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Abstract
We give an example of a planar self-affine tile that intersects some of its neighbors
in the tiling it generates in Cantor sets. The reasoning also shows that it has
nontrivial fundamental group. The technique used is to obtain information from a
good approximation of the tile, namely, an estimation of its convex hull.

1. Introduction

A planar integral self-affine tile is a compact set T in R2 of positive Lebesgue
measure for which there is an expanding integral matrix B and a digit set D =
{d0, . . . , dm−1} ⊂ Z2 such that

B(T ) =
m−1⋃

i=0

(T + di),

with (T +di)∩ (T +dj) of measure zero. In this case, we must have |detB| = |D| =
m. See [8].

We consider the tile T = T (B,D), where

B =
(

3 1
1 3

)
, D =

{
di =

(
i
0

)
, i = 0, . . . , 7

}
. (1)

We know that T + Z2 is a tiling of R2 (see Lagarias–Wang [8, Theorem 1.2(ii)]).
We will prove the following two theorems.

Theorem 1 Let T = T (B,D) be the self-affine tile with B, D given in Equation
(1). In the planar tiling generated by T , there are neighbors intersecting in Cantor
sets, that is, totally disconnected perfect sets. More precisely, T intersects with at
least four of its neighbors in Cantor sets. (See Figure 1.)

Theorem 2 T has nontrivial fundamental group. Hence its fundamental group is
uncountably generated [10].

1The research was supported by the National Natural Science Foundation of China, #10771082
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Figure 1: The central tile T , painted red, intersects four of its neighbors in Cantor
sets, the blue and the black ones.

To put these into perspectives, we recall two theorems on tilings. Leung and Lau
[9] give a necessary and sufficient condition for certain planar self-affine tiles to be
disklike.

Theorem A [9, Theorem 1.4] Let C ∈ M2(Z) be an expanding matrix with
characteristic polynomial f(x) = x2 + px + q. Let v ∈ Z2 − {(0, 0)} with v, Cv
independent. Let D = {0, v, 2v, . . . , (|q| − 1)v}. Then T := T (C,D) is disklike if
and only if 2|p| ≤ |q + 2|.

Akiyama and Thuswaldner [1, 2] gave a proof for the special case of tilings
generated by canonical number systems, hence requiring f(x) to be irreducible,
−1 ≤ p ≤ q and q ≥ 2, that T is disklike if and only if 2p ≤ q + 2.

We next state a theorem of Bandt and Gelbrich. Recall that two tiles T ′, T ′′

are tiling neighbors if T ′ ∩ T ′′ '= ∅. They are vertex neighbors if their intersection
is a point. They are edge neighbors if their intersection contains a point inside
(T ′ ∪ T ′′)◦.

Theorem B [3, Lemma 5.1] Let T be a topological disk which tiles R2 by the lattice
L. Then in the tiling T + L, one of the followings is true:

(i) T has no vertex neighbors and six edge neighbors T ± α, T ± β, T ± (α + β)
for some α,β ∈ L, with Zα + Zβ = L.

(ii) T has four edge neighbors T ± α, T ± β, and four vertex neighbors T ± α± β
for some α,β ∈ L, with Zα + Zβ = L.

From Theorem A, the tile T = T (B,D) is not disklike, with B,D given in Equa-
tion (1). In contrast to Theorem B for disklike tiles,Theorem 1 shows that Cantor set
intersections among neighbors can occur for non disklike self-affine Z2 tiles. While
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one can construct non self-affine tiles that have this property, the authors are not
aware of any example that is self-affine. There are certainly self-affine tiles that
intersect in finite but more than one point with some of its neighbors. For example,
the fundamental domain of the canonical number system of base −2 + i.

There are different ways to be non disklike, even for fractal tiles. For example,
the Heighway dragon is pinched, but doesn’t have holes. Theorem 2 says that the
tile we study has holes, and that is not clear from its picture.

The method used here is to get conclusions from a good enough approximation
of the tile T , namely, an estimation of the convex hull of T from the outside. This
estimation is given by Duda [4]. He gives an example where the estimation gives
exactly the convex hull. For our tile, the method also works very well. Indeed, a
little more work gives the exact convex hull in our case.

