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This paper deals with the existence of positive solutions for the elliptic problems with sublinear
and superlinear nonlinearities −Δu = λa(x)up + b(x)uq in Ω, u > 0 in Ω, u = 0 on ∂Ω, where λ > 0
is a real parameter, 0 < p < 1 < q. Ω is a bounded domain in �N (N ≥ 3), and a(x) and b(x) are
some given functions. By means of variational method and super-subsolution method, we obtain
some results about existence of positive solutions.

1. Introduction

In this paper, we consider the elliptic problems with sublinear and superlinear nonlinearities

−Δu = λa(x)up + b(x)uq in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1)λ

where λ > 0 is a real parameter, 0 < p < 1 < q. Ω is a bounded domain in �
N (N ≥

3), anda(x) and b(x) are some given functions which satisfies the following assumptions:

(H1) a(x), b(x) ∈ L∞(Ω), a(x) ≥ c0, b(x) ≤ −c1, where c0, c1 are positive constants,

or

(H2) a(x), b(x) ∈ L∞(Ω), a(x), b(x) ≥ c0, where c0 is a positive constant.

For convenience, we denote ((1)λ) with hypothesis (H1) or (H2) by (1)−λ and (1)+λ ,
respectively.
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Such problems occur in various branches of mathematical physics and population
dynamics, and sublinear analogues or superlinear analogues of ((1)λ) have been considered
by many authors in recent years (see [1–9] and their references). But most of such studies
have been concerned with equations of the type involving sublinear nonlinearity (see [3–
6, 8, 9]), with only few references dealing with the elliptic problems with sublinear and
superlinear nonlinearities. In [1], Ambrosetti et al. deal with the analogue of ((1)λ) with
a(x) = b(x) ≡ 1. It is known from [2] that there exist λ∗ ∈ (0,∞), such that problem ((1)λ) has
a solution if λ ≤ λ∗ and has no solution if λ > λ∗, provided b(x) ≡ 1 on Ω.

Our goal in this paper is to show how variational method and super-subsolution
method can be used to establish some existence results of problem ((1)λ). We work on the
Sobolev space H1

0(Ω) equipped with the norm ‖x‖ = (
∫
Ω |∇u|2dx)1/2. For u ∈ H1

0(Ω) we
define Iλ : H1

0(Ω) → � by

Iλ(u) =
1
2

∫

Ω
|∇u|2dx − λ

p + 1

∫

Ω
a(x)|u|p+1dx − 1

q + 1

∫

Ω
b(x)|u|q+1dx. (1.1)

Let λ1 be the first eigenvalue of

−Δu = λu, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.2)

ϕ1 denotes the corresponding eigenfunction satisfying 0 ≤ ϕ1(x) ≤ 1. Lp(Ω), (1 ≤ p ≤ ∞),
denotes Lebesgue spaces, and the norm in Lp is denoted by ‖ · ‖p.

2. The Existence of Positive Solution of (1)−λ

It is well known that

∇ϕ1(x)/= 0, ∀x ∈ ∂Ω. (2.1)

Define a = min∂Ω|∇ϕ1|2; from (2.1) we know a > 0, so we can split the domain Ω into
two parts: Ωε and Ω \ Ωε, where Ωε = {x ∈ Ω : |∇ϕ1|2 ≥ a/2}⋂{x ∈ Ω : ϕ1(x) ≤
ε, ε is small enough}. Let b = infΩ\Ωεϕ1(x); we obtain that b ≥ ε by the positivity of ϕ1 in Ω,
and Ω \Ωε is nonempty when ε is small enough.

Theorem 2.1. Let a(x), b(x) satisfy assumption (H1), and 0 < p < 1 < q < 2∗ − 1, where 2∗ =
2N/(N−2) is the limiting exponent in the Sobolev embedding. Then there exists a constant λ̃ > 0 such
that (1)−λ possesses at least a weak positive solution u∗(x) ∈ H1

0(Ω) for λ ≥ λ̃.

Proof. Let e(x) denote the positive solution of the following equation:

−Δe = 1, x ∈ Ω,
e = 0, x ∈ ∂Ω.

