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Nowadays bootstrap techniques are used for data analysis in many other fields like engineering,
physics, meteorology, medicine, biology, and chemistry. In this paper, the robustness of Wu (1986)
and Liu (1988)’s Wild Bootstrap techniques is examined. The empirical evidences indicate that
these techniques yield efficient estimates in the presence of heteroscedasticity problem. However,
in the presence of outliers, these estimates are no longer efficient. To remedy this problem, we
propose a Robust Wild Bootstrap for stabilizing the variance of the regression estimates where
heteroscedasticity and outliers occur at the same time. The proposed method is based on the
weighted residuals which incorporate the MM estimator, robust location and scale, and the
bootstrap sampling scheme of Wu (1986) and Liu (1988). The results of this study show that the
proposed method outperforms the existing ones in every respect.

1. Introduction

Bootstrap technique was first proposed by Efron [1]. It is a computer intensive method that
can replace theoretical formulation with extensive use of computer. The attractive feature of
the bootstrap technique is that it does not rely on the normality or any other distributional
assumptions and is able to estimate standard error of any complicated estimator without
any theoretical calculations. These interesting properties of the bootstrap method have to be
traded off with computational cost and time. There are considerable papers that deal with
bootstrap methods in the literatures (see [2–5]). The classical bootstrap methods are known
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to be a good general procedure for estimating a sampling distribution under the independent
and identically distributed (i.i.d.)models. Let us consider a standard linear regression model:

Y = Xβ + ε, (1.1)

where Y = (y1, y2, . . . , yn)
T , X = (x1, x2, . . . , xn)

T , and ε = (ε1, ε2, . . . , εn)
T . In this equation β is

a k×1 vector of unknown parameters, Y is an n × 1 vector,X is an n × k datamatrix of full rank
k ≤ n, and ε is an n × 1 vector of unobservable random errors with E (ε) = 0 and V (ε) = σ2I.
In practice the i.i.d. set-up is often violated, as, for example, the homoscedastic assumption of
Var(εi) = σ2I is often violated. Wu [6] proposed a weighted bootstrap technique which gives
better performance under both the homoscedastic and heteroscedastic models. However, a
better alternative approximation is developed by Liu [7] following the suggestions of Liu [7]
and Beran [8]. This type of weighted bootstraps is called the wild bootstrap in the literature.
Several attempts have been made to use theWu and Liu wild bootstrap techniques to remedy
the problem of heteroscedasticity (see [6, 7, 9, 10]).

Salibian-Barrera and Zamar [11] pointed out that the problem of classical bootstrap
is that the proportion of outliers in the bootstrap sample might be greater than that of the
original data. Hence, the entire inferential procedure of bootstrap would be erroneous in
the presence of outliers. As an alternative, robust bootstrap technique has been drawn a
greater attention to the statisticians (see [11–15]). However, not much work is devoted to
bootstrap technique when both outliers and heteroscedasticity are present in a data. Those
wild bootstrap techniques can only rectify the problem of heteroscedasticity and not resistant
to outliers. Moreover, these procedures are based on the OLS estimate which is very sensitive
to outliers. We introduce the classical wild bootstrap in Section 2. In Section 3, we discuss
the newly proposed robust wild bootstrap methods. A numerical example and a simulation
study are presented in Sections 4 and 5, respectively. The conclusion of the study is given in
Section 6.

2. Wild Bootstrap Techniques

In regression analysis, the most popular and widely used bootstrap technique is the fixed-x
resampling or bootstrapping the residuals [2]. This bootstrapping procedure is based on the
ordinary least squares (OLS) residuals summarized as follows.

Step 1. Fit a model yi = f(xi, βols) by the OLS method to the original sample of observations
to get ̂βols and hence the fitted model is ŷi = f(xi, ̂βols).

Step 2. Compute the OLS residuals ε̂i= yi − ŷi and each residual ε̂i has equal probability, 1/n.

Step 3. Draw a random sample ε∗1, ε
∗
2, ..., ε

∗
n from ε̂i with simple random sampling with

replacement and attached to ŷi for obtaining fixed-x bootstrap values y∗b
i where y∗b

i =
f(xi, ̂βols) + ε∗bi .