The paper is organized as follows. In Section 2, we give an estimation of the
convex hull of the tile we study. We prove Theorem 1 in Section 3 and Theorem 2
in Section 4.

2. Convex Hull Estimation

We recall the theory of convex hull estimation [4] for the tiles we are dealing with.
Let T be self-affine tiles satisfying the equation

T =
⋃

i=0,...,m−1

A(T + di), di = (i, 0)t,

where A = B−1 for an integral expanding matrix B. Let S ⊂ R2 be the unit circle
and d ∈ S be a direction. The width function centered at zero is the function
h : S→ R given by

h(d) := inf{t : T ⊂ H(d, t)},

where H(d, t) is the half space {x ∈ R2 : x · d ≤ t}. We have the following theorem.

Theorem C [4, Observation 4] Let T be as above. Then for d ∈ S,

h(d) =
∞∑

j=0

‖Ajd‖h∗(Âjd).

Here, Âjd = Ajd/‖Ajd‖, and for any v ∈ S, h∗(v) = maxi=0,...,m−1 v ·Adi.

Theorem D [4, Observation 5] Let x0 be the center of symmetry of T : T − x0 =
x0 − T . Then

x0 =
1
2
(B − I)−1dm−1.
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We now estimate the convex hull of T (B,D), with B,D as given in Equation (1).

Proposition 2.1 Let B,D be given as in equation 1. Then T (B,D) lies in the par-
allelogram P with vertices (0, 0), (7/2,−7/6), (14/3,−7/3), (7/6,−7/6). Moreover
T contains (0, 0), (14/3,−7/3).

Proof. Let A = B−1. The eigenvalues of A are λ1 = 1/2 and λ2 = 1/4, with
eigenvectors v1 = (−1, 1)t, v2 = (1, 1)t respectively. Notice that the vectors Adi =
(3i/8,−i/8)t are nonnegative multiples of (3,−1)t.

Let d = (̂1, 3)t. As the eigenvector v1 = (−1, 1) correspond to the larger eigen-
value and v2 = (1, 1) corresponds to the smaller one, Âjd → (−1/

√
2, 1/

√
2)t ‘mono-

tonically’ as j →∞. Hence for i = 0, . . . , 7 and nonnegative integer j, Âjd·Adi ≤ 0.
By definition, h∗(Âjd) = maxi=0,...,7 Âjd ·Adi = 0 for j = 0, 1, 2, . . ., implying that
h(d) = 0 from Theorem C. That is, T is below the line x + 3y = 0. See Fig. 2. The
same reasoning applied to d = ̂(−1,−1)t shows that T is to the right of the line
x + y = 0.

From Theorem D, the center of symmetry of T is (7/3,−7/6). Obviously, (0, 0) ∈
T from the definition of T . Hence (14/3,−7/3) ∈ T . Therefore T and its convex
hull lies in the region bounded by the lines

x + 3y = 0, x + y = 0, x + y = 7/3, x + 3y = −7/3. !

See Figure 2 for a picture for the convex hull approximation. Indeed, a little
further work can give us the exact convex hull of the tile we are working with.
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Figure 2: An approximation of the convex hull of the tile T .



INTEGERS: 9 (2009) 231

T (̂-4,2)

4 3 2 1 0 1 2 3 4 

2 

1.5 

1 

0.5 

0 

0.5 

1 

1.5 

2 

T

1 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 

2 

1.5 

1 

0.5 

0 

0.5 

1 

T^(-1,1)

T

Figure 3: (left) T (−4,2) ∩ T is a Cantor set. The same is true for T (−1,1) ∩ T (right)

3. Cantor Set Intersections: Proof of Theorem 1

In this section, we show that there are neighbors in the tiling generated by T (B,D)
that intersects in Cantor sets. See Fig. 3. We first introduce some notations. They
are general though we only state them for our tile.

For i = 0, . . . , 7, let fi(x) := A(x + di) for x ∈ R2. Let fi1···ik := fi1 ◦ · · · ◦ fik be
their compositions, where k is a positive integer and for j = 1, . . . , k, ij ∈ {0, . . . , 7}.
For E ⊂ R2, we also write Ei1···ik for fi1···ik(E). Let Fk(E) =

⋃7
i1,...,ik=0 fi1···ik(E).

