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Abstract

Let m be a nonnegative integer. For integers 0 6 k 6 m and n > 0 we show the following
curious identity

(n+ 2(m− k) + 1)
m∑
i=k

(−1)i
(
m+ n+ i

m− i

)(
2i
k + i

)

=(−1)k
m−k∑
i=0

(
m+ n− k + i

m− k − i

)
(−4)i + (−1)kn

(
m+ n− k

n

)
.

Equivalently, we have

(x+m+ 1)
m∑
i=0

(−1)i
(
x+ y + i

m− i

)(
y + 2i
i

)
−

m∑
i=0

(
x+ i

m− i

)
(−4)i = (x−m)

(
x

m

)
.

1. Introduction

For integers m > 0, n > 0 and r, let

Tnr(m) =
∑

06k6n
k≡r (mod m)

(
n

k

)
.

Such sums were investigated and applied by the author and his twin brother Zhi-Hong Sun
in [SS], [S1], [S2], [Su1] and [Su2]. In the study of the generating function of the sequence
{Tn[n/2](m)}

+∞
n=0 where [·] is the greatest integer function, Zhi-Hong Sun posed the following

conjecture:

If m,n ∈ N = {0, 1, 2, · · · } and m 6 n, then

(1.1)
m∑
i=0

(−1)i
(
n+ i

m− i

)(
(m+ n+ 1)

(
2i
i

)
− 4i

)
= (n−m)

(
n

m

)
.
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In other words, for any m,n ∈ N we have

(1.2)
m∑
i=0

(−1)i
(
m+ n+ i

m− i

)(
(2m+ n+ 1)

(
2i
i

)
− 4i

)
= n

(
m+ n

n

)
.

The above conjecture is far from transparent and seems to be somewhat sophisticated. In
this paper will show an extension of the conjecture by means of generating functions, Chebyshev
polynomials and double recursions.

For convenience we set

(1.3) Ak(m,n) =
m∑
i=k

(−1)i
(
m+ n+ i

m− i

)(
2i
k + i

)
for k,m, n ∈ N with k 6 m

and

(1.4) B(m,n) =
m∑
i=0

(
m+ n+ i

m− i

)
(−4)i for m,n ∈ N.

Our main result is as follows:

Theorem 1.1. If k,m, n ∈ N and k 6 m, then

(1.5) (n+ 2(m− k) + 1)Ak(m,n)− (−1)kB(m− k, n) = (−1)kn
(
m+ n− k

n

)
.

We will provide recursions for Ak(m,n) and B(m,n) in the next section, and prove Theorem
1.1 in Section 3.

Recall that(
x

0

)
= 1 and

(
x

n

)
=
x(x− 1) · · · (x− n+ 1)

n!
for n = 1, 2, 3, · · · .

Theorem 1.1 has the following equivalent version.

Theorem 1.2. For each m = 0, 1, 2, · · · we have

(1.6)

(x+m+ 1)
m∑
i=0

(−1)i
(
x+ y + i

m− i

)(
y + 2i
i

)

=
m∑
i=0

(
x+ i

m− i

)
(−4)i + (x−m)

(
x

m

)
.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 2 (2002) #A04 3

2. Double Recursions for Ak(m,n) and B(m,n)

Lemma 2.1. Let k,m ∈ N and k 6 m. Then Ak(m, 0) = (−1)m.

Proof. For i ∈ Z with k 6 i 6 m, clearly(
m+ i

m− i

)(
2i
k + i

)
=

(m+ i)!
(m− i)!(2i)! ×

(2i)!
(k + i)!(i− k)! =

(
m+ i

k + i

)(
m− k
m− i

)
.

So

(−1)mAk(m, 0) =
m∑
i=k

(−1)m−i
(
m+ i

m− i

)(
2i
k + i

)

=
m∑
i=k

(−1)m−i
(
m− k
m− i

)(
(m− k) + k + i

k + i

)
.

This is the coefficient of xk+m in the power series of

(1− x)m−k
+∞∑
n=0

(
m− k + n

n

)
xn = (1− x)m−k · 1

(1− x)m−k+1
=

1
1− x (|x| < 1).

So (−1)mAk(m, 0) = 1. This ends the proof. ¤

Lemma 2.2. For m ∈ N we have B(m, 0) = (−1)m(2m+ 1).

Proof. For n = 0, 1, 2, · · · the nth Chebyshev polynomial Un(x) of the second kind is defined
by

sin((n+ 1)θ) = sin θ · Un(cos θ).