Step 4. Fit the OLS to the bootstrapped values y∗b
i on the fixed-x to obtain ̂β∗bols.

Step 5. Repeat Steps 3 and 4 for B times to get ̂β∗b1ols , ...,
̂β∗bBols where B is the bootstrap

replications.
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We call this bootstrap scheme Bootols since it is based on the OLS method.
When heteroscedasticity is present in the data, the variances of the data are different

and neither of these bootstrap schemes can yield efficient estimates of the parameters. Wu
[6] showed that they are inconsistent and asymptotically biased under the heteroscedasticity.
Wu [6] proposed awild bootstrap (weighted bootstrap) that can be used to obtain the standard
error which is asymptotically correct under heteroscedasticity of unknown form. Wu slightly
modified Step 3 of the OLS bootstrap and kept the other steps unchanged. For each i, draw a
value t∗i , with replacement, from a distributionwith zeromean and unit variance and attached
to ŷi for obtaining fixed-x bootstrap values y∗b

i , where y∗b
i = f(xi, ̂βols) + t∗i ε̂i/

√

1 − hii

and hii = xT
i (X

TX)xi is the ith leverage. Note that the variance of t∗i ε̂i is not constant
when the original errors are not homoscedastic. Therefore, this bootstrap scheme takes into
consideration the nonconstancy of the error variances. As an alternative [6], t∗i can be chosen,
with replacement, from a1, a2, ..., an, where

ai =
ε̂i − ε̂i

√

n−1 ∑n
i=1

(

ε̂i − ε̂
)2

(2.1)

with ε̂ = n−1 ∑n
i=1 ε̂i. For a regression model with intercept term, ε̂i approximately equals zero.

This is nonparametric implementation of Wu’s bootstrap since the resampling is done from
the empirical distribution function of the (normalized) residuals. We call this method Wu’s
bootstrap and denote it by Bootwu.

Following the idea of Wu [6], another wild bootstrap technique was proposed by Liu
[7] in which t∗i is randomly selected from a population that has third central moment equal to
one with zero mean and unit variance. Such kind of selection is used to correct the skewness
term in the Edgeworth expansion of the sampling distribution of IT ̂β, where I is an n-vector
of ones. Liu’s bootstrap can be conducted by drawing random numbers t∗i in the following
two ways.

(1) t∗i = Zi − E(Zi), i = 1, 2, ..., n, and Z1, Z2, ..., Zn are independently and identically
distributed having density g

Z
(x) = [αβ/(β − 1)!]xβ−1e−axI(x>0), where α = 2 and

β = 4.

(2) t∗i = HiDi − E(Hi)E(Di), i = 1, 2, ..., n, where H1,H2, ...,Hn are independently
and identically distributed normal distribution with mean (1/2)(

√

17/6) +
√

1/6
and variance 1/2. D1, D2, ..., Dn are also independently and identically distributed
normal distribution with mean (1/2)(

√

17/6) −
√

1/6 and variance 1/2. Hi’s and
Di’s are independent.

It is worthmentioning that selecting random numbers t∗i by procedure 1 or procedure 2
of Liu [7] will produce third central moment equal to one. Following Cribari-Neto and
Zarkos [16], we consider the second procedure of drawing the random sample t∗i . We call
this bootstrap scheme as Bootliu.

3. Proposed Robust Wild Bootstrap Techniques

We have discussed the classical wild bootstrap procedures which are based on the OLS
residuals. It is now evident that the OLS suffers a huge setback in the presence of outliers since
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it has 0% breakdown [17]. Since the wild bootstrap samples are based on the OLS residuals,
it is not resistant to outliers. Hence, in this article we propose to use the high-breakdown
and high-efficiency robust MM estimator [18] to obtain the robust residuals. It is expected
that for good data point, the residuals of the MM estimator are approximately the same as
the OLS residuals. On the other hand, the residuals of the MM estimator would be larger
for outlier observation. We assign weights to the MM residuals. The standardized residuals
|ε̂MM