For (i, j) ∈ Z2, define E(i,j) := E + (i, j)t to be the translate of E by (i, j)t. We
will write E for E(0,0). We call T (i,j)

i1···ik
a k-th level piece of T (i,j), with the tile T (i,j)

itself being the 0-th level piece. For the polygon P given in Proposition 2.1, we
will call (for convenience) P (i,j)

i1···ik
a k-th level polygon of P (i,j). Notice that P (i,j)

i1···ik

contains the k-th level piece T (i,j)
i1···ik

of T (i,j).
We now show that T ∩ T (−4,2) is a Cantor set. Then we can conclude that

T ∩ T (−1,1), T ∩ T (1,−1) and T ∩ T (4,−2) are also Cantor sets as they are either a
translate of T ∩ T (−4,2) or unions of translates of T ∩ T (−4,2) (see Fig. 1). The
following lemma shows that it suffices to figure out Fk(P ) ∩ Fk(P )(−4,2) for each
positive integer k.

Lemma 4 For all positive integers k,

T ∩ T (−4,2) =
∞⋂

k=1

[Fk(P ) ∩ Fk(P )(−4,2)].

Proof. As F1(P ) ⊂ P , we have Fk(P )(i,j) decreasing in k, and

T =
∞⋂

k=1

Fk(P ), T (−4,2) =
∞⋂

k=1

Fk(P )(−4,2);

see, for example, [5]. The lemma follows. !
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Lemma 5 Let P be the parallelogram in Proposition 2.1. Let k be a positive integer
and for j = 1, . . . , k, ij ∈ {0, . . . , 7}. Then

(a) AP (−4,2)
i1···ik

= P (−4,2)
6i1···ik

.

(b) APi1···ik = P0i1···ik .

(c) P (−4,2)
6i1···ik

+ (3/8,−1/8)t = P (−4,2)
7i1···ik

. Notice that (3/8,−1/8)t = Ad1.

As usual, A stands for the map ‘multiplication by A’.

Proof. By the definitions given at the beginning of this section,

P (−4,2)
i1···ik

= fi1···ik(P ) + (−4, 2)t = AkP +
k∑

j=1

Ajdij + (−4, 2)t.

Hence

AP (−4,2)
i1···ik

= Ak+1P +
k∑

j=1

Aj+1dij + A(−4, 2)t.

On the other hand,

P (−4,2)
6i1···ik

= Ak+1P +
k∑

j=1

Aj+1dij + Ad6 + (−4, 2)t.

As (A− I)(−4, 2)t = Ad6, (a) is proved.
(b) can be proved similarly. (c) follows from Ad1 = (3/8,−1/8)t. !

Lemma 6 For k = 1, 2, 3, . . .,

Fk(P )(−4,2) ∩ Fk(P ) =
⋃

i1,...,ik=6,7

[P (−4,2)
i1···ik

∩ P(i1−6)···(ik−6)].

Proof. We use induction. For k = 1, it can be verified directly using the equations
of the boundary of P , or can be seen clearly from Figure 4 that

F1(P )(−4,2) ∩ F1(P ) = (P (−4,2)
6 ∩ P0) ∪ (P (−4,2)

7 ∩ P1).

Suppose the statement is true for k. For k + 1, as

Fk+1(P )(−4,2) ∩ Fk+1(P ) ⊂ F1(P )(−4,2) ∩ F1(P )

= (P (−4,2)
6 ∩ P0) ∪ (P (−4,2)

7 ∩ P1),

we just need to find out the portions of Fk+1(P )(−4,2) ∩ Fk+1(P ) in P (−4,2)
6 ∩
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Figure 4: (left) The intersection F1(P )(−4,2) ∩ F1(P ), consisting of intersections
of first level polygons P (−4,2)

6 ∩ P0 and P (−4,2)
7 ∩ P1. (right) The polygons drawn

are second level polygons of P (−4,2) and P inside P (−4,2)
6 , P (−4,2)

7 and P0, P1. The
intersection shown is F2(P )(−4,2)∩F2(P ). It consists of four pieces, two in P (−4,2)

6 ∩
P0 and two in P (−4,2)

7 ∩ P1

P0 and in P (−4,2)
7 ∩ P1. Notice that for i = 6, 7, the only 1-st level piece of P

intersecting P (−4,2)
i is Pi−6. Similarly, for i = 0, 1, the only 1-st level piece of

