter and congruential
identities.

1 Introduction

The study of p-adic properties of Stirling numbers of the second kind offers many
challenging problems. Let k and n be positive integers, and let dy(k) and vo(k)
denote the number of ones in the binary representation of k£ and the highest power
of two dividing k, respectively. Lengyel [5] proved that

va(S(2",k)) = da(k) — 1 (1)

for all sufficiently large n (e.g., k — 2 < n), and conjectured that v5(S(2",k)) =
day(k) — 1, for all k:1 < k < 2™ which was proved in

Theorem 1. ([3], Theorem 1) Let k,n € N and 1 < k < 2". Then we have
1/2(5(2n, k)) = dg(k) — 1. (2)

At the very heart of the proof, there is an appealing recurrence for the Stirling
numbers of the second kind involving a double summation
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The generalization of Theorem 1 and De Wannemacker’s proof can be found in [7].

Theorem 2. ([7]) Let c,k,n € N and 1 <k <2". Then
vo(S(c2", k)) = do(k) — 1. (4)

In this paper we use Kummer’s theorem on the p-adic order of binomial coeffi-
cients.

Theorem 3. (Kummer (1852)) The power of a prime p that divides the binomial
coefficient (Z) is given by the number of carries when we add k and n— k in base p.
n n—dy(n k—d,(k n—k—dy,(n—k) _ dp(k)+dy(n—Fk)—d,(n
In another form, v, ((k)) = p—l( ) p—l( ) _ p_f ) = k) ](0_1 )=dp(n)
with d,(n) being the sum of the digits of n in its base p representation. In particular,
va (1)) = da(k) + d2(n — k) — da(n) represents the carry count in the addition of k

and n — k in base 2.

We will also need

Theorem 4. ([3], Theorem 3) Let k,n € N and 1 < k <n. Then

va(S(n, k) > da(k) — da(n). (5)

This can be proven by an easy induction proof. Note that in general,

Theorem 5. ([6]) For every prime p > 3 and integer k: 1 <k <n—1,

dy(k) = dy(n) = (0 — F)(p — 2)
(S0, ) 2 -

+ 1.

The main goal of this paper is to suggest alternative methods for proving 2-adic
properties of the Stirling numbers of the second kind. In Section 2 we discuss some
partial proofs of Theorem 2 while full proofs of Theorems 1 and 2 are presented in
Section 3. It is remarkable that both known proofs of Theorems 1 and 2 are based
on recurrence relations on S(n, k) in the second parameter such as (3) and (12) or
its generalization (13).

2 Preliminaries and Partial Answers

In this section we provide alternative partial proofs of Theorem 2 for two sets of
values of k that are smaller than the full range {1,2,...,2"}. The proofs and how
the tools, identity (6) and Theorem 8, are used seem to be new.
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The two sets are defined by k < n and ds(k) < vo(k). Their respective cardi-
nalities are n and the (n + 1)st Fibonacci number F), ;. In fact, by counting all
values k with a fixed number s = da(k) of ones in their binary representations (so
that s < v5(k)), we find that there are (" °) such ks if s > 2 and (') powers of two
otherwise. We get that

[{k|1<k<2" andda(k)<wa(k)}

=)+ (54 (3 + () + = Fanitn = 1

Let 7(k;p") denote the minimum period of the sequence of Stirling numbers
{S(n,k)}n>k mod p". Kwong [4] proved the following.

Theorem 6. ([4]) For k > max{4,p},n(k;p") = (p — 1)pNteF =2 where
prE =1 < | < ple) e, lp(k) = [log, k].

Based on the periodicity property and Euler’s theorem we can obtain:

Theorem 7. ([5], Theorem 2) Let ¢ and n be non-negative integers, with ¢ odd. If
1<k<n+2 then va(k!lS(c2",k)) =k — 1, i.e., 1a(S(c2", k)) = da(k) — 1.

The latter theorem can be proven in a slightly weakened form by replacing k <
n + 2 with £ < n as is shown in the following proof.

Proof. We use the identity (cf. [8, identity (188) on p. 496])

ZMd)k!S(%, k> =0 mod N, (6)

d|N

for any positive integers k and N, and p denoting the Moebius p-function. Indeed,
we set N =2" n >k, and get that

kIS(2", k) — k1S(2", k) = 0 mod 2" (7)

As above, by periodicity and Euler’s theorem, we know that vo(k!1S(2",k)) =k —1
for any sufficiently large n, and thus, by (7), we immediately have that it holds
for any n > k. This argument easily generalizes to S(c2™, k) with any ¢ > 1 odd;
however, there will be 29(°*1 terms of the form +k!S(¢/2™, k) or £k!S(c/2"~1, k)
in (7) where ¢ > 1 is a divisor of ¢ and w(c) denotes the number of different prime
factors of ¢. The proof can be completed by an induction on w(c). O
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Another special case can be treated by the following theorem proved by Chan
and Manna [2] in a recent paper.

