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Abstract
For given integers a,b and j > 1 we determine the set RELJ l)) of integers n for which
a™ — b" is divisible by n?. For j = 1,2, this set is usually infinite; we determine
explicitly the exceptional cases for which a,b the set Rg{z); (j = 1,2) is finite. For
j = 2, we use Zsigmondy’s Theorem for this. For j > 3 and gcd(a,b) = 1, R((ljl)] is
probably always finite; this seems difficult to prove, however.
We also show that determination of the set of integers n for which a™ + b™ is
divisible by n/ can be reduced to that of Rfj 27

1. Introduction

Let a, b and j be fixed integers, with j > 1. The aim of this paper is to find the set
R((;] 1)7 of all positive integers n such that n’ divides a™ — b". For j = 1,2,..., these
sets are clearly nested, with common intersection {1}. Our first results (Theorems
1 and 2) describe this set in the case that ged(a,b) = 1. In Section 4 we describe
(Theorem 15) the set in the general situation where ged(a,b) is unrestricted.

Theorem 1. Suppose that gcd(a,b) = 1. Then the elements of the set Rflll), consist
of those integers n whose prime factorization can be written in the form

n=pi'ph* . .pt (p1<p2 < <pr, allk; > 1), (1)
where p; | (a™ — b)) (i = 1,...,7), with ny = 1 and n; = p]flpgz...pfi‘ll

(i=2,...,7r).

In this theorem, the k; are arbitrary positive integers. This result is a more
explicit version of that proved in Gyéry [5], where it was shown that if a — b > 1
then for any positive integer r the number of elements of R((lll)) having r prime

factors is infinite. The result is also essentially contained in [11], which described
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the indices n for which the generalized Fibonacci numbers u,, are divisible by n.
However, we present a self-contained proof in this paper.
On the other hand, for j > 2, the exponents k; are more restricted.

Theorem 2. Suppose that ged(a,b) = 1, and j > 2. Then the elements of the set

R((Zj 1)) consist of those integers n whose prime factorization can be written in the form
(1), where

. —b f p1 > 2;
pgj DR divides ¢ Zf -
lem(a — b,a +b) if p1 =2,
and pt ™ | @ — b with g = pipk? L pl (=2, 7).

Again, the result was essentially contained in [5], where it was proved that for
a—>b > 1 and for any given 7, there exists an n € R(gj Z)) with 7 distinct prime factors.
Further, the number of these n is finite, and all of them can be determined. The
paper [5] was stimulated by a problem from the 31st International Mathematical
Olympiad, which asked for all those positive integers n > 1 for which 2" + 1 was
divisible by n?. (For the answer, see [5], or Theorem 16.)

Thus we see that construction of n € R(aj 1)7 depends upon finding a prime p; not
used previously with a™ — b™ being divisible by pg ~!. This presents no problem
for j = 2, so that R((f_l)ﬂ as well as Rgll)ﬂ are usually infinite. See Section 5 for de-
tails, including the exbeptional cases when they are finite. However, for j > 3 the
condition pg -t | a™ — b™ is only rarely satisfied. This suggests strongly that in
this case R((lj l)) is always finite for ged(a,b) = 1. This seems very difficult to prove,
even assumil’lg the ABC Conjecture. A result of Ribenboim and Walsh [10] implies
that, under ABC, the powerful part of a”™ — b™ cannot often be large. But this is
not strong enough for what is needed here. On the other hand, Ré{;)) (j > 3) can be
made arbitrarily large by choosing a and b such that a — b is a powerful number.

For instance, choosing @ = 1+ (q1q2...¢s)"~! and b = 1, where q1,¢2,...,qs are
distinct primes, then REIJ l)) contains the 2% numbers ¢{*¢5* ... ¢%* where the ¢; are 0

or 1. See Example 6 in Section 7.