i |/σMM are computed, where σMM is the square root of the mean squares error of the
residuals of the MM estimates (see [19]). Following the idea of Furno [20], weights equal to
one and c/(|ε̂MM

i |/σMM) are assigned to |ε̂MM
i |/σMM ≤ c and |ε̂MM

i |/σMM > c, respectively,
where c is an arbitrary constant which is chosen between 2 and 3. We multiply the new
weights with the residuals of the MM estimates and the resultants are denoted by ε̂WMM

i .
It is now expected that not only the residuals corresponding to the good data points but also
the residuals corresponding to the bad data point of the MM residuals tend to be similar to
the OLS residuals with no outliers. Based on the new weighted residuals ε̂WMM

i , we propose
to robustify Bootols, Bootwu, and Bootliu. We call the resulting robust bootstraps RBootols,
RBootwu, and RBootliu.

We propose to replace the OLS residuals by ε̂WMM
i in Step 3 of the Bootols. That is,

the bootstrap sample ε∗1, ε
∗
2, ..., ε

∗
n is drawn from ε̂WMM

i with simple random sampling and
the other steps remain unchanged. We call this bootstrap scheme Rbootols. Now we will
discuss the formulation of robust wild bootstrap based onWu’s procedures. The algorithm is
summarized as follows.

Step 1. Fit a model yi = xiβ + εi by the MM estimator to the original sample of observations
to get the robust parameters ̂βMM and hence the fitted model is ŷi = xi

̂βMM.

Step 2. Compute the residuals of the MM estimate ε̂MM
i = yi − ŷi. Then assign weight to each

residual, ε̂MM
i , such that the weight equals 1 if |ε̂MM

i |/σMM ≤ c and equals c/(|ε̂MM
i |/σMM) if

|ε̂MM
i |/σMM > c.

Step 3. The final weighted residuals of the MM estimates denoted by ε̂WMM
i are formulated by

multiplying the weights obtained in Step 2 with the residuals of the MM estimates. That is,
ε̂WMM
i = 1 × ε̂MM

i if the observation corresponds to good data point (no outliers) and ε̂WMM
i =

c/(|ε̂MM
i |/σMM) × ε̂MM

i if the observation corresponds to outliers.

Step 4. Construct a bootstrap sample (y∗
i , X), where

y∗
i = xi

̂βMM +
t∗i ε̂

WMM
i

(1 − hii)
, (3.1)

and t∗ is a random sample following Wu [6] procedure.

Step 5. The OLS procedure is then applied to the bootstrap sample (y∗
i , X), and the resultant

estimate is denoted by
R
̂β∗ = (XTX)−1XTy∗. Here, the robust estimates are very reliable since

the bootstrap sample is constructed based on the robust weighted residuals, ε̂WMM
i .

Step 6. Repeat Steps 4 and 5 for B times, where B is the bootstrap replications.
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As discussed earlier, in the classical scheme ofWu’s bootstrap, the quantity t∗i is drawn
from a population that has mean zero and variance equal to one or, t∗i can be drawn from
normalized residuals a1, a2, ..., an, that is,

ai =
ε̂i − ε̂i

√

n−1 ∑n
i=1

(

ε̂i − ε̂
)2

. (3.2)

However, following Maronna et al. [21], we suggest computing the robust normalized
residuals based on median and normalized median absolute deviations (NMADs) instead of mean
and standard deviation which are not robust. Thus,

Rai =
ε̂WMM
i −median

(

ε̂WMM
i

)

NMADnorm
(

ε̂WMM
i

) , (3.3)

where NMADnorm = median{|ε̂WMM
i −median(ε̂WMM

i )|}/0.6745. We call this proposed robust
nonparametric bootstrap as RBootwu.

In this paper we also want to robustify the wild bootstrap based on the Liu [7]
algorithm. It is important to note that the only difference between the Wu and Liu imple-
mentation of wild bootstrap is the choice of the random sample t∗i . In the proposed robust
bootstrap based on the Liu wild bootstrap, we choose the random sample t∗i exactly the same
manner as the classical Liu bootstrap. We call this bootstrap scheme as RBootliu.

