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This paper presents a method determining neighborhoods of the image pixels automatically in
adaptive denoising. The neighborhood is named stationary neighborhood (SN). In this method,
the noisy image is considered as an observation of a nonlinear time series (NTS). Image denoising
must recover the true state of the NTS from the observation. At first, the false neighbors (FNs) in
a neighborhood for each pixel are removed according to the context. After moving the FNs, we
obtain an SN, where the NTS is stationary and the real state can be estimated using the theory
of stationary time series (STS). Since each SN of an image pixel consists of elements with similar
context and nearby locations, the method proposed in this paper can not only adaptively find
neighbors and determine size of the SN according to the characteristics of a pixel, but also be
able to denoise while effectively preserving edges. Finally, in order to show the superiority of this
algorithm, we compare this method with the existing universal denoising algorithms.

1. Introduction

Image denoising is a very important image preprocessing step. In acquisition, images would
be more or less affected by noise. Noise will make the image quality reduction, which will
influence the subsequent processing steps. In order to recover a real hidden image from a
noisy image, a lot of efforts have been done for a long time.

In 1949, Wiener proposed Wiener filtering using the theory of stationary random
process [1]. In theory, Wiener’s filter meets the minimum mean-square errors (MMSEs) of
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a linear filter. However, Wiener filtering is only applicable to stationary time series, which
causes the edges to be blurred in denoising.

The most effective way to address these problems is adaptive denoising [2–5], which
assumes that the image gray levels are piecewise constant or piecewise continuous. However,
near the singular points, such as edges and textures, the assumption of being piecewise
continuous and constant does not hold. It also makes the edges and textures oversmoothing.

An improved form of adaptive denoising is called the bilateral filtering [6–11].
Bilateral filtering integrates range filtering (gray level) and domain filtering (space) together,
which preserves edges while denoising. However, in noises, the real gray levels are polluted
seriously, which makes the real levels unable to be correctly estimated from the noisy gray
levels. In addition, two window parameters, the variances of range filter’s kernel and spatial
filter’s kernel, must be selected by experience. Once it is fixed, it cannot be changed.

Some researchers suggested that the context able to be used for distinguishing the
singular points from smooth points [12, 13]. Essentially, the context defined on the local gray
level energy is a classifier for image pixels. This makes smooth can be done only among
the similar points, which can maintain the singularity in denoising. However, due to context
defined in the whole image, it lacks spatial adaptation. Studies in [14–17] propose different
methods to improve it.

Some algorithms combine space and context together [14–16]. In these methods, a
fixed-size of sliding windows is chosen by experience firstly. Then the true value of each
pixel is estimated from the points in the window with the similar context. These methods
have better performance than the context. The challenge of these methods is that fixed size
sliding windows will make the window too small to obtain reliable estimate for singular
points.

Another well-known method is nonlocal denoising algorithm proposed recently
[17]. Nonlocal approach determines the similarities through a big and a small window
together. The small window is used to determine the nature of local gray energy while
the large window is used to look for similarities. As the searching neighborhood is large,
nonlocal approach can overcome the default for most of spatial methods in unreliable
estimates near singular points, which can more effectively maintain the borders and
textures.

We think that nonlocal is the same as context in finding the similar points using
local gray level energy. However, the context defined throughout the image lacks spatial
adaptation, while nonlocal searches for similarities in a large window with better spatial
adaptability. However, on smooth regions, nonlocal also lacks spatial adaption. Besides this,
the nonlocal method is with high computational complexity and the sizes of two windows
are also fixed and chosen fully by experience.

As can be seen from the above discussion, the neighborhood sizes of existing adaptive
image denoising algorithms are selected by experience. Moreover, these neighborhoods can
no longer be changed after being selected, which makes the edge-preserving image denoising
a very difficult tradeoff problem. That is, denoising needs a large neighborhood to eliminate
noises while maintaining edges requires a small neighborhood to keep singularity. A fixed-
size neighborhood is impossible to satisfy these two requirements simultaneously. Nonlocal
can overcome the shortcomings of the appeal by taking advantage of big and small windows.
But its mechanism for the coexistence of two windows makes the computing complexity
increase greatly. Besides this, it lacks of spatial adaptation to smooth regions. In this paper,
we propose a method to adaptively determine the neighborhood of image pixels in denoising
using the theory of NTS analysis.
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Recently, with the development of the theory of time series analysis, NTS analysis
becomes the focus in time series analysis [18–31]. Two well-known NTSs include fractal time
series and chaotic time series. However, the field of image denoising, to date, almost do not
use these NTSs. The reason for this phenomenon is that most of researchers believe that the
image noise is random rather than chaos [29, 30].

