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Abstract
An interesting 2-adic property of the Stirling numbers of the second kind S(n, k)
was conjectured by the author in 1994 and proved by De Wannemacker in 2005:
ν2(S(2n, k)) = d2(k) − 1, 1 ≤ k ≤ 2n. It was later generalized to ν2(S(c2n, k)) =
d2(k) − 1, 1 ≤ k ≤ 2n, c ≥ 1 by the author in 2009. Here we provide full and two
partial alternative proofs of the generalized version. The proofs are based on non-
standard recurrence relations for S(n, k) in the second parameter and congruential
identities.

1 Introduction

The study of p-adic properties of Stirling numbers of the second kind offers many
challenging problems. Let k and n be positive integers, and let d2(k) and ν2(k)
denote the number of ones in the binary representation of k and the highest power
of two dividing k, respectively. Lengyel [5] proved that

ν2(S(2n, k)) = d2(k)− 1 (1)

for all sufficiently large n (e.g., k − 2 ≤ n), and conjectured that ν2(S(2n, k)) =
d2(k)− 1, for all k :1 ≤ k ≤ 2n which was proved in

Theorem 1. ([3], Theorem 1) Let k, n ∈ N and 1 ≤ k ≤ 2n. Then we have

ν2(S(2n, k)) = d2(k)− 1. (2)

At the very heart of the proof, there is an appealing recurrence for the Stirling
numbers of the second kind involving a double summation

S(n + m,k) =
k∑

i=0

k∑

j=i

(
j

i

)
(k − i)!
(k − j)!

S(n, k − i)S(m, j). (3)
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The generalization of Theorem 1 and De Wannemacker’s proof can be found in [7].

Theorem 2. ([7]) Let c, k, n ∈ N and 1 ≤ k ≤ 2n. Then

ν2(S(c2n, k)) = d2(k)− 1. (4)

In this paper we use Kummer’s theorem on the p-adic order of binomial coeffi-
cients.

Theorem 3. (Kummer (1852)) The power of a prime p that divides the binomial
coefficient

(n
k

)
is given by the number of carries when we add k and n−k in base p.

In another form, νp

((n
k

))
= n−dp(n)

p−1 − k−dp(k)
p−1 − n−k−dp(n−k)

p−1 = dp(k)+dp(n−k)−dp(n)
p−1

with dp(n) being the sum of the digits of n in its base p representation. In particular,
ν2

((n
k

))
= d2(k) + d2(n− k)− d2(n) represents the carry count in the addition of k

and n− k in base 2.

We will also need

Theorem 4. ([3], Theorem 3) Let k, n ∈ N and 1 ≤ k ≤ n. Then

ν2(S(n, k)) ≥ d2(k)− d2(n). (5)

This can be proven by an easy induction proof. Note that in general,

Theorem 5. ([6]) For every prime p ≥ 3 and integer k : 1 ≤ k ≤ n− 1,

νp(S(n, k)) ≥ dp(k)− dp(n)− (n− k)(p− 2)
p− 1

+ 1.

The main goal of this paper is to suggest alternative methods for proving 2-adic
properties of the Stirling numbers of the second kind. In Section 2 we discuss some
partial proofs of Theorem 2 while full proofs of Theorems 1 and 2 are presented in
Section 3. It is remarkable that both known proofs of Theorems 1 and 2 are based
on recurrence relations on S(n, k) in the second parameter such as (3) and (12) or
its generalization (13).

2 Preliminaries and Partial Answers

In this section we provide alternative partial proofs of Theorem 2 for two sets of
values of k that are smaller than the full range {1, 2, . . . , 2n}. The proofs and how
the tools, identity (6) and Theorem 8, are used seem to be new.
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The two sets are defined by k ≤ n and d2(k) ≤ ν2(k). Their respective cardi-
nalities are n and the (n + 1)st Fibonacci number Fn+1. In fact, by counting all
values k with a fixed number s = d2(k) of ones in their binary representations (so
that s ≤ ν2(k)), we find that there are

(n−s
s

)
such ks if s ≥ 2 and

(n
1

)
powers of two

otherwise. We get that

|{k | 1 ≤ k ≤ 2n and d2(k) ≤ ν2(k)}|

=
(n
1

)
+

(n−2
2

)
+

(n−3
3

)
+

(n−4
4

)
+ · · · = Fn+1, if n ≥ 1.

Let π(k; pN ) denote the minimum period of the sequence of Stirling numbers
{S(n, k)}n≥k mod pN . Kwong [4] proved the following.