4. Numerical Example

In this section, a numerical example is presented to assess the performance of the robust wild
bootstrap methods. In order to compare the robustness of the classical and robust wild boot-
strap in the presence of outliers, the Concrete Compressive Strength data is taken from Yeh
[22]. Concrete is the most important material in civil engineering. The concrete compressive
strength is a function of the eight output such as cement (Kg/m3), blast furnace slag (Kg/m3),
fly ash (Kg/m3), water (Kg/m3), superplasticizer (Kg/m3), coarse aggregate (Kg/m3), fine
aggregate (Kg/m3), and age of testing (days). The residuals versus fitted values are plotted
in Figure 1 that show a funnel shape suggesting a heterogeneous error variances for the data
(see [19]).

We checked whether this data set contain any outliers or not by using Least trimmed
of Squares (LTSs) residuals. It is found that 61 observations (about 6% of the sample of size
1030) appear to be outliers. The robust and non-robust (Classical) wild bootstrap methods
were then applied to the data by considering two types of situations, namely, the data with
outliers and data without outliers (omitted the outlying data points). The results are based
on 500 bootstraps and are given in Table 1.

The standard errors of the parameter estimates from robust and nonrobust wild
bootstrap methods are exhibited in Table 1. The average standard errors of the parameter
estimates are also shown. When there are no outliers, the standard errors of the classical
wild bootstrap are reasonably closed to the standard errors of the robust wild bootstrap. It is
interesting to note that the classical wild bootstrap methods provide larger standard errors
compared to the wild bootstrap methods when outliers are present in the data.
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Figure 1: Residuals versus Fitted values plot of Concrete Compressive Strength data.

Table 1: Wild bootstrap standard errors of the parameters for the Concrete Compressive Strength data.

Standard error (Se) Classical wild bootstrap Robust wild bootstrap
Bootols Bootwu Bootliu RBootols RBootwu RBootliu

Data with outliers
Intercept 29.0037 27.0670 19.4559 27.1955 19.2343 16.5458
Cement 0.00899 0.00874 0.00612 0.00857 0.00641 0.00503
Blast Furnace Slag 0.01090 0.01022 0.00740 0.01047 0.00757 0.00605
Fly Ash 0.01283 0.01296 0.00864 0.01180 0.00971 0.00694
Water 0.04584 0.04129 0.02914 0.04301 0.02986 0.02566
Superplasticizer 0.09824 0.09564 0.06640 0.10253 0.07104 0.05706
Coarse Aggregate 0.01019 0.00956 0.00687 0.00928 0.00666 0.00559
Fine Aggregate 0.01113 0.01056 0.00772 0.01062 0.00772 0.00653
Age 0.00796 0.00550 0.00556 0.00301 0.00419 0.00175
Average Se 3.24553 3.02905 2.17708 3.04387 2.15305 1.85116

Data without outliers
Intercept 26.3944 20.6483 17.5582 25.5838 20.7367 16.9330
Cement 0.00856 0.00687 0.00554 0.00810 0.00666 0.00531
Blast Furnace Slag 0.01000 0.00805 0.00679 0.00984 0.00785 0.00648
Fly Ash 0.01188 0.01014 0.00757 0.01143 0.01022 0.00736
Water 0.04068 0.03051 0.02646 0.03837 0.03080 0.02580
Superplasticizer 0.09384 0.07151 0.05940 0.09498 0.07146 0.05974
Coarse Aggregate 0.00909 0.00752 0.00602 0.00903 0.00739 0.00575
Fine Aggregate 0.01047 0.00823 0.00699 0.01025 0.00826 0.00679
Age 0.00992 0.00842 0.00690 0.01016 0.00837 0.00619
Average Se 2.95431 2.31106 1.96487 2.86400 2.32086 1.89516

We cannot make a final conclusion yet, just by observing the results of the real data,
but a reasonable interpretation up to this stage is that the classical wild bootstrap is affected
by outliers.

