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Abstract

Let p be a prime and let ¢ € Zp[z1,z2,...,2,] be a symmetric polynomial, where
Zy, is the field of p elements. A sequence 1" in Z, of length p is called a ¢-zero
sequence if ¢(T') = 0; a sequence in Z, is called a ¢-zero free sequence if it does not
contain any ¢-zero subsequence. Define g(p,Z,) to be the smallest integer ! such
that every sequence in Z,, of length [ contains a ¢-zero sequence; if I does not exist,
we set g(p, Z,) = co. Define M (p,Z,) to be the set of all p-zero free sequences of
length g(¢,Z,)—1, whenever g(¢, Z,) is finite. The aim of this paper is to determine
the value of g(y,Zp) and to describe the set M(yp,Z,) for a quadratic symmetric
polynomial ¢ in Z,[x1, z2, ..., Zp].

1. Introduction

This paper is motivated by the following theorem of Erdés, Ginzburg, and Ziv, [9],
stated below in Theorem 1.1 (i) for a prime. Part (ii) of Theorem 1.1 addresses
the inverse problem which corresponds to the first part. Several new proofs of (i)
appear in [1], and a proof of (ii) appears in [16] and [5]; see also [15].

Theorem 1 (EGZ) Let p be a prime and let Z, be the additive group of residue
classes modulo p.

(i) Every sequence in Z, of length 2p — 1 contains a zero-sum subsequence of
length p.

(ii) The set of all sequences of mazimal length in Z,, that do not contain any zero-
sum subsequence of length p is that of all sequences containing exactly two
distinct elements, where each element appears p — 1 times.

There were numerous generalizations and developments of the EGZ theorem in
recent years; a comprehensive list of references on this topic can be found in the
surveys [8], [2], [3], [10] and [11]. This paper diverts from most previous works, as it
takes into consideration the field structure of Z, rather than being restricted to its
additive structure. More precisely, we deal with symmetric polynomials in p variables
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over Zp, motivated by the fact that the sum in the EGZ theorem corresponds to
the first elementary symmetric polynomial in Zp[z1, x2, . .., zp]. It is worthwhile to
mention some historical origins to our approach. Two zero-sum problems concerning
the ring Z,, were raised in [4, p. 125], and independently the weighted version of
the EGZ theorem, [13], was conjectured in [8, p. 96].

We start by introducing some definitions and notations. Let p be a prime and
let Z, be the prime field of p elements. Let ¢ be a symmetric polynomial in
Zplx1,22,...,2,]. A sequence of p elements ai,as,...,a, in Z, is called a ¢-zero
sequence if o(a1,aq,...,a,) = 0; a sequence in Z,, is called p-zero free if it does not
contain any ¢-zero subsequence. Define g(p,Z,) to be the smallest integer I such
that every sequence in Z, of length [ contains a ¢-zero subsequence; if | does not
exist, we set g(p, Z,) = oo. Define M (p, Z,,) to be the set of all -zero free sequences
of length g(y,Z,) — 1, whenever g(¢,Z,) is finite. We consider two sequences in
Zy to be identical if they differ by the order of their elements, and use the notation
[a1]*t[a2]™ ... [ak]** to denote a sequence in Z, where each element a; appears a;
times.

Let ¢ be a symmetric polynomial in Zy[z1, Z2, ..., xp]. It is clear that if we have
©(0,0,...,0) # 0, then for every integer m, where m > 1, the sequence [0]™ is ¢-zero
free, which implies g(p, Z,) = co. We now suppose ¢(0,0,...,0) = 0. If ¢ is a linear
symmetric polynomial, then, by the EGZ theorem, we have g(¢,Z,) = 2p — 1 and
M (p,7Z,) is the set of all sequences in Z, of the form [u]P~![v]P~!, where u,v € Z,
and u # v. In this paper, we will determine the value of g(p,Z,) and describe the
set M(p,Z,) for a quadratic symmetric polynomial ¢ in Z,[x1, T2, ..., Zp)].