Theorem 6. ([4]) For k > max{4, p},π(k; pN ) = (p − 1)pN+lp(k)−2, where
plp(k)−1 < k ≤ plp(k), i.e., lp(k) = %logp k&.

Based on the periodicity property and Euler’s theorem we can obtain:

Theorem 7. ([5], Theorem 2) Let c and n be non-negative integers, with c odd. If
1 ≤ k ≤ n + 2 then ν2(k!S(c2n, k)) = k − 1, i.e., ν2(S(c2n, k)) = d2(k)− 1.

The latter theorem can be proven in a slightly weakened form by replacing k ≤
n + 2 with k ≤ n as is shown in the following proof.

Proof. We use the identity (cf. [8, identity (188) on p. 496])

∑

d|N

µ(d)k!S
(

N

d
, k

)
≡ 0 mod N, (6)

for any positive integers k and N , and µ denoting the Moebius µ-function. Indeed,
we set N = 2n, n ≥ k, and get that

k!S(2n, k)− k!S(2n−1, k) ≡ 0 mod 2n. (7)

As above, by periodicity and Euler’s theorem, we know that ν2(k!S(2n, k)) = k− 1
for any sufficiently large n, and thus, by (7), we immediately have that it holds
for any n ≥ k. This argument easily generalizes to S(c2n, k) with any c ≥ 1 odd;
however, there will be 2ω(c)+1 terms of the form ±k!S(c′2n, k) or ±k!S(c′2n−1, k)
in (7) where c′ ≥ 1 is a divisor of c and ω(c) denotes the number of different prime
factors of c. The proof can be completed by an induction on ω(c).
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Another special case can be treated by the following theorem proved by Chan
and Manna [2] in a recent paper.

Theorem 8. ([2], Theorem 4.2) Let a,m, and n be positive integers with m ≥ 3
and n ≥ a2m + 1. Then

S(n, a2m) ≡ a2m−1

((n−1
2 ) − a2m−2 − 1
(n−1

2 ) − a2m−1

)

+
1 + (−1)n

2

(n
2 − a2m−2 − 1

n
2 − a2m−1

)
mod 2m. (8)

This guarantees that we can determine ν2(S(2n, k)) for any k with at least as
many zeros at the end of its binary representation as the number of ones in it.

Theorem 9. Let k, n ∈ N and 1 ≤ k ≤ 2n with max{3, d2(k)} ≤ ν2(k). Then
ν2(S(2n, k)) = d2(k)− 1.

Proof. We replace n by 2n in Theorem 8 and write k as k = a2m with some
integer a > 0. We assume that m ≥ 3 and m ≥ d2(a), and k = a2m ≤ 2n, i.e.,
n ≥ n0 = %log2(a2m)&. Without loss of generality, we can assume that a is odd and
m = ν2(k); otherwise, we rewrite a2m as a′2m′

with a′ odd and m′ > m ≥ d2(a).
Both (9) and (10) hold with a′ and m′ while n and n0 are kept unchanged.

Now we prove that

S(2n, a2m) ≡
(

2n−1 − a2m−2 − 1
2n−1 − a2m−1

)
mod 2m (9)

and
ν2(S(2n, a2m)) = d2(a)− 1 (10)

by applying Theorem 8. Note that (2n−1
2 )−a2m−2−1 is even while (2n−1

2 )−a2m−1

is odd; thus, there is guaranteed at least one carry in the application of Theorem 3
to the binomial coefficient of the first term in (8). This proves (9) which can be
further evaluated by the last part of Theorem 3. In fact, we get that

ν2(S(2n, a2m)) = d2(2n−1 − a2m−1) + d2(a2m−2 − 1)− d2(2n−1 − a2m−2 − 1)
= (n− n0 + (l2(a)− d2(a)− ν2(a) + 1))

+ (d2(a) + ν2(a)− 1 + m− 2)
− (n− n0 − 1 + (m− 2) + 1 + (l2(a)− d2(a) + 1))

= d2(a)− 1 < m (11)

with l2(a) = %log2(a)&.



INTEGERS: 10 (2010) 457

Note that the above proof does not require any induction (although the proof of
Theorem 8 uses induction). In addition, we can generalize the proof to obtain

Theorem 10. Let c, k, n ∈ N and 1 ≤ k ≤ 2n with max{3, d2(k)} ≤ ν2(k). Then
ν2(S(c2n, k)) = d2(k)− 1.