5. Simulation Study

In this section, the performances of the proposed robust wild bootstrap estimators are
evaluated based on a simulation study. At first we generate some artificial data to see
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the performance of proposed bootstrap techniques. The final investigation of the performance
of the proposed estimators is verified by the simulation approach on bootstrap samples.

5.1. Artificial Data

We follow the data generation technique of Cribari-Neto and Zarkos [16] and MacKinnon
and White [23]. The design of this experiment involves a linear model with two covariates:

yi = β0 + β1x1i + β2x2i + σiεi. (5.1)

We consider the sample sizes n = 20, 60, 100. For n = 20 the covariate values x1i were obtained
from U(0, 1) and the covariate values x2i were obtained from N(0,1). These observations
were replicated three and five times for creating the sample of size n = 60 and n = 100,
respectively. The data generation was performed using β0 = β1 = β2 = 1. For all i under
the homoscedasticity, σi = 1. However, the main interest here is to find the heteroscedastic
model. In this respect, we create a heteroscedastic generating mechanism following Cribari-
Neto [24]’s work, where

σ2
i = exp(3.2x1i). (5.2)

The degree of heteroscedasticity was measured by

℘ =
max

(

σ2
i

)

min
(

σ2
i

) , i = 1, 2, ..., n, (5.3)

The degree of heteroscedasticity remains constant for different sample sizes since the cova-
riate values are replicated for generating different sample sizes. In our study the degree of
heterogeneity was approximately ℘ = 4. We focus on the situation where regression design
would include outliers. To generate a certain percentages of outliers inModel (5.1), some i.i.d.
normal errors εi’s were replaced by N(5, 10). Hence the contaminated heteroscedastic model
becomes

yi = β0 + β1x1i + β2x2i + σiεi (cont.), (5.4)

where εi(cont.) = αN(0, 1) + (1 − α)N(5, 10) and α is chosen according to level of percentage
of outliers. In this study we choose the 5%, 10%, 15%, and 20% outliers in the model; that is,
α is 0.95, 0.80, 0.85, and 0.80, respectively. Now for each sample size, the OLS, the classical,
and the proposed robust wild bootstrap were then applied to the data. The replications of
the bootstrap were 500 in each model for the different sample sizes. It is noteworthy that the
bootstrap is extremely computer intensive, and S-plus programming language was used for
computing the bootstrap estimates.

The wild bootstrap standard errors of the estimates for different sample sizes and dif-
ferent percentage of contaminations are computed. The bootstrap standard errors of Bootols,
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Figure 2: The average effect of outliers on standard errors of parameters for sample size n = 20.
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Figure 3: The average effect of outliers on standard errors of parameters for sample size n = 60.

Bootwu, and Bootliu are obtained by taking the square root to the main diagonal of the
covariance matrix:

(B − 1)−1
B
∑

b=1

(

̂β∗b − β
∗)(

̂β∗b − β
∗)T

, (5.5)

where β
∗
= (1/B)

∑B
b=1

̂β∗b. On the other hand, the bootstrap standard errors of RBootols,
RBootwu, and RBootliu are obtained by taking the square root to the main diagonal of the
covariance matrix as given in (5.5); the only essential difference is, however, we replace the
usual bootstrap estimates by the robust bootstrap estimates.

The influences of outliers on the standard errors of the estimates are visible in Figures
2, 3, and 4. In these plots, the average standard errors of the parameters estimates are plotted
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Figure 4: The average effect of outliers on standard errors of parameters for sample size n = 100.

at different levels of outliers for different bootstrap methods. The results presented in Figures
2–4 show that the performances of the wild bootstrap estimates are fairly close to the classical
estimates at the 0% level of contamination. It emerges that the average standard errors of
the RBootwu and RBootliu are closer to the average standard errors of the classical Bootwu

and Bootliu, respectively, in “clean” data, regardless of the percentage of outliers. However,
at the 5%, 10%, 15%, and 20% levels of contaminations, the classical standard errors of the
bootstrap estimates become unduly large. On the contrary, it is interesting to see that not
much influence is visible for the robust wild bootstrap techniques of RBootwu and RBootliu, at
the different percentage levels of outliers. It is also observed that the performance of RBootliu
is the best overall followed by RBootwu.