In the next section we give preliminary results needed for the proof of the the-

orems. We prove them in Section 3. In Section 4 we describe (Theorem 15) R((lj 1)7,

where ged(a, b) is unrestricted. In Section 5 we find all a,b for which R((ZQZ is finite
(Theorem 16). In Section 6 we discuss the divisibility of a™ + b"™ by powers of n. In
Section 7 we give some examples, and make some final remarks in Section 8.
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2. Preliminary Results

We first prove a version of Fermat’s Little Theorem that gives a little bit more
information in the case z =1 (mod p).

Lemma 3. For xz € Z and p an odd prime we have

dp?)ife=1 d p);
pr71+$p72+"'+l‘+15 p (mo p ) fo ' (mo p)’ (2)
1 (mod p) otherwise .
Proof. If z =1 (mod p), say z = 1 + kp, then 27 = 1 + jkp (mod p?), so that
p—1
xp_l+x”_2+---+x+15p+kp2j5p (mod p?). (3)
3=0
Otherwise
rz—1)@P 2+ +rx+1)=2P—2=0 (mod p), (4)

so that for x 1 (mod p) we have z(2P=2+---+ 2+ 1) =0 (mod p), and hence
PP 24 prtl=g(@P 4+ 2+ 1) +1=1 (modp). (5)
(I
The following is a result of Birkoff and Vandiver [2, Theorem III]. It is also special

case of Lucas [9, p. 210], as corrected for p = 2 by Carmichael [3, Theorem X].

Lemma 4. Let ged(a,b) = 1 and p be prime with p | (a —b). Define t > 0 by
p'l|(a —b) for p>2 and 2t||lem(a — b,a +b) if p = 2. Then for { >0
‘4 £
P =), (6)
On the other hand, if pta — b then for £ >0

ptalp’ — o). (7)

Proof. Put xz = a/b. First suppose that p is odd and p*||a — b for some ¢ > 0. Then
as ged(a,b) = 1, b is not divisible by p, and we have z =1 (mod p'). Then from

a? — WP = (a— D) HaP 4P 4+ 1) (8)
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we have by Lemma 3 that p!*1||(a? — 7). Applying this result ¢ times, we obtain
(6).

For p = 2, we have p'™!|la? — b2 and from a? = b> = 1 (mod 8), we obtain
2Y(a® + b?), and so p'T2|(a* — b*). An easy induction then gives the required
result.

Now suppose that p { (a — b). Since ged(a,b) = 1, (7) clearly holds if p | a or
p | b, as must happen for p = 2. So we can assume that p is odd and p 1 b. Then
x £ 1 (mod p) so that, by Lemma 3 and (8), we have p t (a? — bP). Applying this
argument ¢ times, we obtain (7). O

For n € RY)

., we now define the set Pc(ljg (n) to be the set of all prime powers p*

for which np* € Réj l)). Our next result describes this set precisely. (Compare with
[11, Theorem 1(a)]).

Proposition 5. Suppose that j > 1, ged(a,b) =1, n € R((ljl)) and

a’ — b = 26'2 l_Ipep7 n— Hpkp (9)
p>2 P
and define ex by 2°2||lem(a™ — b™, a™ + b™). Then
POm) = |J ' keN}) (10)
plan_bn
and for j > 2

PAm = U {p’“zléké{wﬂ. (11)

p:pj —1 |an —pn

Note that ey is never 1. Consequently, if 2m € ng, where m is odd, then
4m € R((fl)). Also, 2 € Rg{z); for 7 < 3 when a — b is even.

Proof. Taking n € REZZ)) we have, from (9) and the definition of eg, that jk, < e,
for all primes p. Hence, applying Lemma 4 with a, b replaced by a™, b"™ we have for
p dividing a™ — b" that for £ > 0

4 £
Pt (@ — o). (12)

So (np)’ | (a"p( - b”i”z) is equivalent to j(k, +¢) < e, + ¢, or (j — 1) < e, — jk,.
Thus we obtain (10) for j > 2, with ¢ unrestricted for j = 1, giving (10).