Theorem 8. ([2], Theorem 4.2) Let a,m, and n be positive integers with m > 3
andn > a2™ + 1. Then
n=l| _ som=2_ 1
S(n,a2™) Ea2m_1<L zl—a )

254 —a2nt

REAGK (g —a2m 2 -1

dom. 8
2 n_gom-1 > o ®

This guarantees that we can determine 15(S(2",k)) for any k with at least as
many zeros at the end of its binary representation as the number of ones in it.

Theorem 9. Let k,ne€N and 1 <k <2" with max{3,d2(k)} <wva(k). Then
vo(S(2", k) = da(k) — 1.

Proof. We replace n by 2" in Theorem 8 and write k as k = a2™ with some
integer ¢ > 0. We assume that m > 3 and m > dz(a), and k = a2™ < 2", ie.,
n > ng = [logy(a2™)]. Without loss of generality, we can assume that a is odd and
m = vy(k); otherwise, we rewrite a2™ as a’2"™ with o’ odd and m/ > m > dy(a).
Both (9) and (10) hold with ¢’ and m’ while n and n( are kept unchanged.

Now we prove that

W o (27— g2m2 "
S(2",a2™) = ( o1 _ gom—1 > mod 2 (9)
and
v9(S(2",a2™)) = da(a) — 1 (10)

by applying Theorem 8. Note that L%J —a2™~2—1is even while LL;J —a2m~t
is odd; thus, there is guaranteed at least one carry in the application of Theorem 3
to the binomial coefficient of the first term in (8). This proves (9) which can be
further evaluated by the last part of Theorem 3. In fact, we get that

va(S(2",a2™)) = da (2" — a2™ ) £ do(a2™ % — 1) — da (2" — 2™ — 1)
= (n—ng + (I2(a) — d2(a) — va(a) + 1))
+ (da(a) +v2(a) —1+m - 2)
—(n—nog—1+(m—2)+1+ (la(a) — da(a) + 1))
=ds(a)—1<m (11)

with la(a) = [logy(a)]. O
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Note that the above proof does not require any induction (although the proof of
Theorem 8 uses induction). In addition, we can generalize the proof to obtain

Theorem 10. Let c,k,n € N and 1 < k < 2" with max{3,dz(k)} < va(k). Then
1/2(5(02", k)) = dg(k}) —1.

Proof. In fact, k = a2™ < 2" implies that the nonzero binary digits of ¢2™ and
a2™ avoid each other (perhaps with the exception of the rightmost one in ¢2” when
a =1 and ¢ is odd) and thus, (11) can be easily revised:

vo(S(c2",a2™)) = do(c2" 7t — a2™7 1) + da(a2™72 — 1) — do(c2" " — a2 72 — 1)
= (n—np + (Ia(a) — da(a) — va(a) + 1) + da(c) + va(c) — 1)
+ (d2(a) + v2(a) =1 +m —2)
—(n=ng—1+(m—2)+ 1+ (Iz(a) — da(a) + 1)
+da(c) + va(c) — 1)
=ds(a)—1<m

3 Main Result: Alternative Proofs of Theorems 1 and 2

We now turn to another approach due to Agoh and Dilcher [1]. They developed an
alternative recurrence relation for S(n + m, k) which relates this quantity to terms
involving S(n, k")S(m, k — k') by means of a single summation rather than a double
summation as in (3).

Theorem 11. ([1]) For r > max{ky, ko } + 2, we have that

kllkzl(’/’ - 1)'
5 (k1 + k2 + 2,
(k’1+k‘2+1)! (k1 + k2 +2,7)
r—1
=N =D —i— )18k +1,i)S(ka + L,r —i).  (12)
1

%

The paper [1] also contains a generalization of this theorem to s > 2 factors
involving Stirling numbers on the right-hand side in a summation with s — 1 sum-
mation indices. Theorem 11 is a special case with s = 2.
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We will use the generalization of (12) to r > 1, cf. [1, identity (6)]. It includes a
correction term involving Bernoulli numbers

(k= 1)lim — )i — 1)
(k+m—1)! 5

(k+m,r)

Ti i —DI(r—i—DIS(k,i)S(m,r —1)
i=1

oS (e () () A
(13)

with B, being the nth Bernoulli number.

Now we present an alternative proof of Theorem 1.

Proof of Theorem 1. We prove by induction on n. The base case with n = 0 is
trivial. We consider the equivalent form v5(k!S(2",k)) = k — 1 of identity (1). Let
us assume that vo(k!S(2%, k)) = k — 1 for any integers ¢t and k such that 1 <t <n
and 1 < k < 28, We prove the statement for ¢ = n + 1. We write k in its binary
representation k = 201 4202 ... ¢ 2Pask) with 0 < by < by < -+ < bd2 . We have
two cases according whether £ > 2™ + 1 or not.