In this paper, we are concerned about how to convert an NTS to a set of STS. The
method firstly removes the false neighbors dynamically using context to obtain a SN. In a
SN, since all of the pixels have similar local gray energy, the time series can be considered as
stationary. Besides this, the SN is composed with close spatial locations, which guarantees its
spatial adaptability.

Themotivation for SN is that the observation (the noisy image) of aNTS is the sampled
data of an underlying high-dimensional manifold. Some projection points of these sampling
points, which are not neighbors in the manifold, become neighbors in one-dimensional
projection space. These neighbors are called FNs. To obtain SNs of an image pixel, firstly, we
must remove these FNs out. The removing increases the embedding dimension gradually,
which makes folding, wrapping, and twisting orbit open. Using this method, FNs can be
found and removed [18, 24]. The original neighborhood without FNs becomes a SN. Thus,
the real state of a NTS can be estimated from the noisy observation on SNs using the theory
of STS.

Note that the different image pixels have different SNs and sometimes SNs are
irregular, for example, near the edges. In addition, the proposed method also maintains a
nonlinearity for NTS, which is coincident with the same nature for manifolds. That is, local
structures are simple while its global structure is very complex [32–34].

The neighborhoods determined by proposed method are fully automatic and reliable
in estimate, and they are also able to maintain the image edges with the variable sizes and
irregular shapes. It finds a perfect solution to the existing challenges in adaptive image
denoising.

Section 2 in this article will discuss the NTS and SN, and Section 3 describes the
denoising algorithm presented in this paper. Section 4 presents the experimental results and
discussion. Section 5 gives conclusions, and finally the acknowledgment part is given.

2. Nonlinear Time Series and Stationary Neighborhood

In this section, we mainly introduce how to find SNs for the pixels of a noisy image. Thus,
the NTS will be converted into the STS in SNs.

2.1. Definitions

From the geometric point of view, anNTS is a projection from a high-dimensional phase space
to a one, dimensional space. In this projection, some points, which are not adjacent in the
phase space, become neighbors in one-dimensional projection space and are called FNs. To
remove FNs, the most direct idea is to increase the embedding dimension for the phase space.
As the embedding dimension is increasing, the folding, wrapping, and twisting orbit will
gradually be open. Therefore, FNs can easily be removed from the original neighborhood.
And then a SN, which is a neighborhood without FNs, is obtained. On this SN, the true state
can be restored according to the theory of STS. In order to explain our approach better, the
definitions of related terms are given as follows.
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Definition 2.1. A vector of phase space for a time series is an m-dimension vector in the phase
space, which is composed by a different time delay {0, τ, . . . , (m − 1)τ} of the time series
{z(t)}:

{z(t), z(t + τ), z(t + 2τ), . . . , z(t + (m − 1)τ)}, (2.1)

where m is called embedding dimension for the phase space.

Themethod deleting FNs is from the smallest embedding dimension, such as bym = 1,
and is gradually increasing embedding dimension m. As m is increasing, the wrapping and
folding orbit of the nonlinear movement will be gradually opened up. When m increases
to a definite value, which the number of FNs no further increases, the correct embedding
dimension is found.

Definition 2.2. A manifold is a topological space that is locally Euclidean (i.e., around every
point, there is a neighborhood that is topologically the same as the open unit ball in Rn).

Manifold resembles the Euclidean space near each point, and its global structure may
be very complicated. The nature of manifold, which is local simple and complex global,
coincides with our method. That is, the global complex nonlinear can be parted into local
STS.

Definition 2.3. The Neighborhood of a pixel x is a collection N of pixels. The elements of this
collection satisfy N = {ξ|‖x − ξ‖ < d, ξ /=x}, where ‖ · ‖ is the distance and d is a predefined
constant. The elements inN are called neighbors of x.