Throughout the paper we will denote by d(T") the number of distinct elements of a
sequence 1" in Z,, and denote by s, for k > 1, the power-sum symmetric polynomial
of degree k in Z,[x1, x2, . .., xp|, which is defined by the formula si(z1,z2,...,2,) =
x’f+x’§+-~-—|—x’;.

2. Main Result

Let p be a prime, where p > 3, and let ¢ € Z,[z1,22,...,2,] be a quadratic
symmetric polynomial with ¢(0,0,...,0) = 0. Then ¢ can be written in the form
as? + bsa + cs1, where a,b, ¢ € Z,, and either a # 0 or b # 0.

The main result of the paper is the following theorem.

Theorem 2 Let p be a prime, where p > 3, and let ¢ = as? + bsy + cs1, where
a,b,c € Zy, and either a # 0 or b # 0, be a quadratic symmetric polynomial in
Zylx1,x2,. .., xp|. Then the following assertions hold:

(i) If a =0 and b # 0, then g(p,Z,) = 2p — 1, and M(p,Z,) is the set of all
sequences of the form

[u]“[—u — cbil]pflfo‘[v]ﬁ[—v - cbil]pflfﬁ,

where u,v € Zp,u #v,u+v#—cb"' and0<a<p—-1,0<B<p—1.
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ii) Ifa#0,b=0 and c =0, then g(p,Z,) =2p — 1, and M(p,7Z,) is the set of
P P
all sequences of the form [u]P~[v]P~1, where u,v € Z, and u # v.

(i) Ifa # 0, b=0 and c # 0, then g(p,Z,) = 2p — 2, and M (p,Z,) is the set of

all sequences of the form [u]P~ [u + ca=1|P=2, where u € Z,.

(iv) Ifa#0,b#0 and p > 5, then

2(p—1) +n(p) < g(p, Zp) < 4p =3,
where n(p) denotes the least quadratic non-residue modulo p.

The following two results will be used in the proof of Theorem 2.1.

Lemma 3 Let m > 4, and let S be a sequence in Z,, of length 2m — 3.

(i) ([7]) If S has at least four distinct elements, then it contains a zero-sum sub-
sequence of length m.

(i) ([6, 11]) If S does not contain any zero-sum subsequence of length m, then it
either has the form [u]™=1[v]™=2 or [u]™ v]™=3[2v — u]', where u,v € Zy,,

and ged(u —v,m) = 1.

Lemma 4 ([12, 14]) Every sequence in Zy, ®ZLy, of length 4m—3 contains a zero-sum
subsequence of length m.

Proof of Theorem 2. (i) Suppose ¢ = 0 and b # 0. Then we have ¢ = bsy + ¢s1. Let
f(z) = ba? + cx € Zp[z]. Then

o(x1,22,...,1p) = f(21) + fl22) + -+ f(xp).

Let a1, a2, ...,az,—1 be a sequence in Z,, of length 2p—1. Then, by the EGZ theorem,
the sequence f(a1), f(az2), ..., f(azp—1) contains a zero-sum subsequence of length
p. It follows that the former sequence contains a (-zero subsequence, which implies
9(p, Zp) <2p—1.

Next let by, ba,...,bop—2 be a sequence in Z, of length 2p — 2. It is clear that
this sequence is ¢-zero free if and only if the sequence f(b1), f(b2),..., f(bop—2)
does not contain any zero-sum subsequence of length p. By the EGZ theorem, this
is equivalent to the fact that the later sequence is of the form [y]P~1[2]P~1, where
Y,z € Z, and y # z. Since the value set of f(x) for © € Z, contains at least two
distinct elements, it follows that there exists a ¢-zero free sequence in Z,, of length
2p — 2. Hence g(¢,Z,) = 2p — 1. Furthermore, a simple computation shows that
for u,v € Zp,u # v, the equality f(u) = f(v) holds if and only if u +v = —cb™1.
Therefore M(y,Z,) is the set of all sequences of the form in (i).