Case 1.  First let us assume that

2" < k< 2nth (14)
The assumption yields that by,x) = n except for k = 2"+1,
We use Theorem 11 with k1 = ko = 2™ — 1, r > 2™ 4 1, and switching from the
notation r to k. After slightly rewriting (12), we obtain
(27l — 1)1 k-1

(2n —1)12 i(k—1)
i=1

(k—1)IS@2" k) = z'S 2" 4) (k—i)\S(2" k —4). (15)

With N = 2"*1 the first factor on the right-hand side of (15) is

(N-1)! (N—1>N

G-ne -\ g )2

and there is no carry in the addition of N/2 and N/2 — 1. This yields an overall
2-adic order of n for the whole expression.
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We have two subcases. If k is odd then we note that i(k —¢) in the denominator
of (15) can decrease the 2-adic order, and the unique largest decrement results from
setting i or k —i to 2°42(» . By the inductive hypothesis, the last four factors at the
end of (15) contribute (i — 1) + (k — i — 1) = k — 2 to the 2-adic order. Hence, we
get that

va(k(k — 1)IS(2" T k) = vo(k) +n — bayy + 1+ (k —2)
:nﬁLk*l*bdﬂk):k*l. (16)
If k is even and k # 2"F! then the factor i(k — i) in the denominator of (15)
decreases the 2-adic order the most if we set i or k — i to 2%42® which yields that
the other factor is an odd multiple of 22(*). No other pair (i,k — 1) can reach
this decrement. If ¢ = k/2 then the corresponding term occurs only once, and the

decrement is 2(vo(k) — 1) < bg, k) + v2(k) — 2. Thus, the right-hand side of (16)
changes, and we obtain

va(KIS(2"1 k) = va(k) +n — (bayy + v2(k)) + 1+ (k —2)
:n+k—1—bd2(k):k—1. (17)

For k = 2"+ since the factor i(k — i) decreases the 2-adic order the most if we set
both i and k — i to 2% ~1 = 27 we get

VQ(]C!S(2”+1,]€)) = Vg(k‘) +n— (bdz(k) -1+ l/g(k) — 1) + (k‘ — 2)
:TL—I-k—bdQ(k) :k—].

Case 2. Now we assume that k& < 2" and have two subcases. First we discuss
the case with k < 2™ provided that k is not a power of two then we consider the
case in which k = 2™ m < n.

Since now k < 2™, we need the correction term in (13) which leads to the revised
version of (15)

k—1

E(k— 1182 k) = (227:1__1 1,3' Z O z'S nd) (k—i)S(2" k — i)
=1
n+l _ 2" no_ nt+1_
e 1)!((2% - 1)1!; ;2(21 — 11> 5111 550k (18)

by setting k and m to 2™ and switching from r to &k in (13). We proceed similarly
o (16) and (17), but this time the correction term in (18) will determine the exact
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2-adic order. Clearly, the factor (2;:11) in the correction term is odd for any
7,k < j <2™ by Theorem 3.

If k < 2" then bg,) < n — 1. If k is not a power of two then the right-hand
sides of (16) and (17) become n 4k — 1 — bg,x) > k. Therefore, the first term on
the right-hand side of (18) contributes an integer multiple of 2% to (18). On the
other hand, the correction term of (18) will guarantee that v, (k!S(2"1 k)) stays
at k — 1. Indeed, the 2-adic order of the jth term of the correcting sum is at least
(k —da(k)) +n+ (14 v2(Bantij) —v2(j)) + (da(k) —d2(j)) 2 n+ (k- 1)+ (1 -
va(j)—ds(j)) = n+(k—1)—da(j —1) by Theorem 4 and the fact that v5(B,) > —1.
For the smallest possible value we have that

kérjl_lgnznnJr(kfl)fdg(jfl):kfl (19)

taken uniquely at j = 2™. In this case the two inequalities above become equalities

since 15(S(2", k)) = da(k) — 1 and vy (Ban) = —1. Thus, va(k!S(2" T k) =k — 1.