Definition 2.4. Two points x and ξ on the phase space of NTS are not neighbors but they are
neighbors on the one-dimensional orbit, and ξ is called a false neighbor (FN) for x.

Note that, in our method, the size of the SN is determined by the number of FNs.

Definition 2.5. A time series {z(t)} is stationary if, for allm, the joint probability distribution of
z(t), z(t+1), . . . , z(t+m−1) is independent on the time index t. More specially, the expectation,
variance, correlation coefficients of a time series only are functions of time interval and are
independent on the origin of the time; henc, the time series is then called weakly stationary.

Definition 2.6. One neighborhood determined by the method presented in this paper is called
a stationary neighborhood.

Theorem 2.7. Pixels in a SN form an STS.

2.2. Some Remarks

In this subsection, we will give some remarks on our method.

Remark 2.8 (The Selection of Time Delay τ). In this paper, the time delay τ is set to 1. The
reason is that most of adjacent points are very similar in image and this assumption usually
is adopted in adaptive denoising. Here, we also follow this assumption.
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Remark 2.9 (Context and Embedding Dimension). Firstly, the definition of context is given.

Definition 2.10. The context for an image pixel xij is defined as a length P vector Vij =
[Vi,j,1, Vi,j,2, . . . , Vi,j,P ] formed as a multidimensional function of observations.

The context commonly used in image processing can be defined as them-dimensional
vector in phase space of NTS. Since the context in image coding is studied deeply, it can be
used directly to construct the SNs. For example, if we follow a specific definition of context,
the embedding dimensionm can be determined immediately. From the above discussion, we
know the following.

Theorem 2.11. An m-dimensional vector in phase space is a special form of context.

Remark 2.12 (Size of Neighborhood). It should be explained that the neighborhood size and
embedding dimension are two different concepts. Generally, neighborhood is a more global
concept than the embedding dimension.

It should satisfy two basic criteria simultaneously in choosing neighborhood size. That
is, it must ne big enough to satisfy the reliability of estimates and be small enough to satisfy
spatial adaptation of the singularity detection. As discussed in the previous section, a fixed-
size neighborhood cannot satisfy the above two requirements simultaneously.

The method proposed in this paper meets these two requirements simultaneously
by building different neighborhoods for different image points. In order to ensure the
reliability of estimates, the least number of pixels should be given firstly. Here, we select
48. In other words, a neighborhood after deleting the FNs still has 48 pixels in it; it is
a right SN.

The reason why we should give the least number of neighbors is neighborhood on
a smooth region is different for that near the singular points. In a smooth region, a 7 × 7
neighborhood is enough, while near a singular point there are few neighbors in 7 × 7
neighborhood, which cannot meet the reliable requirement. Thus, near singular points, it
must increase the size of neighborhood in order to increase the number of neighbors. This is
the reason why nonlocal method has two different windows.

2.3. Determining Stationary Neighborhood

Firstly, we must determine three parameters: time delay τ , embedding dimension m, and
size of neighborhood d. We know that τ = 1, m could be determined by the context, and
neighborhood size d is determined by 48 and the least number of neighbors automatically. In
this way, we can find a SN for a pixel in accordance with the following steps.

Step 1 (initialization). Give context and set τ = 1, the least number of neighbors n = 48, the
threshold dV of context Vn, and initial size of neighborhood d = dn × dn = 7 × 7.

Step 2 (finding FNs in a neighborhood of a pixel). The FN is a pixel (i′, j ′) in the neighborhood
d = dn × dn and satisfies ‖Vij − Vi′j ′ ‖ > dV . Find all FNs in the neighborhood. Then record the
index and the number fn of FNs.

Step 3. If d− fn ≤ 48, then dn = dn + 2, and repeat Steps 2-3; otherwise, deleting the FNs of the
neighborhood, the SN is the remainder of the neighborhood.
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3. The New Framework

In this section, we will discuss the theory of image denoising [35]. And then the framework
will be presented.

3.1. Image Denoising

Image denoising studies on how to recover an original image x from a noisy observation y,
assuming that the noise is n. X, Y , N are m × n matrixes, which represent the random fields
with m × n variables. The relation of their observations can be represented by the following
formula:

y = x + n, (3.1)

where y, x, and n are realizations of random fields Y , X, and N, respectively.
The X can be estimated under Minimum Mean Squared Error (MMSE); that is,

x̂ = arg
X

min ‖x̂ − x‖2, (3.2)

where x̂ represents the estimate value of X. An uppercase letter represents a random field or
a random variable while the lowercase letter represents one realization of the random field
or variable.