P (−4,2) intersecting Pi is P (−4,2)
i+6 . Hence the portion of Fk+1(P )(−4,2) ∩ Fk+1(P )

in P (−4,2)
6 ∩ P0 is




7⋃

i2,...,ik+1=0

P (−4,2)
6i2···ik+1



 ∩




7⋃

i2,...,ik+1=0

P0i2···ik+1





=




7⋃

i2,...,ik+1=0

AP (−4,2)
i2···ik+1



 ∩




7⋃

i2,...,ik+1=0

APi2···ik+1





= A








7⋃

i2,...,ik+1=0

P (−4,2)
i2···ik+1



 ∩




7⋃

i2,...,ik+1=0

Pi2···ik+1









= A[Fk(P )(−4,2) ∩ Fk(P )],

where we have used Lemma 3.2(a)(b) in the first equality. By the induction hy-
pothesis, this is equal to

A
⋃

i2,...,ik+1=6,7

[P (−4,2)
i2···ik+1

∩ P(i2−6)···(ik+1−6)]

=
⋃

i2,...,ik+1=6,7

[P (−4,2)
6i2···ik+1

∩ P0(i2−6)···(ik+1−6)].
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Next, the part of Fk+1(P )(−4,2) ∩ Fk+1(P ) in P (−4,2)
7 ∩ P1 is, using Lemma 3.2

and the induction hypothesis,



7⋃

i2,...,ik+1=0

P (−4,2)
7i2···ik+1



 ∩




7⋃

i2,...,ik+1=0

P1i2···ik+1





=




7⋃

i2,...,ik+1=0

P (−4,2)
6i2···ik+1



 ∩




7⋃

i2,...,ik+1=0

P0i2···ik+1



 + (3/8,−1/8)t

= A








7⋃

i2,...,ik+1=0

P (−4,2)
i2···ik+1



 ∩




7⋃

i2,...,ik+1=0

Pi2···ik+1







 + (3/8,−1/8)t

= A
⋃

i2,...,ik+1=6,7

[P (−4,2)
i2···ik+1

∩ P(i2−6)···(ik+1−6)] + (3/8,−1/8)t

=
⋃

i2,...,ik+1=6,7

[P (−4,2)
6i2···ik+1

∩ P0(i2−6)···(ik+1−6)] + (3/8,−1/8)t

=
⋃

i2,...,ik+1=6,7

[P (−4,2)
7i2···ik+1

∩ P1(i2−6)···(ik+1−6)].

Hence

Fk+1(P )(−4,2) ∩ Fk+1(P ) =
⋃

i1,...,ik+1=6,7

[P (−4,2)
i1···ik+1

∩ P(i1−6)···(ik+1−6)]. !

Lemma 7 The union on the right-hand side of Lemma 3.3 is a disjoint union.

Proof. Use induction on k. For k = 1, P (−4,2)
6 ∩P0 and P (−4,2)

7 ∩P1 are disjoint, as
can be verified directly, or seen clearly from Figure 4.

Suppose the statement is true for k. Consider the pieces

R := P (−4,2)
i1···ik+1

∩ P(i1−6)···(ik+1−6), S := P (−4,2)
l1···lk+1

∩ P(l1−6)···(lk+1−6)

in Fk+1(P )(−4,2) ∩ Fk+1(P ). That is, ij , lj ∈ {6, 7} for all j = 1, . . . , k + 1. If
ij '= lj for some j ∈ {1, . . . , k}, then R and S are disjoint as they are contained
in different pieces of Fk(P )(−4,2) ∩ Fk(P ), which are disjoint by the induction
hypothesis. Suppose that ij = lj for j ∈ {1, . . . , k}, and ik+1 '= lk+1, say, ik+1 = 6
and lk+1 = 7. Then R and S are respectively the images of the disjoint sets
P (−4,2)

6 ∩ P0 and P (−4,2)
7 ∩ P1 under the same sequence of affine maps consisting of

A(·) and A(·) + (3/8,−1/8)t, and hence are disjoint. !
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Figure 5: (left) Second level polygons of P in P0, P1 are drawn. P10 and P04

are drawn non-filled, bounded by solid and dotted lines respectively. Part of the
intersection P10 ∩ P04 is not covered by other second level polygons of P . (right)
The affine map F , defined in step 2 in section 4, maps P (−1,1) ∪ P onto P10 ∪ P04.