Proof. In fact, k = a2m ≤ 2n implies that the nonzero binary digits of c2n and
a2m avoid each other (perhaps with the exception of the rightmost one in c2n when
a = 1 and c is odd) and thus, (11) can be easily revised:

ν2(S(c2n, a2m))= d2(c2n−1 − a2m−1) + d2(a2m−2 − 1)− d2(c2n−1 − a2m−2 − 1)

= (n− n0 + (l2(a)− d2(a)− ν2(a) + 1) + d2(c) + ν2(c)− 1)

+ (d2(a) + ν2(a)− 1 + m− 2)

−
(
n− n0 − 1 + (m− 2) + 1 + (l2(a)− d2(a) + 1)

+d2(c) + ν2(c)− 1
)

= d2(a)− 1 < m

3 Main Result: Alternative Proofs of Theorems 1 and 2

We now turn to another approach due to Agoh and Dilcher [1]. They developed an
alternative recurrence relation for S(n + m,k) which relates this quantity to terms
involving S(n, k′)S(m,k−k′) by means of a single summation rather than a double
summation as in (3).

Theorem 11. ([1]) For r ≥ max{k1, k2} + 2, we have that

k1!k2!(r − 1)!
(k1 + k2 + 1)!

S(k1 + k2 + 2, r)

=
r−1∑

i=1

(i− 1)!(r − i− 1)!S(k1 + 1, i)S(k2 + 1, r − i). (12)

The paper [1] also contains a generalization of this theorem to s ≥ 2 factors
involving Stirling numbers on the right-hand side in a summation with s− 1 sum-
mation indices. Theorem 11 is a special case with s = 2.
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We will use the generalization of (12) to r ≥ 1, cf. [1, identity (6)]. It includes a
correction term involving Bernoulli numbers

(k − 1)!(m− 1)!(r − 1)!
(k + m− 1)!

S(k + m, r)

=
r−1∑

i=1

(i− 1)!(r − i− 1)!S(k, i)S(m, r − i)

+ (r − 1)!
k+m−1∑

j=r

(
(−1)m

(
k − 1
j − 1

)
+ (−1)k

(
m− 1
j − 1

))
Bk+m−j

k + m− j
S(j, r)

(13)

with Bn being the nth Bernoulli number.

Now we present an alternative proof of Theorem 1.

Proof of Theorem 1. We prove by induction on n. The base case with n = 0 is
trivial. We consider the equivalent form ν2(k!S(2n, k)) = k − 1 of identity (1). Let
us assume that ν2(k!S(2t, k)) = k − 1 for any integers t and k such that 1 ≤ t ≤ n
and 1 ≤ k ≤ 2t. We prove the statement for t = n + 1. We write k in its binary
representation k = 2b1 +2b2 + · · ·+2bd2(k) with 0 ≤ b1 < b2 < · · · < bd2(k). We have
two cases according whether k ≥ 2n + 1 or not.
Case 1. First let us assume that

2n < k ≤ 2n+1. (14)

The assumption yields that bd2(k) = n except for k = 2n+1.

We use Theorem 11 with k1 = k2 = 2n − 1, r ≥ 2n + 1, and switching from the
notation r to k. After slightly rewriting (12), we obtain

(k − 1)!S(2n+1, k) =
(2n+1 − 1)!
(2n − 1)!2

k−1∑

i=1

1
i(k − i)

i!S(2n, i) (k − i)!S(2n, k − i). (15)

With N = 2n+1, the first factor on the right-hand side of (15) is

(N − 1)!(
N
2 − 1

)
!2

=
(

N − 1
N
2

)
N

2

and there is no carry in the addition of N/2 and N/2 − 1. This yields an overall
2-adic order of n for the whole expression.
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We have two subcases. If k is odd then we note that i(k− i) in the denominator
of (15) can decrease the 2-adic order, and the unique largest decrement results from
setting i or k− i to 2bd2(k) . By the inductive hypothesis, the last four factors at the
end of (15) contribute (i− 1) + (k − i− 1) = k − 2 to the 2-adic order. Hence, we
get that

ν2(k(k − 1)!S(2n+1, k)) = ν2(k) + n− bd2(k) + 1 + (k − 2)

= n + k − 1− bd2(k) = k − 1. (16)

If k is even and k *= 2n+1 then the factor i(k − i) in the denominator of (15)
decreases the 2-adic order the most if we set i or k − i to 2bd2(k) which yields that
the other factor is an odd multiple of 2ν2(k). No other pair (i, k − i) can reach
this decrement. If i = k/2 then the corresponding term occurs only once, and the
decrement is 2(ν2(k) − 1) ≤ bd2(k) + ν2(k) − 2. Thus, the right-hand side of (16)
changes, and we obtain