It is well-known that

Un(x) =
[n/2]∑
j=0

(−1)j
(
n− j
j

)
(2x)n−2j .

In view of the above,

2m+ 1 = lim
θ→0

sin((2m+ 1)θ)
sin θ

= lim
θ→0

U2m(cos θ) = U2m(cos 0) = U2m(1)

=
m∑
j=0

(−1)j
(

2m− j
j

)
22m−2j

=
m∑
i=0

(−1)m−i
(
m+ i

m− i

)
4i = (−1)mB(m, 0).

We are done. ¤
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Lemma 2.3. Let k,m, n ∈ N and k 6 m. Then

Ak(m+ 1, n+ 1) = Ak(m+ 1, n) +Ak(m,n+ 1)

and
B(m+ 1, n+ 1) = B(m+ 1, n) +B(m,n+ 1).

Proof. For any a0, a1, · · · , am+1 ∈ Z we have

m+1∑
i=0

(
m+ 1 + n+ 1 + i

m+ 1− i

)
ai =

m+1∑
i=0

(
m+ 1 + n+ i

m+ 1− i

)
ai +

m∑
i=0

(
m+ n+ 1 + i

m− i

)
ai.

So the desired equalities follow. ¤

Theorem 2.1. Let k,m, n ∈ N and k 6 m. Then we have

(2.1)


Ak(m, 0) = (−1)m

Ak(k, n) = (−1)k

Ak(m+ 1, n+ 1) = Ak(m+ 1, n) +Ak(m,n+ 1)

and

(2.2)


B(m, 0) = (−1)m(2m+ 1)
B(0, n) = 1
B(m+ 1, n+ 1) = B(m+ 1, n) +B(m,n+ 1).

Proof. In view of Lemmas 2.1—2.3, it suffices to check equalities Ak(k, n) = (−1)k andB(0, n) =
1, which can be easily seen. This concludes the proof. ¤

3. Proofs of Theorems 1.1 and 1.2

Lemma 3.1. For k,m, n ∈ N with k 6 m, we have

(3.1) Ak(m,n) +Ak(m+ 1, n) = (−1)k
(
m− k + n

m− k + 1

)
and

(3.2) (−1)mAk(m,n) =
m−k∑
i=0

(−1)i
(
n+ i− 1

i

)
.

Proof. i) We fix k ∈ N and use induction on mn to show (3.1).
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If n = 0 or m = k then (3.1) holds, for,

Ak(m, 0) +Ak(m+ 1, 0) = (−1)m + (−1)m+1 = 0 = (−1)k
(

m− k
m− k + 1

)
and

Ak(k, n) +Ak(k + 1, n) =(−1)k +
k+1∑
i=k

(−1)i
(
k + 1 + n+ i

k + 1− i

)(
2i
k + i

)
=(−1)k + (−1)k(2k + n+ 1) + (−1)k+1

(
2k + 2
2k + 1

)
=(−1)k(1 + 2k + n+ 1− 2k − 2) = (−1)k

(
n

1

)
.

Clearly both m(n+ 1) and (m+ 1)n are less than (m+ 1)(n+ 1). Assume that

Ak(m,n+ 1) +Ak(m+ 1, n+ 1) = (−1)k
(
m− k + n+ 1
m− k + 1

)
and

Ak(m+ 1, n) +Ak((m+ 1) + 1, n) = (−1)k
(
m+ 1− k + n

m+ 1− k + 1

)
.

With the help of Lemma 2.3,

Ak(m+ 1, n+ 1) +Ak((m+ 1) + 1, n+ 1)

=Ak(m+ 1, n) +Ak(m,n+ 1) + (Ak(m+ 2, n) +Ak(m+ 1, n+ 1)

=(Ak(m+ 1, n) +Ak(m+ 2, n)) + (Ak(m,n+ 1) +Ak(m+ 1, n+ 1))

=(−1)k
(
m− k + n+ 1
m− k + 2

)
+ (−1)k

(
m− k + n+ 1
m− k + 1

)
=(−1)k

(
m+ 1− k + n+ 1
m+ 1− k + 1

)
.

In view of the above, we have proved (3.1).

ii) Observe that

(−1)mAk(m,n)− (−1)kAk(k, n) =
∑

k6l<m

(
(−1)l+1Ak(l + 1, n)− (−1)lAk(l, n)

)
=
∑

k6l<m
(−1)l+1 (Ak(l + 1, n) +Ak(l, n)) .