On the other hand, if p f (a™ — b"), then by Lemma 4 again, p’ { (a"pe - b”pg),
so that certainly (np®)? { (a”pg - b"pz). O
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We now recall some facts about the order function ord. For m an integer greater
than 1 and z an integer prime to m, we define ord,,(x), the order of x modulo m, to
be the least positive integer h such that 2" =1 (mod m). The next three lemmas,
containing standard material on the ord function, are included for completeness.

Lemma 6. For x € N and prime to m, we have m | (2" — 1) if and only if
ord,, (x) | n.

Proof. Let ord,,(x) = h, and assume that m | (z™ — 1). Then as m | (z" — 1), also
m | (2847 — 1), By the minimality of h, gcd(h,n) = h, i.e., h | n. Conversely, if
h | n then (z" — 1) | (z" — 1), so that m | (z" — 1). O

Corollary 7. Let j > 1. We have n? | (2™ — 1) if and only if ged(x,n) = 1 and
ord,; (z) | n.

Lemma 8. Form = Hp p’r and x € N and prime to m we have
ord,, (z) = lemy, ord s, (). (13)

Proof. Put hy = ord, s, (), h = ord,,(x) and h' = lemy hy,. Then by Lemma 6 we
have p/» | (" —1) for all p, and hence m | (z" — 1). Hence h | . On the other
hand, as p» | n and m | (z" — 1), we have pf» | (z" — 1), and so h,, | h, by Lemma
6. Hence b/ = lemy, hy | h. O

Now put p. = ord,(z), and define ¢ > 0 by p*||(zP+ — 1).

Lemma 9. For ged(z,n) = 1 and £ > 0 we have p. | (p — 1) and ord,(z) =
max(£—t,0)
p P«

Proof. Since p | (xP~1 — 1), we have p, | (p — 1), by Lemma 6. Also, from p’ |
(2°"9 @) 1) we have p | (%) —1), and so, by Lemma 6 again, p, = ord,(x) |
ord,(z). Further, if £ < ¢ then from p® | (P — 1) we have by Lemma 6 that
orde(z) | px, so ord,¢(z) = p.. Further, by Lemma 4 for u > ¢

pUl(z"" P 1), (14)

so that, taking u = ¢ > ¢ and using Lemma 6, ord,(z) | p'ip,. Also, if t <wu < ¢,
then, from (14), aP' P £ (mod p*). Hence ord,:(z) = p*~'p, for £ > t. O
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Corollary 10. Letj > 1. Forn = prkp and x € N prime to n we haven? | x™—1
if and only if ged(x,n) =1 and

lcmppk;p* | Hpkp. (15)

p

Here the k;,, = max(jk, — t,,0) are integers with t, > 0.

Note that py, k:;, and ¢, in general depend on x and j as well as on p.

What we actually need in our situation is the following variant of Corollary 10.

Corollary 11. Let j > 1. Forn = Hp pFr and integers a,b with ged(a,b) = 1 we
have n? | a™ — b™ if and only if ged(n, a) = ged(n,b) = 1 and

lem,, P, | Hpkp. (16)
p
Here the k;, = max(jk, — t,,0) are integers with t, > 0.

In this corollary, the x used to define p, and ¢ = ¢, (see after Lemma 8) is cho-
sen to satisfy bx = a (mod n’). The result is then easily deduced from Corollary 10.

By contrast with Proposition 5, our next proposition allows us to divide an
element n € R,(f 2) by a prime, and remain within Rff ()).

Proposition 12. Let n € R((ljl)) with n > 1, and suppose that pmax 1S the largest
prime factor of n. Then n/Pmax € R((zjl))

Proof. Suppose n € R((f;l)), so that (15) holds, with x = a/b, and put ¢ = pmax-
Then, since for every p all prime factors of p, are less than p, the only possible
term on the left-hand side that divides ¢*« on the right-hand side is the term ¢*s.
Now reducing k4 by 1 will reduce kfl by at least 1, unless it is already 0, when it
does not change. In either case (15) will still hold with n replaced by n/q, and so
n/q € Rfj ), O

Various versions and special cases of Proposition 12 for j = 1 have been known
for some time, in the more general setting of Lucas sequences, due to Somer [12,
Theorem 5(iv)], Jarden [7, Theorem E], Hoggatt and Bergum [6], Walsh [14], André-
Jeannin [1] and others. See also Smyth [11, Theorem 3].