5.2. Simulation Approach on Bootstrap Sample

In the previous section, we used artificial data sets for different sample sizes. Now we would
like to investigate the performances of different bootstrap estimators where data sets are
generated by Monte Carlo simulations. Let us consider a heteroscedastic model which is
given by

yi = β0 + β1x1i + β2x2i + σiεi. (5.6)

The covariate values of x1i and x2i are generated from U(0, 1) for sample sizes 20, 60, and
100. We have also considered β0 = β1 = β2 = 1 as the true parameters in this model and the
heteroscedasticity generating function was σ2

i = exp(0.4x1i + 0.4x2i). In this study the level of
heteroscedasticity is set as ℘ = max(σ2

i )/min(σ2
i ) = 4.

In each simulation run and for the different sample size, εi’s were generated fromN(0,
1) for the data with no outliers. However, for generating the 5% and 10% outliers, the 95% and
90% of εi’s were generated from N(0, 1) and the 5% and 10% were generated from N(0, 20).
It is worth mentioning that although such simulations are extremely computer intensive, the
simulation for each sample size entails a total of 250000 replications with 500 replications and
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Table 2: Biasness measures of the non-robust and robust wild bootstrap.

% outliers Coeff. Bootols Bootwu Bootliu RBootwu RBootliu
Sample Size n = 20

0%

β0 0.0115 −0.0246 −0.0070 −0.0701 −0.0799
β1 −0.5604 −0.5005 −0.4813 −0.3338 −0.2796
β2 0.3753 0.3526 0.2968 0.3576 0.3348

Mean 0.3157 0.2926 0.2617 0.2538 0.2314

5%

β0 −0.9419 −1.1981 −1.3702 0.0357 0.0821
β1 2.9588 2.8570 3.1427 −0.3130 −0.3450
β2 0.8742 1.3083 1.4716 0.4164 0.4077

Mean 1.5916 1.7878 1.9948 0.2550 0.2783

10%

β0 −5.6740 −5.3968 −5.5439 −0.2166 −0.215
β1 6.7826 6.9083 6.9500 0.2450 0.2714
β2 7.4401 6.8714 7.0577 0.4190 0.4073

Mean 6.6322 6.3921 6.5172 0.2935 0.2979
Sample Size n = 60

0%

β0 0.0197 0.0612 0.0458 −0.0123 −0.0056
β1 0.0159 −0.0189 0.0218 0.0400 0.0345
β2 0.0080 −0.0209 −0.0247 0.0462 0.0174

Mean 0.0145 0.0337 0.0308 0.0328 0.0192

5%

β0 −0.1451 −0.1466 −0.0648 −0.0190 −0.0045
β1 0.4342 0.4011 0.2954 0.0921 0.0921
β2 0.1110 0.1452 0.0526 0.0358 0.0073

Mean 0.2301 0.2310 0.1376 0.0490 0.0346

10%

β0 −0.7390 −0.7896 −0.7478 0.0164 −0.0033
β1 0.9916 0.9875 0.96302 0.0793 0.0794
β2 0.8974 1.0292 1.0004 0.0181 0.0005

Mean 0.8760 0.9354 0.9037 0.0379 0.0277
Sample Size n = 100

0%

β0 0.0226 0.0216 0.0240 −0.0505 −0.0554
β1 −0.1086 −0.1037 −0.1099 −0.0514 −0.0457
β2 −0.0448 −0.0422 −0.0433 0.0371 0.0387

Mean 0.0587 0.0558 0.0591 0.0463 0.0466

5%

β0 0.1218 0.1396 0.1095 0.0205 0.0048
β1 −0.1854 −0.3399 −0.2944 −0.1880 −0.1699
β2 −0.1944 −0.1522 −0.1174 −0.0163 −0.0038

Mean 0.1672 0.2106 0.1738 0.0749 0.0595

10%

β0 0.7546 0.6492 0.8318 −0.2921 −0.2748
β1 −1.1835 −1.0402 −1.1809 0.3250 0.3294
β2 −0.8359 −0.7686 −1.0436 0.2800 0.2558

Mean 0.9247 0.8193 1.0187 0.2990 0.2867

500 bootstrap samples each. This simulation procedure was performed following the design
of Cribari-Neto and Zarkos [16] and Furno [20].