Applying (2.1) and (3.1) we then obtain that

(−1)mAk(m,n) =(−1)k(−1)k + (−1)k
∑

k6l<m
(−1)l+1

(
l − k + n

l − k + 1

)

=
m−k∑
i=0

(−1)i
(
n+ i− 1

i

)
.
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This ends the proof. ¤

Remark 3.1. Let n ∈ N. It is well-known that

1
(1− x)n =

+∞∑
i=0

(
n− 1 + i

i

)
xi for x ∈ (−1, 1).

An identity of Shi-Jie Zhu (cf. (4.3.8) of [B]) asserts that

l∑
i=0

(
n− 1 + i

i

)
=
(
l + n

l

)
for l = 0, 1, 2, · · · .

Thus, Ak(m,n) (with k,m ∈ N and k 6 m) is interesting in view of (3.2).

Proof of Theorem 1.1. Fix k ∈ N. Below we use induction on mn to show that (1.5) holds for
m > k and n > 0.

If m > k and n = 0, then (1.5) is valid, for

(2(m− k) + 1)Ak(m, 0)− (−1)kBk(m− k, 0)

=(2(m− k) + 1)(−1)m − (−1)k(−1)m−k(2(m− k) + 1) = 0.

In the case m = k and n ∈ N, (1.5) also holds because

(n+ 1)Ak(k, n)− (−1)kB(0, n) = (n+ 1)(−1)k − (−1)k × 1 = (−1)kn.

Now let m,n ∈ N and m > k. Put m′ = m+ 1 and n′ = n+ 1. Assume that

(n′ + 2(m− k) + 1)Ak(m,n′)− (−1)kB(m− k, n′) = (−1)kn′
(
m− k + n′

n′

)
and

(n+ 2(m′ − k) + 1)Ak(m′, n)− (−1)kB(m′ − k, n) = (−1)kn
(
m′ − k + n

n

)
.

Then

(n′ + 2(m′ − k) + 1)Ak(m′, n′)− (−1)kB(m′ − k, n′)
=Ak(m′, n′) + (n+ 2(m− k) + 3)(Ak(m,n′) +Ak(m′, n))

− (−1)k(B(m− k, n′) +B(m′ − k, n))

=Ak(m′, n′) +Ak(m,n′) + (n′ + 2(m− k) + 1)Ak(m,n′)− (−1)kB(m− k, n′)
+ (n+ 2(m′ − k) + 1)Ak(m′, n)− (−1)kB(m′ − k, n)

=(−1)k
(
m− k + n′

m− k + 1

)
+ (−1)kn

(
m′ − k + n

n

)
+ (−1)kn′

(
m− k + n′

n′

)
=(−1)kn′

((
m− k + n′

n

)
+
(
m− k + n′

n′

))
= (−1)kn′

(
m′ − k + n′

n′

)
.
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By the above, we have proved Theorem 1.1. ¤

Proof of Theorem 1.2. By Theorem 1.1, for any k, n = 0, 1, 2, · · · , we have

(n+ 2m+ 1)
k+m∑
i=k

(−1)i
(
k +m+ n+ i

k +m− i

)(
2i
k + i

)

=(−1)k
m∑
i=0

(
m+ n+ i

m− i

)
(−4)i + (−1)kn

(
m+ n

n

)
,

i.e.,

(n+ 2m+ 1)
m∑
j=0

(−1)j
(

2k +m+ n+ j

m− j

)(
2k + 2j
2k + j

)

=
m∑
i=0

(
m+ n+ i

m− i

)
(−4)i + n

(
m+ n

m

)
.

Write

P (x, y) =
m∑
i=0

(−1)i
(
x+ y + i

m− i

)(
y + 2i
i

)
=

m∑
i=0

Pi(x)yi

and

Q(x) =
m∑
i=0

(
x+ i

m− i

)
(−4)i + (x−m)

(
x

m

)
.

Then, for any given integer t > m, the polynomial equation

m∑
i=0

(t+m+ 1)Pi(t)yi = P (t, y) = Q(t)

has solutions y = 0, 2, 4, · · · , hence 0 = (t+m+1)P0(t)−Q(t) = P1(t) = · · · = Pm(t). Therefore

(x+m+ 1)P0(x) = Q(x) and Pi(x) = 0 for 1 6 i 6 m.

It follows that (x+m+ 1)P (x, y) = Q(x). We are done. ¤
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