In order to work out for which a,b the set Ré] l)) is finite, we need the following
classical result. Recall that a™ — b is said to have a primitive prime divisor p if the

prime p divides a™ — b™ but does not divide a* — b* for any k with 1 < k < n.
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Theorem 13 (Zsigmondy [15]). Suppose that a and b are nonzero coprime integers
with a > b and a + b > 0. Then, except when
e n=2 anda+ b is a power of 2

or

en=3a=2b=-1

or
en=6,a=2b=1,

a™ — b" has a primitive prime divisor.

(Note that in this statement we have allowed b to be negative, as did Zsigmondy.
His theorem is nowadays often quoted with the restriction a > b > 0 and so has the
second exceptional case omitted.)

3. Proof of Theorems 1 and 2

Let n € jol)) have a factorisation (1), where p; < py < --- < p, and all k; > 0.
First take j > 1. Then, by Proposition 12, n/pf = n,. € RY) and hence

a,b’

” kr— k
(n/py) [y = nee1, oy Py =me, 1=m
are all in R((lj l)). Now separate the two cases j = 1 and j > 2 for Theorems 1 and 2
respectively. Now for j = 1 Proposition 5 gives us that p; | a™ —b™ (i =1,...,71),
while for j > 2 we have, again from Proposition 5, that

i -b if 2;
pgj Dk divides { 1 p1 =%
lem(a — b,a + b) if p1 =2,

Ejfl)ki a™ —b" (i = 2,...,r). Here we have used the fact that ged(p;, n;) = 1,
so that if pfi | (@™ —b")/n? then pi“ | a™ —b™ (i.e., we are applying Proposition
5 with all the exponents k, equal to 0.)

and p

4. Finding R((Zl)) When ged(a,b) > 1.

For a > 1, define the set F, to be the set of all n € N whose prime factors all divide
a. To find RELJ 1)7 in general, we first consider the case b = 0.
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Proposition 14. We have R(l()) = Rég = Fa, while for j > 3 the set R((f;()) =
Fa \ S,(lj), where S,(lj) s a finite set.

Proof. From the condition n/ | a™, all prime factors of n divide a, so R(] ) c Fa, say

joo Fa \S(J) We need to prove that SY is finite. Suppose that a = pit .. pr,

with p; the smallest prime factor of a. Then n = p’fl ...pkr for some k; > 0. From
n’ | a™ we have

ai .
ke < —=phr o opke (i=1,...,7). (17)

For these r conditions to be satisfied it is sufficient that

Zk < Lt (18)

Now (18) holds if j = 1 or 2, as in this case, from the simple inequality k < 2F~!
valid for all £ € N, we have

T .
1 g T g s
S ks < soNi ke < =L ke (19)
‘ 2 J

Hence Séj) is empty if j =1 or 2.

Now take j > 3, and let K = Kéj) be the smallest integer such that Kpl_K <
(min}_, a;)/j. Then (18) holds for >, k; > K, and S is contained in the finite
set S = {n € Nyn = phr .. .ph . >i_1ki < K}. (To compute S precisely,
one need just check for which r-tuples (kq,...,k,) with >_!_, k; < K any of the r
inequalities of (17) is violated.) O

One (at first sight) curious consequence of the equality Rfll’()) = R(z) above is that
n | a™ implies n? | a™.

Now let g = ged(a,b) and a = a1g, b = big. Write n = Gn,, where all prime
factors of G divide g and ged(ng, g) = 1. Then we have the following general result.

Theorem 15. The set Rfjl)) is given by

Rt(ljl)7 ={n=Gni:GeFym € RY o and ged(g,ni) =11\ R, (20)
> - ay 0y
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where R is a finite set. Specifically, alln = Gny € R have 1 < ny < j/2 and

G=q¢". . . ¢r, (21)
where .