ν2(k!S(2n+1, k)) = ν2(k) + n−
(
bd2(k) + ν2(k)

)
+ 1 + (k − 2)

= n + k − 1− bd2(k) = k − 1. (17)

For k = 2n+1, since the factor i(k− i) decreases the 2-adic order the most if we set
both i and k − i to 2bd2(k)−1 = 2n, we get

ν2(k!S(2n+1, k)) = ν2(k) + n−
(
bd2(k) − 1 + ν2(k)− 1

)
+ (k − 2)

= n + k − bd2(k) = k − 1.

Case 2. Now we assume that k ≤ 2n and have two subcases. First we discuss
the case with k < 2n provided that k is not a power of two then we consider the
case in which k = 2m,m ≤ n.

Since now k ≤ 2n, we need the correction term in (13) which leads to the revised
version of (15)

k(k − 1)!S(2n+1, k) = k
(2n+1 − 1)!
(2n − 1)!2

k−1∑

i=1

1
i(k − i)

i!S(2n, i) (k − i)!S(2n, k − i)

+ k(k − 1)!
(2n+1 − 1)!
(2n − 1)!2

2n∑

j=k

2
(

2n − 1
j − 1

)
B2n+1−j

2n+1 − j
S(j, k) (18)

by setting k and m to 2n and switching from r to k in (13). We proceed similarly
to (16) and (17), but this time the correction term in (18) will determine the exact
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2-adic order. Clearly, the factor
(2n−1

j−1

)
in the correction term is odd for any

j, k ≤ j ≤ 2n, by Theorem 3.

If k < 2n then bd2(k) ≤ n − 1. If k is not a power of two then the right-hand
sides of (16) and (17) become n + k − 1 − bd2(k) ≥ k. Therefore, the first term on
the right-hand side of (18) contributes an integer multiple of 2k to (18). On the
other hand, the correction term of (18) will guarantee that ν2(k!S(2n+1, k)) stays
at k − 1. Indeed, the 2-adic order of the jth term of the correcting sum is at least
(k − d2(k)) + n + (1 + ν2(B2n+1−j)− ν2(j)) + (d2(k)− d2(j)) ≥ n + (k − 1) + (1−
ν2(j)−d2(j)) = n+(k−1)−d2(j−1) by Theorem 4 and the fact that ν2(Bn) ≥ −1.
For the smallest possible value we have that

min
k≤j≤2n

n + (k − 1)− d2(j − 1) = k − 1 (19)

taken uniquely at j = 2n. In this case the two inequalities above become equalities
since ν2(S(2n, k)) = d2(k)− 1 and ν2(B2n) = −1. Thus, ν2(k!S(2n+1, k)) = k − 1.

We are left with the subcases in which k is a power of two. The statement is
trivially true for k = 1. If k = 2m with 1 ≤ m ≤ n then bd2(k) = ν2(k) = m and the
right-hand side of (17) changes to

ν2(k) + n−
(
bd2(k) − 1 + ν2(k)− 1

)
+ (k − 2)

= n−m + k ≥ k

with max1≤i≤k−1 ν2(i(k − i)) = bd2(k) − 1 + ν2(k) − 1 and the unique optimum is
taken at i = k − i = 2m−1. For the correction term, (19) applies again with the
same reasoning as above.

We can generalize the above proof to obtain an alternative proof of Theorem 2
although it requires a modified version of inequality (5) of Theorem 4, cf. [7,
Remark 2 and Theorem 6] in a somewhat relaxed form:

Theorem 12. For c ≥ 3 odd, we have

ν2(S(c2n, k)) ≥ d2(k)− 1, 1 ≤ k ≤ 2n+1. (20)

Below, for any integer a ≥ 1, we use the following simple fact that

d2(a− 1) = d2(a)− 1 + ν2(a). (21)

This implies d2(c2n − 1) = d2(c− 1) + n and thus,

d2(c2n+1 − 1) = d2(c2n − 1) + 1 = d2(c) + ν2(c) + n. (22)
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Proof of Theorem 2. We may assume that c is an odd integer, otherwise we can
factor c into a power of two and an odd integer, and k still satisfies 1 ≤ k ≤ 2n. We
use induction on c and n. Assume that ν2(k!S(s2t, k)) = k − 1, 1 ≤ k ≤ 2t, for all
1 ≤ s ≤ c and 0 ≤ t ≤ n, and prove that it also holds for t = n + 1. Then we prove
that it also holds for the odd number s = c + 2.