Thus, the estimate of one pixel xij of X is conditioned on the observation y optimized
by MMSE. If N is a 0 mean and σ2

N variance Gaussian white noise (GWN), the optimal
estimate of xij is

x̂ij =
σ2
X

σ2
X + σ2

N

EYij , (3.3)

where σ2
X is variance of the original image X and EYij is the mean of Yij .

Here, two parameters should be estimated in denoising: σ2
X and EYij . However, we

only have one observation for Y. Thus we have to share data in a neighborhood, which
assumes that the whole data in this neighborhood are independent identical distribution
(iid).

3.2. The New Framework

In this subsection, we will give the new framework of our method.

Step 1. For each image pixel (i, j), determine a SN (see Section 2.3).

Step 2. Compute σ2
Y and EYij in the SN using the assumption of iid. And σ2

X is σ2
Y − σ2

N .

Step 3. Estimate xij using (3.3).

Step 4. For all image pixels, repeat Steps 1–3.
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(a) (b)

Figure 1: Noisy Lena (a) and denoised Lena using Wiener’s filter with 7 × 7 mask (b).

4. Experiments and Discussion

In this section, we will compare our method to Wiener’s filter, bilateral filter, context, and
nonlocal. It should note that these five filters are universal denoising filters. In order to
compare them on the same benchmark, the same context is used in our method, nonlocal,
and context. The programs are implemented on Matlab with the same designer.

Firstly, we will give some brief comments on these five filters. And then some
experimental results will be shown. Finally, we will give discussion.

Wiener’s filter is proposed in 1949 by Wiener [1]. It uses the natures of STS and the
frequency properties to filter noise from the signal. The experiments of Wiener are carried
on the function “wiener2” in Matlab. It blurs the edges and texture while denoising. One
example is shown in Figure 1. The denoised image using Wiener’s filter with 7 × 7 mask is
blurred seriously, especially for the mouth of Lena and the decoration on Lena’s hat.

Bilateral Filter. the formula for bilateral filter is

h(x) = k−1(x)
∫∞

−∞

∫∞

−∞
yξc(ξ, x)s

(

yξ, yx

)

dξ, (4.1)

where ξ and x are two pixels. yξ and yx are gray levels of ξ and x, respectively. k−1(x) is a
normalized constant for two weighs and is defined as

k(x) =
∫∞

−∞

∫∞

−∞
c(ξ, x)s

(

yξ, yx

)

dξ, (4.2)

where c(ξ, x) and s(yξ, yx) are measures of the spatial and range closeness between the center
pixel x and its neighbor ξ, respectively. Usually, these two measures can be defined as two
Gaussian Kernel functions:

c(ξ, x) = e−(1/2)(‖ξ−x‖/σd)
2
,

s
(

yξ, yx

)

= e−(1/2)(‖yξ−yx‖/σr)
2.

(4.3)
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(a) (b)

Figure 2: An image before (a) and after (b) using bilateral filter.

(a) (b)

(c) (d)

Figure 3: A noisy image (a) and denoised images using context when dV (see Section 2.3) is 5 (b), 10 (c),
and 20 (d).

Bilateral filter integrates domain filter and range filter together. It also defines a space
neighborhood using the variance of domain filter σd. The range filter is used for selecting the
points with similar gray levels to x. However, in denoising, the real gray level is hidden in
the noisy data. Therefore, the range filter cannot work well. Besides this, two neighborhood
sizes of bilateral filter also are fixed after defining the two variances σd and σr . The program
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(a) (b)

(c) (d)

Figure 4:A noisy image (a) and denoised images using nonlocal when dV (see Section 2.3) is 10 (b), 20 (c),
and 30 (d).

of bilateral filter is designed onMatlab. Figure 2 gives one image and the image after bilateral
filtering.