We are left with the subcases in which k is a power of two. The statement is
trivially true for k = 1. If k = 2™ with 1 < m < n then by, ) = v2(k) = m and the
right-hand side of (17) changes to

va(k) +n— (bayy — 1+ v2(k) — 1) + (k- 2)
=n—-m+k>k

with maxi<;<p—1 v2(i(k — 1)) = bgyk) — 1 + v2(k) — 1 and the unique optimum is
taken at i = k —i = 2™~ 1. For the correction term, (19) applies again with the
same reasoning as above. O

We can generalize the above proof to obtain an alternative proof of Theorem 2
although it requires a modified version of inequality (5) of Theorem 4, cf. [7,
Remark 2 and Theorem 6] in a somewhat relaxed form:

Theorem 12. For ¢ > 3 odd, we have
va(S(e2™, k) > do(k) — 1, 1 <k <27 (20)
Below, for any integer a > 1, we use the following simple fact that
da(a—1) =ds(a) — 1+ vs(a). (21)
This implies da(c2™ — 1) = da(c — 1) + n and thus,

do (2" — 1) = da(c2" — 1) + 1 = da(c) + va(c) + n. (22)
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Proof of Theorem 2. We may assume that ¢ is an odd integer, otherwise we can
factor ¢ into a power of two and an odd integer, and k still satisfies 1 < k < 2™. We
use induction on ¢ and n. Assume that vo(k!S(s2',k)) =k — 1,1 < k < 2%, for all
1 <s<cand0<t<n,and prove that it also holds for ¢t = n + 1. Then we prove
that it also holds for the odd number s = ¢ + 2.

The base case with ¢ = 1 is covered by the above proof of Theorem 1. Let
us assume that ¢ > 3. Clearly, da(c) > 2. The case with n = 0 is trivial since
v2(S(c,1)) = 0. Similarly to (18), we get

E(k —1)1S(c2" ™ k)

k—1

— (02n+1 — 1)' 1 ) n ; Y nop_ s
(@ —1)e & i(k—i)l's(CQ ,1) (k—0)1S(e2™, k — 1)
(2 — SN /2" — 1\ B .,
Y e A De2nti g
+ k(k —1)! o D)E jE_k2 i1 )00k (23)

by setting k = m = ¢2™ and switching from r to k in (13). We will see that the
correction term in (23) determines the exact 2-adic order. In fact, the first term’s
2-adic order is at least

vo(k) + (n—1+da(c)) +k —2

llogy k| + vo(k) — 1, if k> 2 is odd or even but not a power of two
2vy(k) — 2, if k > 2 is a power of two,

by (22) and Theorem 12, thus it is at least k. Note that the first term disappears if
k =1, and the statement v5(S(c2"1,1)) = 0 is trivial.

If j is odd then the corresponding Bernoulli number B gnt1_; in the correction
term (23) is 0. If j is even then we define A as the 2-adic order of the jth term,
and we have that

A= va(k!) + vo((c2 — 1)1) — 2u5((c2™ — 1))
+ (1+da(j — 1) + da(c2™ — j) — da(c2" — 1) — 1 — 1p(c2" T — j))
+12(5(j, k))
= (k —da(k)) + 2" — 1 — do(c2"Tt — 1) — 2(c2" — 1 — da(c2™ — 1))
+ (do(j — 1) + do(c2™ — j) — da(c2™ — 1) — vo(c2" ! — j))
+0a(S(j, k)
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=k+dy(j — 1)+ do(c2™ — j) — va(e2"T — j) + 1v2(S(j, k) — da(k)
=k —14va(j) +da(c2" — j) — va(c2" — j) + (12(S(j, k) — da(k) + da(j))

by vp(Begn+1_;) = —1, (21), and (22).

Now we prove that the last quantity is at least £ — 1, and the unique value of j
that achieves this lower bound is j = ¢ mod 21°%2¢) i.e., when we remove the most
significant binary digit of c. We set j = ¢/2"79 with ¢/ odd and k < j < ¢2" and
identify four cases according to the value of g.

If —n < ¢ < 0 then
A>k—14n+qg+da(c279=¢)—(n+q) >k
by (5) and since ¢’ # 277, i.e., j # 2" If ¢ =0, i.e., j = ¢'2", then

A >k—1+n+da(c—c)—n+(de2(k) =1 —da(k) + da2(c))
>k—1+dy(c)—1>k

by Theorem 12. If ¢ = 1 then 2¢’ < ¢ and

A =k—14+n+1+4ds(c—2)—rva(c—¢)—(n+1)4+ (—1+dy(c))
:k71+d2(c)*1+1/2((2i,))71/2(0*0/)Zk*l

by the induction hypothesis as ¢’ < cand 1 < k < 2"+ imply that v5(S(¢/2" 1 k)) =
dy(k) — 1. Tt is easy to prove, e.g., by induction on the number of blocks of zeros
in the binary representation of ¢, that A can reach the lower bound k — 1 exactly
if ¢’ is derived from ¢ by removing its most significant binary digit. By the way, if
¢ = c2le2¢l=1 with 0 < i < [log, ¢] — 1, then da(c) — 1+ v ((45)) — ve(c—¢”) is
equal to the number of ones in ¢2l'g2¢) — ¢,

If ¢ > 2 then by (5) we get that
A>k—14n+q+day(c—c29)—(n+1)>k—1+qg—1>k.

The proof of va(k!S(c2"t k) =k —1 for 1 < k < 27! and n > 0 is complete for
¢, and now we can proceed with the next odd c. O
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