(ii) Suppose a # 0, b= 0 and ¢ = 0. Then ¢ = as?, and (ii) follows by the EGZ
theorem.
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(iii) Suppose a # 0, b =0 and ¢ # 0. Without loss of generality, we may assume
that @ = 1. Then we have ¢ = s7 + cs;.

Let S be a sequence in Z,, of length 2p —2. We will show that S contains a ¢-zero
subsequence, which implies g(¢,Z,) < 2p — 2. The case d(S) = 1 is trivial; the case
d(S) > 3 follows by the EGZ theorem (ii). We now consider the case d(S) = 2. If S
has an element appearing more than p — 1 times, then it is clear that .S contains a
zero-sum subsequence of length p, which is also a yp-zero subsequence. So we may
asssume that S = [u]P~![v]P~1, where u,v € Z, and u # v. Let a be the integer such
that 0 < a<p—1and a =c(v—u)~! (mod p), and let T = [u]*[v]P~%. It is clear
that « # 0, and hence T is a subsequence of S of length p. A simple computation
shows that s1(T) = a(u —v) = —c. It follows that (T') = 0, and hence T is a
p-zero subsequence of S.

Let V = [u]P~!{u + ¢]P~2, where u € Z,. If T is a subsequence of V of length p,
then it has the form [u]P~%[u 4 ¢]*, where 1 < a < p — 2. A simple computation
shows that

o(T) = ac(ac+c) = ala+1) £0,

and hence V is ¢-zero free. Thus we have proved that g(p,Z,) = 2p — 2.

We now describe the set M (p,Z,). The argument above shows that all the se-
quences of the form [u]P~![u+ c]P~2, where u € Z,, belong to M(p,Z,). Now let U
be a @-zero free sequence in Z, of length 2p — 3. It is clear that if d(U) = 1, then U
contains a @-zero sequence, a contradiction. If d(U) > 4, then, by Lemma 2.2 (i),
it contains a zero-sum subsequence of length p, which is also a ¢-zero sequence, a
contradiction.

We claim that d(U) # 3. Suppose, to the contrary, that d(U) = 3. If p = 3, then
U = [0]}[1]}[2]}, and it is clear that U is a ¢-zero sequence, a contradiction. So we
may assume p > 5. Since U is ¢-zero free, it follows that U does not contain any
zero-sum subsequence of length p. Hence, by Lemma 2.2 (ii), it must be of the form

U= [P~ fu+ wl’ " u+ 2u]’,

where u,w € Z, and w # 0. We consider three cases of w.

Case 1 : w # c and w # 27!, Let a be the integer such that 0 < o < p—1
and @ = cw™! (mod p), and let T = [u]*[u + w]P~. It is clear that o ¢ {0, 1,2},
and hence T is a subsequence of U of length p. A simple computation shows that
o(T) = —aw(—aw+c¢) = 0. Hence T is a p-zero subsequence of U, a contradiction.

Case 2:w =c. Let T = [u)?[u+w]P~3[u+2w]'. A simple computation shows that

o(T) = —w(—w + ¢) = 0. Hence T is a yp-zero subsequence of U, a contradiction.
Case 3 : w = 271 Let T = [u)3[u + w]P~*[u + 2w]'. A simple computation
shows that ¢(T) = —2w(—2w + ¢) = 0. Hence T is a g-zero subsequence of U,

a contradiction.
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Thus we have proved that d(U) # 3, and our claim follows. Hence we must
have d(U) = 2. Since U is a y-zero free sequence, it does not contain any zero-sum
subsequence of length p. Hence, by Lemma 2.2 (ii) again, it must be of the form

U= [uP = v,

where u,v € Z, and u # v. We will show that v — u = ¢. Suppose, to the contrary,
that v — u # ¢. Let a be the integer such that 0 < a < p—1 and a = ¢(v — u)*l
(mod p), and let T = [u]*[v]P~“. It is clear that o ¢ {0,1}, and hence T is a
subsequence of U of length p. A simple computation shows that

o(T) = a(u —v)(a(u —v) +¢) =0.