The simulation results for the different bootstrap methods are presented in Tables 2–4.
Table 2 shows the biasness measures of the non-robust and robust wild bootstrap techniques.
It is observed that for the different sample sizes, the biasness of the Bootols, the Bootliu, and
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Table 3: Standard errors of the non-robust and robust wild bootstrap.

% outliers Coeff. Bootols Bootwu Bootliu RBootwu RBootliu
Sample Size n = 20

0%

β0 1.1491 1.0414 0.9540 1.0568 0.9774
β1 1.2106 1.3220 1.0294 1.2739 1.1894
β2 1.6257 1.4866 1.3845 1.4827 1.3737

Mean 1.3285 1.2833 1.1226 1.2711 1.1802

5%

β0 4.4748 4.4700 3.2555 0.8503 0.9795
β1 6.7426 8.0992 6.5537 1.1291 1.2546
β2 5.4343 4.9812 3.2680 1.4656 1.6396

Mean 5.5506 5.8501 4.3591 1.1483 1.2912

10%

β0 11.2898 12.5354 10.4426 1.1493 0.9913
β1 12.9386 15.0904 12.5433 1.3296 1.15814
β2 15.5132 16.8739 14.1209 1.4812 1.1552

Mean 13.2472 14.8332 12.3689 1.3200 1.1015
Sample Size n = 60

0%

β0 0.7500 0.7296 0.6483 0.7455 0.6800
β1 0.6632 0.6711 0.5644 0.7213 0.6072
β2 0.9779 0.9865 0.8358 0.9979 0.8787

Mean 0.7970 0.7957 0.6828 0.8216 0.7220

5%

β0 2.9250 2.3879 2.0964 0.7677 0.7043
β1 4.6423 5.3209 4.6852 0.7659 0.7000
β2 3.4306 2.1242 1.7946 0.9833 0.9184

Mean 3.6660 3.2777 2.8587 0.8390 0.7742

10%

β0 6.3512 7.9335 6.5333 0.8164 0.7583
β1 6.7028 8.5494 6.9565 0.8880 0.8150
β2 8.7297 10.9102 9.1101 1.1144 1.0058

Mean 7.2612 9.1310 7.5333 0.9396 0.8597
Sample Size n = 100

0%

β0 0.4658 0.4900 0.3778 0.4326 0.3500
β1 0.6340 0.6531 0.5712 0.6441 0.5901
β2 0.6355 0.6717 0.5055 0.5681 0.4619

Mean 0.5784 0.6049 0.4848 0.5483 0.4673

5%

β0 2.6526 1.9689 1.8733 0.4616 0.3887
β1 4.6667 4.7285 4.7007 0.6805 0.6310
β2 3.1597 1.5921 1.3564 0.5843 0.4947

Mean 3.4930 2.7632 2.6435 0.5755 0.5048

10%

β0 5.7190 7.2003 5.9257 0.4999 0.4379
β1 5.9250 7.4991 6.1414 0.5324 0.4687
β2 7.8683 9.8171 8.0801 0.7999 0.7220

Mean 6.5041 8.1722 6.7157 0.6107 0.5429

the Bootwu increases with the increase in the percentage of outliers. On the other hand, the
RBootwu, and the RBootliu are slightly biased with the increase in the percentage of outliers.
We can draw the same conclusion from the mean of the biasness of the estimates. The
standard errors of the non-robust and robust wild bootstrap are presented in Table 3. It is ob-
served that the standard errors of the classical bootstrap estimates increase with the increase
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Table 4: Robustness measure of RMSE of the non-robust and robust wild bootstrap.