Proof of Theorem 1. The maps A(·) and A(·) + (3/8,−1/8)t are contractions. As
the eigenvalues of A are not bigger than 1/2, for any bounded set E ⊂ R2 with
diameter diam E, diam A(E) ≤ 1/2(diam E). The same is true for the map A(·)+
(3/8,−1/8)t. Hence from Lemmas 5, 6, and 7, each piece P (−4,2)

i1···ik
∩ P(i1−6)···(ik−6)

of Fk(P )(−4,2) ∩ Fk(P ) contains two disjoint pieces of Fk+1(P )(−4,2) ∩ Fk+1(P ),
each of diameter less than 1/2 of its own. This is true for every k = 1, 2, . . .. It is
standard to prove that

⋂∞
k=1[Fk(P )∩Fk(P )(−4,2)] is a totally disconnected perfect

set. Theorem 1 follows from Lemma 4. !

4. Nontrivial Fundamental Group: Proof of Theorem 2

In this section, we prove that π1(T ) is nontrivial. In short, the reason is that there
are affine images of T (−4,2)

6 ∪ T (−4,2)
7 ∪ T0 ∪ T1 (an area studied in section 3) in T ,

with the hole it bounds mapped to points not in T .

Proof of Theorem 2. Step 1. Look at the second level polygons P04 and P10 of P
(see Figure 5). They have nonempty intersection. Part of this intersection is not
covered by other second level polygons of P . Call this set

W := (P04 ∩ P10)−
⋃{

Pi1i2 : (i1, i2) '= (0, 4), (1, 0)
}
.

We will show that there is a hole of T in W .

Step 2. The affine map F (x) = A2(x+d4) for x ∈ R2 maps P to P04, and P (−1,1)

to P10. For example, the reason for the latter is

F (P (−1,1)) = A2(P + (−1, 1)t + d4) = A2P + Ad1 = P10.
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So F maps P (−1,1)
0 ∪P (−1,1)

1 ∪P2∪P3 homeomorphically onto P100∪P101∪P042∪P043,
also mapping the hole R bounded by the former (see Fig. 5) to a hole called S
bounded by the latter.

Step 3. The set S (the hole) does not intersect the second level polygons in P
other than P04 and P10. To see this, we can check that the images under F−1(·) =
B2(·)−d4 of these other second level polygons of P do not intersect R. For example,
we check whether P11 intersects S as follows:

F−1(P11) = F−1(A2P + A2d1 + Ad1)
= B2(A2P + A2d1 + Ad1)− d4

= P + (0, 1)t,

and it doesn’t intersect the hole R. Others are checked similarly. Therefore, S is
not contained in F2(P ) and hence not in T .

Step 4. Notice that the intersection (P (−1,1)
0 ∪P (−1,1)

1 )∩(P2∪P3) is congruent to
(P (−4,2)

6 ∪P (−4,2)
7 )∩ (P0 ∪P1), the set we have studied in detail in Section 3. They

differ by a translation of 2 × (3/8,−1/8)t. Similarly, the intersection T (−1,1) ∩ T
is congruent to three copies of T (−4,2) ∩ T , differing by translations by multiples of
(3/8,−1/8)t (see Figure 3). Now pick any point p ∈ T ∩ T (−1,1) in P (−1,1)

0 ∩ P2,
and any point q ∈ T ∩ T (−1,1) in P (−1,1)

1 ∩ P3.

Step 5. Notice that T is connected [7] and hence path connected [6]. The path
connectedness of T (−1,1) guarantees that there is a path γ1 ⊂ T (−1,1) ⊂

⋃7
i=0 P (−1,1)

i

joining p, q. The same reason gives a path γ2 ⊂ T ⊂
⋃7

i=0 Pi joining p, q. Then
γ1∪γ2 is a nontrivial loop in T ∪T (−1,1), surrounding the hole R. Hence F (γ1∪γ2)
is a nontrivial loop in T because of the hole S.

Step 6. By Luo and Thuswaldner [10], π1(T ) nontrivial implies that it is un-
countably generated. !

Acknowledgments. We thank the referee for the detailed comments on the
manuscript.
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