St < K (22)

i=1

Here the q; are the primes dividing g, and Kg)l is the constant in the proof of
Proposition 14 above.

Proof. Supposing that n € Rfj I)) we have
n? | a™ —b" (23)
and so n/ | g"(a} — b}). Writing n = Gny, as above, we have
i | (af)™ — (0F)™ (24)
and
G7 g™ ((af)™ — (07)™) - (25)

Thus (23) holds with n, a, b replaced by ny,a$’,b§. So we have reduced the problem
of (23) to a case where ged(a,b) = 1, which we can solve for n; prime to g, along
with the extra condition (25). Now, from the fact that Rg(f()) = F,4 from Proposition
14, we have G? | g% and hence G7 | g¢™ for all G € F, , provided that n; > j/2.
Hence (25) can fail to hold for all G € F only for 1 < n; < j/2.

Now fix ny with 1 < n; < j/2. Then note that by Proposition 14, G7 | g¢™ and
hence (23) holds for all G € Fyn, \ S, where S is a finite set of G’s contained in the
set of all G’s given by (21) and (22). O

Note that (taking ny = 1 and using (25)) we always have R!(J{()J C R((ljz See
example in Section 7.

5. When Are R((ll,l)7 and Rflz’l), Finite?

First consider RS}). From Theorem 1 it is immediate that R((ll,g contains all powers
of any primes dividing a — b. Thus RSZ is infinite unless @ — b = £1, in which case
R((ll’z = {1}. This was pointed out earlier by André-Jeannin [1, Corollary 4].

Next, take 7 = 2. Let us denote by 735212 the set of primes that divide some
n e R((fg and, as before, put g = ged(a, b).
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Theorem 16. The set R¢(12,z)7 = {1} if and only if a and b are consecutive integers,
and R®) = {1,3} if and only if ab= —2. Otherwise, R) is infinite.

(2)
if Ra/g,b/g

of g (respectively, 3g). Otherwise Pfg is infinite.

= {1} (respectively, = {1,3}) then ’Pfg is the set of all prime divisors

For coprime positive integers a,b with a — b > 1, the infiniteness of R((fz)) already
follows from the above-mentioned results of [5].

The application of Zsigmondy’s Theorem that we require is the following.

Proposition 17. If R¢(12,1)7 contains some integer n > 4 then both R((f,z)) and Pizg are
infinite sets.

Proof. First note that if @ = 2, b = 1 (or more generally a — b = +£1) then by
Theorem 2, R® = {1}. Hence, taking n € R((fl)) with n > 4 we have, by Zsig-
mondy’s Theorem, that ¢ — b™ has a primitive prime divisor, p say. Now if p | n
then, by applying Proposition 12 as many times as necessary we find p | n’, where
n' € R((fg and now p is the maximal prime divisor of n’. Hence, by Proposition 12
again, n”/ = n'/p € R((f,)j and so, from n’ = pn” and Proposition 5 we have that
p|a® —b"", contradicting the primitivity of p.

Now using Proposition 5 again, np € R((fl)) Repeating the argument with n
replaced by np and continuing in this way we obtain an infinite sequence

n, np, nppi, nppip2, sy nppip2 - .. pe,
of elements of ng, where p < p; <py < :--<pg < ... are primes. O
Proof of Theorem 16. Assume ged(a,b) = 1, and, without loss of generality, that
a > 0 and a > b. (We can ensure this by interchanging a and b and/or changing
both their signs.) If a —b is even, then a and b are odd, and a®? —b*> =1 (mod 2¢+1),
where ¢ > 2. Hence 4 ¢ Rf)l)), by Proposition 5, and so both R((fz); and 7{5%3 are
infinite sets, by Proposition 17.

If a — b =1 then R® = {1}, as we have just seen, above.