Robustness measure of RMSE
% outliers Coeff. Bootols Bootwu Bootliu RBootwu RBootliu

Sample Size n = 20

0%

β0 — 110.3099 120.4542 102.0019 117.1796
β1 — 94.37567 117.3951 94.5929 109.1911
β2 — 109.20311 117.8290 101.1577 118.0043

Mean — 104.6296 118.5594 99.25083 114.7917

5%

β0 25.13074 24.83232 32.53479 109.03777 135.0219
β1 18.11883 15.53409 18.35560 103.90257 113.8576
β2 30.31304 32.39676 46.55294 94.03987 109.5074

Mean 24.52087 24.25439 32.48111 102.3267 119.4623

10%

β0 9.0949 8.4203 9.7199 98.2525 106.2831
β1 9.1324 8.0386 9.3035 98.6716 105.1563
β2 9.6977 9.1578 10.5692 108.3857 109.2154

Mean 9.3083 8.5389 9.8642 101.7699 120.5487
Sample Size n = 60

0%

β0 — 102.47133 115.4533 100.52476 110.3378
β1 — 98.81731 117.4509 91.85584 109.0760
β2 — 99.10685 116.9525 97.81249 111.2705

Mean — 100.1318 116.6189 96.73103 110.2281

5%

β0 25.62126 31.36313 35.77534 92.89488 106.5277
β1 14.22979 12.43393 14.13294 80.01583 93.96979
β2 28.49122 45.93069 54.47049 90.03794 106.4720

Mean 22.78076 29.90925 34.79292 87.64955 102.3232

10%

β0 11.7351 9.4115 11.4105 91.900 98.8490
β1 9.7919 7.7093 9.4474 74.4197 81.2251
β2 11.1437 8.9234 10.6705 87.7518 97.1719

Mean 10.89023 8.6814 10.50947 84.6905 92.41533
Sample Size n = 100

0%

β0 — 95.07261 123.1937 100.26721 131.6080
β1 — 97.26561 110.5779 97.95562 108.6698
β2 — 94.65821 125.5736 100.14950 137.4324

Mean — 95.66548 119.7817 99.45744 125.9034

5%

β0 17.5633 23.6278 24.8537 89.4943 119.9566
β1 13.7733 13.5688 13.6576 87.9910 98.4320
β2 20.1261 39.8355 46.7975 90.0007 128.7815

Mean 17.1542 25.6774 28.4363 89.1620 115.7234

10%

β0 8.0848 6.4510 7.7940 80.5426 90.1938
β1 10.6465 8.4965 10.2857 103.1180 112.2725
β2 8.0521 6.4702 7.8202 75.1767 83.1701

Mean 8.9278 7.1393 8.6333 86.2791 95.2121

in the percentage of outliers for different sample sizes. However, the robust bootstrap
estimates are slightly affected by these outliers. By investigating the average standard errors
of the estimates, it is also observed that the robust wild bootstrap techniques provide less
standard error of the estimates in the presence of outliers. Finally, the robustness of different
bootstrapping techniques are evaluated based on robustness measures defined in (5.5). Here
the percentage robustness measure, that is, the ratio of the RMSEs of the estimators compared
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with the RMSEs of the OLS estimator for good data is presented in Table 4. From this table
we see that the OLS and the classical bootstrap methods perform poorly. In the presence of
outliers, the efficiency of the classical bootstrap estimates is very low. However, the efficiency
of the robust bootstrap estimates is fairly closed to 100%.

6. Concluding Remarks

This paper examines the performance of classical wild bootstrap techniques which were
proposed by Wu [6] and Liu [7] in the presence of heteroscedasticity and outliers. Both
the artificial example and simulation study show that the classical bootstrap techniques
perform poorly in the presence of outliers in the heteroscedastic model although they perform
superbly for “clean” data. We attempt to robustify those classical bootstrap techniques to
gain better efficiency in the presence of outliers. The numerical results show that the newly
proposed robust wild bootstrap techniques, namely, the RBootwu and RBootliu outperform
the classical wild bootstrap techniques when both outliers and heteroscedasticity are present
in the data. RBootliu performs slightly better than RBootwu. Another advantage of using the
RBootwu and the RBootliu is that no diagnosis for the data is required before the application
of these methods.
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