The base case with c = 1 is covered by the above proof of Theorem 1. Let
us assume that c ≥ 3. Clearly, d2(c) ≥ 2. The case with n = 0 is trivial since
ν2(S(c, 1)) = 0. Similarly to (18), we get

k(k − 1)!S(c2n+1, k)

= k
(c2n+1 − 1)!
(c2n − 1)!2

k−1∑

i=1

1
i(k − i)

i!S(c2n, i) (k − i)!S(c2n, k − i)

+ k(k − 1)!
(c2n+1 − 1)!
(c2n − 1)!2

c2n∑

j=k

2
(

c2n − 1
j − 1

)
Bc2n+1−j

c2n+1 − j
S(j, k) (23)

by setting k = m = c2n and switching from r to k in (13). We will see that the
correction term in (23) determines the exact 2-adic order. In fact, the first term’s
2-adic order is at least

ν2(k) + (n− 1 + d2(c)) + k − 2

−
{
(log2 k)+ ν2(k)− 1, if k ≥ 2 is odd or even but not a power of two
2ν2(k)− 2, if k ≥ 2 is a power of two,

by (22) and Theorem 12, thus it is at least k. Note that the first term disappears if
k = 1, and the statement ν2(S(c2n+1, 1)) = 0 is trivial.

If j is odd then the corresponding Bernoulli number Bc2n+1−j in the correction
term (23) is 0. If j is even then we define A as the 2-adic order of the jth term,
and we have that

A = ν2(k!) + ν2((c2n+1 − 1)!)− 2ν2((c2n − 1)!)

+
(
1 + d2(j − 1) + d2(c2n − j)− d2(c2n − 1)− 1− ν2(c2n+1 − j)

)

+ν2(S(j, k))

= (k − d2(k)) + c2n+1 − 1− d2(c2n+1 − 1)− 2 (c2n − 1− d2(c2n − 1))

+
(
d2(j − 1) + d2(c2n − j)− d2(c2n − 1)− ν2(c2n+1 − j)

)

+ν2(S(j, k))
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= k + d2(j − 1) + d2(c2n − j)− ν2(c2n+1 − j) + ν2(S(j, k))− d2(k)

= k − 1 + ν2(j) + d2(c2n − j)− ν2(c2n+1 − j) + (ν2(S(j, k))− d2(k) + d2(j))

by ν2(Bc2n+1−j) = −1, (21), and (22).

Now we prove that the last quantity is at least k − 1, and the unique value of j
that achieves this lower bound is j = c mod 2%log2 c&, i.e., when we remove the most
significant binary digit of c. We set j = c′2n+q with c′ odd and k ≤ j ≤ c2n and
identify four cases according to the value of q.

If −n ≤ q < 0 then

A ≥ k − 1 + n + q + d2(c2−q − c′)− (n + q) ≥ k

by (5) and since c′ *= c2−q, i.e., j *= c2n. If q = 0, i.e., j = c′2n, then

A ≥ k − 1 + n + d2(c− c′)− n + (d2(k)− 1− d2(k) + d2(c′))
≥ k − 1 + d2(c)− 1 ≥ k

by Theorem 12. If q = 1 then 2c′ < c and

A = k − 1 + n + 1 + d2(c− 2c′)− ν2(c− c′)− (n + 1) + (−1 + d2(c′))
= k − 1 + d2(c)− 1 + ν2

(( c
2c′

))
− ν2(c− c′) ≥ k − 1

by the induction hypothesis as c′ < c and 1 ≤ k ≤ 2n+1 imply that ν2(S(c′2n+1, k)) =
d2(k) − 1. It is easy to prove, e.g., by induction on the number of blocks of zeros
in the binary representation of c, that A can reach the lower bound k − 1 exactly
if c′ is derived from c by removing its most significant binary digit. By the way, if
c” = c2%log2 c&−i with 0 ≤ i ≤ (log2 c) − 1, then d2(c)− 1 + ν2

(( c
2c”

))
− ν2(c− c”) is

equal to the number of ones in c2%log2 c& − c”.

If q ≥ 2 then by (5) we get that

A ≥ k − 1 + n + q + d2(c− c′2q)− (n + 1) ≥ k − 1 + q − 1 ≥ k.

The proof of ν2(k!S(c2n+1, k)) = k − 1 for 1 ≤ k ≤ 2n+1 and n ≥ 0 is complete for
c, and now we can proceed with the next odd c.
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