If a — b is odd and at least 5, then a — b must either be divisible by 9 or by a
prime p > 5. Hence 9 or p belong to R®) by Proposition 5, and again both R((LZI))

a,b?
and ’Pfg are infinite sets, by Proposition 17.
Ifa—b = 3then 3 € RY), and a® — 0% = 9(b> +3b +3). Ifb = —1

(and @ = 2, ab = —2) or —2 (and @ = 1, ab = —2) then a® — b*> = 9 and
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so, by Theorem 2, so R®) = {1,3}. Otherwise, using gcd(a,b) = 1 we see that
a® — b3 > 5, and so the argument for a — b > 5 but with a,b replaced by a?,b3
applies. O

6. The Powers of n Dividing a™ + b™

Define Rfl{l)f to be the set {n € N : n? divides a™ + b"}. Take j > 1, and assume
that ged(a,b) = 1. (The general case ged(a, b) > 1 can be handled as in Section 4.)
We then have the following result.

Theorem 18. Suppose that j > 1, ged(a,b) =1, a > 0 and a > |b|. Then

(a) RS?f consists of the odd elements of Rg%)_b, along with the numbers of the

form 2ny, where ny is an odd element of R((112)_b2 ;
(b) If j > 2 the set Ré{,)f consists of the odd elements of Ri{)_b only .

Furthermore, for j =1 and 2, the set jol)f is infinite, except in the following cases:
e Ifa+bisl orapower of 2, (j,a,b) # (1,1,1), when it is {1};
o RN ={1,2);

o RY)T ={1,3}.

Proof. If n is even and j > 2, or if 4 | n and j = 1, then n/ | a™ + b™ implies that
4 | a™ 4 b™, contradicting the fact that, as a and b are not both even, o™ + " = 1
or 2 (mod 8). So either

e n is odd, in which case n? | a™ + b" is equivalent to finding the odd elements
of the set Rflflb;

or

e j =1 and n = 2ny, where n; is odd, and belongs to R((:?),—b?'
Now suppose that j = 1 or 2. If a + b is £1 or +2¢ for some i > 0, then, by
Theorem 2, all n € Ré{)_b with n > 1 are even, so for j = 2 there are no n > 1 with
n’ | a™ 4+ b"™ in this case. Otherwise, a + b will have an odd prime factor, and so
at least one odd element greater than 1. By Theorem 16 and its proof, we see that
Rflb will have infinitely many odd elements unless a(—b) = =2, i.e., a =2,b=1
(using a > 0 and a > |b]).
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For j = 1 there will be infinitely many n with n | @™ + ", except when both
a+b and a® +b? are 1 or a power of 2. It is an easy exercise to check that, this can
happen only fora=b=1ora=1,b=0. O

If g = ged(a, b) > 1, then, since REZZ),JF contains the set R;{%,
Proposition 14. For j > 3 and ged(a,b) = 1, the finiteness of the set Rg,)f would

follow from the finiteness of R((lj Z, using Theorem 16(b).

it will be infinite, by

7. Examples

The set R((lj l)) has a natural labelled, directed-graph structure, as follows: take the
vertices to be the elements of R((IJ 27, and join a vertex n to a vertex np as n —, np,

where p € Péjg(n). We reduce this to a spanning tree of this graph by taking only
those edges n —, np for which p is the largest prime factor of np. For our first
example we draw this tree (Figure 1).

1. Consider the set

R ={1,2,4,20,220,1220, 2420, 5060, 13420, 14740, 23620, 55660,
145420, 147620, 162140, 237820, 259820, 290620, 308660,
339020, 447740, 847220, 899140, 1210220, . .. }

(sequence A127103 in Neil Sloane’s Integer Sequences website). Now

320 —1=2%.5%.112.61-1181,
showing that P33 (20) = {11,11%,61,1181}. Also
3220 _1=92%.52.113.23-61-67-661-1181-1321 - 3851 - 5501
177101 - 570461 - 659671 - 24472341743191 - 560088668384411
- 927319729649066047885192700193701,

so that the elements of Pé?l)(220) less than 10°/220, needed for Figure 1, are

11,23,61,67,661, 1181, 1321, 3851.