Context. For an image, pixel Xi,j is defined as a length P vector Vi,j =
[Vi,j,1, Vi,j,2, . . . , Vi,j,P ] formed as a function of observations. In order to ensure that the
comparison is on the same benchmark, the context in our method, nonlocal, and context is
defined as

vi,j =

∑k=i+1
k=i−1

∑t=j+1
t=j−1 yk,t

9
, (4.4)

where yk,t is the gray level of pixel (k, t).
Using the context defined by (4.4), the image pixels can be classified to several groups

according to their local energy. In this paper, we use a parameter dV (see Section 2.3) to
control the difference for each of group. Figure 3 gives denoising results for different dV ’s for
context. Although context has better denoising results than these Wiener’s filter and bilateral
filter, it also lacks spatial adaptivity. We also design context denoising on Matlab.
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(a) (b)

(c) (d)

Figure 5:A noisy image (a) and denoised images using SN dV (see Section 2.3) is 10 (b), 20 (c), and 30 (d).

Note that, designing more complex context or using tools like wavelet, FFT and so
forth will undoubtedly obtain better denoising results. However, it is beyond the scope of
paper.

Nonlocal is a famous good denoising algorithm. The most important mechanism for
nonlocal is using two windows simultaneously. At least, it improves the estimate near
singular points. However, on smooth region, since it lacks spatial adaptation, it leads over
smooth on these regions.

The Nonlocal program is designed on Matlab, in which the size of small window is
3 × 3 (context) while the size of large window is 21 × 21. The points on the large window
with similar context are used for estimating the real gray level of the center point. In
Figure 4 denoised images using different dV ’s (see Section 2.3) are shown. It is obvious
that Figure 4(d) is oversmooth on smooth regions but still has good performance in edge
preserving.

Stationary Neighborhood is finding a stationary neighborhood for each image pixel. The
neighborhood has at least 48 pixels after deleting FNs. Since On smooth regions and near
singular points, if two requirements of designing a neighborhood are satisfied, it has good
performance on both type regions. That is, in theory analysis, the method proposed in this
paper has the same performance near singular points while having better performance on
smooth regions than the nonlocal. Figure 5 gives us denoised results of SN.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: A noisy image (a) and denoised images using Wiener’s filter (b), context (c), bilateral filter (d),
nonlocal (e), and SN (f).

In order to compare the performance of above five filters, we test some images in
Matlab and some images in the image databases on the internet. These images include
lena.jpg (256 × 256) and coins.png (in Matlab). For coins, nonlocal and SN overmatch other
three methods both on denoising and edge preserving; see Figure 6. Nonlocal also has very
similar Visual Effects to SN! It shocks me much since I think that SN should have obviously
better performance than nonlocal.

After analysis, I think the reason is that the image (coins) is too simple to find the
difference between nonlocal and SN. The most important difference between these two
methods should be the different neighborhoods on the smooth regions. Thus, Lena, a famous
denoising test image with big smooth regions, becomes a test image for comparing nonlocal
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(a) (b)

(c) (d)

Figure 7: Lena (a), noisy Lena (b), and denoised images of nonlocal (c) and SN (d).

and SN. In theory, SN has the same performance of nonlocal near singular points while
having better performance on smooth regions.

From Figure 7, we can see that SN has better performance than nonlocal on smooth
regions. That is, SN preservesmuchmore gray levels and details in smooth regions, especially
for upper borderline of hat where SN preserves the borderline but nonlocal loses it! In
addition, SN also provides us more good visual effects.

Besides these, SN also has relatively low computation complexity. The computation of
nonlocal is 9 × 441 ×N2 [17]. Since most of image pixels (about 90%) are smooth pixels [13],
SN reduces the computation complexity greatly. That is, the smooth points only need a 7 × 7
neighborhood for denoising. Thus the computation complexity is about 9× 49×N2 × 0.9+ 9×
441 ×N2 × 0.1, where 441 is an estimate mean for singular regions according to nonlocal. Its
computation complexity is about 2% of nonlocal.

5. Conclusions

In this paper, we propose a new method to determine a neighborhood, named SN, for each
image pixel in adaptive image denoising. The motivation for finding SN is based on the
idea that an NTS can be convert to STS in some overlapped neighborhoods. An SN is a
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neighborhood whose false neighbors are deleted and has at least 48 neighbors. SN satisfies
two requirements for designing neighborhood on both smooth regions and singularity
regions. It also has good performance on two type regions with about 2% computation
complexity of nonlocal.
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