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Abstract

Given two equations E; and FEs, the disjunctive Rado number for F; and FEj is the least
integer n, provided that it exists, such that for every coloring of the set {1,2,... ,n} with
two colors there exists a monochromatic solution to either F; or E,. If no such integer n
exists, then the disjunctive Rado number for F; and F, is infinite. Let R(c, k) represent
the disjunctive Rado number for the equations 1 + x9 + ¢ = x3 and x1 + x5 + k = x3. In
this paper the values of R(c, k) are found for all natural numbers ¢ and k where ¢ < k. It
is shown that

4e+5 if ec<k<c+1

3c+4 if c+2<k<3c+2

k+2 if 3c+3<k<d4dc+2

4e+5 if 4de+3<k.

R(c, k) =

1. Introduction

Let N represent the set of natural numbers and let [a, b] denote the set {n € N,a < n < b}.
A function A : [1,n] — [0,¢t — 1] is referred to as a t-coloring of the set [1,n]. Given a
t-coloring A and a system L of linear equations or inequalities in m variables, a solution
(1,22, ... ,Zy) to the system L is monochromatic if and only if

Axy) = A(zg) = -+ = A(z).
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In 1916, I. Schur [24] proved that for every ¢ > 2, there exists a least integer n = S()
such that for every t-coloring of the set [1,n], there exists a monochromatic solution to
x1 + w9 = wx3. The integers S(¢) are called Schur numbers. It is known that S(2) = 5,
S(3) = 14 and S(4) = 45, but no other Schur numbers are known [25]. In 1933, R.
Rado generalized the concept of Schur numbers to arbitrary systems of linear equations.
Rado found necessary and sufficient conditions to determine if an arbitrary system of linear
equations admits a monochromatic solution under every t-coloring of the natural numbers
[6,17,18,19]. For a given system L of linear equations, the least integer n, provided that it
exists, such that for every t-coloring of the set [1, n] there exists a monochromatic solution to
L is called the t-color Rado number (or t-color generalized Schur number) for the system L.
If such an integer n does not exist, then the t-color Rado number for the system L is infinite.
In recent years the exact Rado numbers for several families of equations and inequalities have
been found [4,9,10,12,13,14,23]. 1In [5] it was determined that the 2-color Rado number
for the equation E(c) : x1 + x9 + ¢ = w3 is 4c + 5 for every integer ¢ > 0.

Recently several other problems related to Schur numbers and Rado numbers have been
considered [1,2,3,7,8,16,20,21,22]. Specifically, the concept of disjunctive Rado numbers
(or disjunctive generalized Schur numbers) has recently been introduced [11,15]. Given a
set L of linear equations, the least integer n, provided that it exists, such that for every
2-coloring of the set [1,n| there exists a monochromatic solution to at least one equation in
L is called the disjunctive Rado number for the set L. If such an integer n does not exist,
then the disjunctive Rado number for the set L is infinite. Given a set of linear equations,
it is clear that the disjunctive Rado number for this set is less than or equal to the 2-color
Rado number for each equation in the set.

In this paper, the disjunctive Rado numbers are determined for the set consisting of the
two equations

E(¢): my+azy+c=z3and E(k): 1+ 29+ k = x3

for all natural numbers ¢ and k where ¢ < k. This disjunctive Rado number will be denoted
by R(c, k).

2. Main Result

Theorem For all natural numbers ¢ and k& where ¢ < k,

de+5 if c<k<c+1
3c+4 if c+2<k<3c+2
k+2 if 3c+3<k<4c+2
de+5 if 4e+3<k.

R(c, k) =
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Proof. 1t should be noted that the third interval in the expression of R(c, k) could be
expanded to include the values of k = 3c¢+2 and k£ = 4c+ 3 without changing the expression.

The lower bounds can be established by exhibiting a coloring that avoids a monochromatic
solution to both E(c) and E(k) for each of the intervals in the expression of R(c, k). Consider
the coloring A’ : [1,4¢ + 4] — [0, 1] defined by

0 1<zx<c+1
Ax)y=< 1 c+2<x<3c+3
0 3c+4 <z <4c+4.