INTEGERS: 10 (2010) 331

I
4
'
0= 1151
" —
T i T
2 1220 23620
w_—7 | 447740
/A/-; yd ' — —
A ~ R
2420 5[{]%)_“ 13421 14740 145420 259820 290620 847220
B ’/_ Py ““n“:'""----.,_____ &
";_,-"'731 ’// 67 ;; m\\ MHHHH‘

55660 147620 162140 237820 308660 339020 899140

()

Figure 1: Part of the spanning tree for 3}, showing all elements below 106.

2. Now

RY | =1{1,2,3,4,6,12,21,42,52,84, 156, 186,372,... },

whose odd elements give
REM = {1,3,21,609, 903, 2667, 9429, 26187, . .. }.
See Section 6.

. We have
RO)" =R, = {1,5,55,1971145,... },

as all elements of RgZQ are odd. Although this set is infinite by Theorem 16,
the next term is 1971145p where p is the smallest prime factor of 31971145 1
21971145 116t dividing 1971145. This looks difficult to compute, as it could be
very large.

. We have
RP, = RAY = {1,7,2653,...}.

Again, this set is infinite, but here only the three terms given are readily
computable. The next term is 2653p where p is the smallest prime factor of
42653 4 32653 pot dividing 2653.

. This is an example of a set with more than one odd prime as a squared factor
in elements of the set, in this case the primes 3 and 7. Every element greater
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than 9 is of one of the forms 21m, 63m, 147m, or 441m, where m is prime to
21;
R, ={1,3,9,21,63,147, 441,609, 1827, 4137, 4263, 7959,
8001, 12411, 12789, 23877, 28959, 35931, 55713, 56007,
86877,107793,119973, 167139, 212541, 216237, 230811,
232029, 251517, 359919, 389403, . .. }.

6. RSmor, = {1,2,3,5,6,10,15,30}. This is because 27001 — 1 = 25 3% . 5,
and none of 27001™ — 1 has a factor p® for any prime p > 5 for any n =
1,2,3,5,6, 10,15, 30.

7. R%)‘l = {1,2,3,6,42,1806}? Is this the entire set? Yes, unless 19189 — 1 is
divisible by p? for some prime p prime to 1806, in which case 1806p would
also be in the set. But determining whether or not this is the case seems to
be a hard computational problem.

8. Rgé),% an example with ged(a,b) > 1. It seems highly probable that
Riga = (F2\ {2,4,8)) U (37)
=1,3,6,12,16, 24, 32,48, 64,96, 128, 192, 256, 384, 512, 768, 1024, . . . .

However, in order to prove this, Theorem 15 tells us that we need to know
that 282° # 1 (mod p?) for every prime p > 3 and every £ > 0. This seems
very difficult! Note that Ry = 75\ {2,4,8} and RSy, = {1,3}.

8. Final Remarks

1. By finding R((f ,)), we are essentially solving the exponential Diophantine equa-
tion 7y = a” — b”, since any solutions with = < 0 are readily found.

2. It is known that

R(g{g:{neN:ndivides a4 _z }
See [11, Proposition 12] (and also André-Jeannin [1, Theorem 2] for some
special cases.) This result shows that Rgll)) = {n € N : n divides u, }, where
the u,, are the generalized Fibonacci numbers of the first kind defined by the
recurrence ug = 1, u3 = 1, and up42 = (a + b)up1 — abu, (n > 0). This
provides a link between Theorem 1 of the present paper and the results of
[11].
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The set RS’F is a special case of a set {n € N: n divides v, }, also studied in

[11]. Here (vy,) is the sequence of generalized Fibonacci numbers of the second
kind. For earlier work on this topic see Somer [13].

Earlier and related work. The study of factors of a™ — b™ dates back at least
to Euler, who proved that all primitive prime factors of a™ — b™ were = 1
(mod n). See [2, Theorem 1]. Chapter 16 of Dickson [4] is devoted to the
literature on factors of a™ £ b™.

More specifically, Kennedy and Cooper [8] studied the set R%)J. André-
Jeannin [1, Corollary 4] claimed (erroneously — see Theorem 18) that the
congruence a” + " = 0 (mod n) always has infinitely many solutions n for
ged(a,b) = 1.
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