Hence T is a ¢-zero subsequence of U, a contradiction. Thus we have v — u = ¢,
and (iii) follows.

(iv) Suppose a # 0,b # 0 and p > 5. Without loss of generality, we may assume
that @ = 1. Then we have p = s% + bss + ¢s1. By the change of variables z; —
x; — c(2b)7! for 1 < i < p, the polynomial ¢ becomes s7 + bsy. So, without loss of
generality, we may also assume that ¢ = 0. We first prove that g(y,Z,) < 4p—3. Let
ai,as,...,04p—3 be a sequence in 7Z, of length 4p — 3. By Lemma 2.3, the sequence
(a1,07), (a,a3),. .., (asp_3,a3, 3) in Z, & Z, contains a zero-sum subsequence of
length p. It follows that the former sequence contains a subsequence, say T, that is
an sj-zero and ss-zero sequence simultaneously. It is clear that 7" is also a ¢-zero
sequence, and hence the required inequality follows.

We now establish the lower bound for g(¢,Z,).

Claim There ezists u € Z, such that b(1 —u?) is a quadratic non-residue in Z,.

Let A be the set of all squares in Z, and let B = {b(1 —z) | « € A}. Since
p = 5, there exists a quadratic non-residue w in Z, with w # —1. Then we have
DpeaT W) ear =2y y=0.Since w # —1, it follows that

szo.

€A

Hence,

Dy=> b1-x)=bY 1-bY z=bp+1)/2

yeB €A T€A T€EA

IfA=DB,then)  py =>4z =0, whichimplies b(p+1)/2 = 0, a contradiction.
Hence A # B. Since |A| = |B|, it follows that there exists an element u € Z, such
that b(1 — u?) ¢ A, and our claim follows.

Let us consider the sequence

U = 1 =
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where u is chosen so that b(1—wu?) is a quadratic non-residue in Z,, and n(p) denotes
the least quadratic non-residue modulo p. To prove g(¢,Zy,) > 2(p — 1) + n(p), we
show that the sequence U is p-zero free. Suppose, to the contrary, that U contains
a p-zero subsequence of length p, say

T = [1]*[-1) [u],

where 0 < o, 6<p—1,0< v < n(p)—1and a+ B+~ = p. A simple computation
shows that ¢(T') = 0 implies the equality

(@ =B +uy)? = (1 —u’)y=0.

If v = 0, then it follows that & — 8 = 0 (mod p), which is impossible since 0 <
a,f<p—Tland a+F=p. If 1 <y < n(p)—1, then v is a quadratic residue in Z,.
Hence b(1 — u?)y is a quadratic non-residue in Z,, a contradiction. Thus we have
proved that the sequence U is p-zero free, and (iv) follows.

The proof of the theorem is complete. a

Remark Let us consider the case that ¢ = as? + bsy + cs1, where a,b,c € L,
a # 0 and b # 0, as in Theorem 2.1 (iv). We note that the inequality g(p,Z,) >
2(p — 1) + n(p) does not hold for p = 3. Indeed, a direct computation shows that
9(p,Z3) =5if b= a, and g(p,Z3) = 6 if b = —a, while 2(p — 1) +n(p) =6 if p = 3.

The problem of finding the value of g(p,Z,), where ¢ has the form above, for
p > 5 is still open. A computer aided computation shows that g(p,Zs) = 11 if
b=a, and g(p,Zs) = 10 if b # a; and g(p,Z7) = 17 if b = —2a, and g(p,Z7) = 15
if b # —2a. It can be seen that the lower bound for ¢g(p,Z,) in Theorem 2.1 (iv) is
sharp for p =5,7.
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