It is easy to check that the coloring A’ avoids a monochromatic solution to E(c), so every
restriction of A’ to a smaller domain does as well. We leave it to the reader to show that
A’ also avoids a monochromatic solution to E(k) when ¢ < k < c+ 1 or 4c+ 3 < k, that
A" |[1,3c4+3) avoids a monochromatic solution to E(k) when ¢ +2 < k < 3¢ + 2 and that
A'|[1,k41] avoids a monochromatic solution to E(k) when 3¢+ 3 < k < 4c+ 2.

We shall now establish upper bounds for R(c, k). As was mentioned in the introduction,
every 2-coloring of the set [1,4c + 5] contains a monochromatic solution to E(c), so for the
cases k € [c,c+ 1] and k > 4c + 3, the upper bound of 4¢ + 5 is already established. Hence
we must consider only two cases.

Case 1: Assume that k € [c+2,3c+2]. We will establish that
R(c, k) < 3c+4.

Assume by way of a contradiction that there exists a coloring A : [1,3¢ + 4] — [0, 1] that
does not admit a monochromatic solution to either E(c) or E(k). Without loss of generality
we may assume that A(1) = 0, and so A(c+2) = 1 to avoid a monochromatic solution
to E(c). Let s < ¢+ 2 be the least integer such that A(s) = 1. Thus it must be the
case that A(2s + ¢) = 0. We now establish that for every n € [0,2¢c + 4 — 2s] we have
A(s+n)=1and A(2s+c+n)=0. To prove this we will use induction on n, with the
case n = 0 already established. We assume A(s 4+ ng) =1 and A(2s + ¢+ ng) = 0 for some
no € [0,2¢ +3 — 2s]. Now, A(s—1) =0 and A(2s+c+mnp) =0,50 A(s+no+1)=1or
else (s — 1,5 +ng+ 1,25 + ¢ + ng) would be a monchromatic solution to E(c). Also, since
A(s) =1, we must have A(2s+c+ng+1) =0 or else (s,s+ng+ 1,25+ ¢+ ng + 1) would
be a monchromatic solution to E(c).

Now, by the inductive result we have that [1,s — 1] U [2s + ¢, 3¢ + 4] contains only ele-
ments of color 0. For any k € [c + 2,3c + 2] there exist integers x; and z5 € [1,s — 1] and
x3 € [28 + ¢,3c + 4] such that x1 + 29 + k = 3. This is a contradiction.

Case 2: Assume that k € [3c¢+ 3, 4c + 2]. We will show that
R(c,k) <k+2
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by showing that every coloring A : [1,k + 2] — [0, 1] contains a monochromatic solution to
either F(c) or E(k).

Let a coloring A : [1,k+ 2] — [0, 1] be given. Without loss of generality we may assume
that A(1) = 0. Then we may assume that A(c +2) = 1 and A(k +2) = 1 in order to
avoid monochromatic solution to E(c) and E(k) respectively. Now, if A(3c+4) = 1, then
(c+2, c+2,3c+4) is a monochromatic solution to F(c), so we may assume that A(3c+4) = 0.
If A(2¢+3) =0, then (1,2c+ 3,3¢c + 4) is a monochromatic solution to E(c), so we may
assume that A(2c+3) = 1. If A(k—3c—1) =1, then (k —3c—1,2¢+ 3,k +2)is a
monochromatic solution to E(c), so we may assume that A(k —3c — 1) = 0. Finally, if
A(k —2¢) = 0, then (1,k — 3¢ — 1,k — 2¢) is a monochromatic solution to F(c), and if
A(k —2¢) =1, then (¢ + 2,k — 2¢, k + 2) is a monochromatic solution to E(c). Therefore,
every coloring A : [1,k + 2] — [0, 1] contains a monochromatic solution to either E(c) or
E(k). Hence,

R(c,k) <k+2

when k € [3¢ + 3, 4c + 2] and the proof of the Theorem is complete.
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