(2.2)
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Here and hereafter we use the following notations: A = ‖a‖∞, B = ‖b‖∞, E = ‖e‖∞. Since
0 < p < 1, for all λ ∈ �+ , there exists T = T(λ) > 0 satisfying

T ≥ λATpEp. (2.3)

Observing that b(x) ≤ −c1 < 0, as a consequence, the function Te verifies

T = −Δ(Te) ≥ λA(Te)p ≥ λa(x)(Te)p + b(x)(Te)q, (2.4)

and hence it is a supersolution of (1)+λ . Let v(x) = ϕl
1, x ∈ Ω, l > 1. For x ∈ Ω, we have x ∈ Ωε

or x ∈ Ω \Ωε. We will discuss it from two conditions.
(I) For all x ∈ Ωε, observing that l > 1 and when ε is small enough, we have

al(l − 1)
s−2

2
− Bsl(q−1) > λ1l, ∀s ∈ (0, ε). (2.5)

Since x ∈ Ωε, then it follows that ϕ1(x) ≤ ε, |∇ϕ1|2 ≥ a/2. From (2.5)we infer

λ1l ≤ l(l − 1)ϕ−2
1

∣∣∇ϕ1
∣∣2 − Bϕ1(x)l(q−1), ∀x ∈ Ωε. (2.6)

Multiplying (2.6) with ϕl
1, we get

l(1 − l)ϕl−2
1

∣∣∇ϕ1
∣∣2 + λ1lϕ

l
1 ≤ −Bϕlq

1 . (2.7)

It follows that

−Δ
(
ϕl
1

)
≤ λa(x)

(
ϕl
1

)p − b(x)
(
ϕl
1

)q
. (2.8)

(II) For all x ∈ Ω \Ωε, there exists λ̃ > 0, such that for all λ ≥ λ̃, and we have

λc0s
pl − Bsql ≥ λ1ls

l, ∀s ∈ R, b ≤ s ≤ 1. (2.9)

Since x ∈ Ω \Ωε, then we have ϕ1(x) ≥ b (and ϕ1(x) ≤ 1). From (2.9), it follows that

−Δ
(
ϕl
1

)
≤ λ1lϕ

l
1 ≤ λc0ϕ

lp

1 − Bsql ≤ λa(x)
(
ϕl
1

)p
+ b(x)

(
ϕl
1

)q
. (2.10)

From (2.8) and (2.10), we derive that there exists λ̃ > 0 such that for all x ∈ Ω, for all λ ≥ λ̃,

−Δ
(
ϕl
1

)
≤ λa(x)

(
ϕl
1

)p
+ b(x)

(
ϕl
1

)q
, (2.11)

that is, v(x) = ϕl
1(x) is a subsolution of (1)−λ . Taking T as sufficiently large, we also have
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Te > ϕl
1 by minimal principle. Define w(x) = Te(x), and let K = {u ∈ H1

0(Ω): v(x) ≤ u(x) ≤
w(x), for all x ∈ Ω}, then K is closed and convex (and weakly closed). Let f(s) = λa(x)sp +
b(x)sq , for all s ∈ �, s > 0. We consider the function

Iλ(u) =
1
2

∫

Ω
|∇u|2dx −

∫

Ω

∫u

0
f(s)ds dx. (2.12)

Observe that b(x) < 0, 0 < p < 1 < q < 2∗ − 1; we infer that Iλ is coercive, bounded, since it is
blow andweakly lower semicontinuous. Using this fact, we conclude that there exists u∗ ∈ K,
such that Iλ(u∗) = infKIλ (see [10]). In the following, we will prove that u∗ is a solution of
problem (1)−λ .

For φ ∈ K, define h : [0, 1] → �, such that

h(t) = I
(
tφ + (1 − t)u∗). (2.13)

Clearly, h(t) achieves its minimum at t = 0, and

h′(t)
∣∣
t=0 =

∫

Ω

[∇u∗∇(
φ − u∗)]dx −

∫

Ω
f(u∗)

(
φ − u∗)dx ≥ 0. (2.14)

For all ϕ ∈ H1
0(Ω), η > 0, define

Ψ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v, when u∗ + ηϕ < v,

u∗ + ηϕ, when v ≤ u∗ + ηϕ ≤ w,

w, when u∗ + ηϕ > w.

(2.15)

Obviously, Ψ ∈ K, and inserting (2.15) into (2.14), we find

0 ≤
∫

v≤u∗+ηϕ≤w

[∇u∗ · ∇(
ηφ

) − f(u∗)
(
ηϕ

)]
dx

+
∫

u∗+ηϕ>w

[∇u∗∇(w − u∗) − f(u∗)(w − u∗)
]
dx

+
∫

u∗+ηϕ<v

[∇u∗∇(v − u∗) − f(u∗)(v − u∗)
]
dx
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= η

∫

v≤u∗+ηϕ≤w

[∇u∗ · ∇ϕ − f(u∗)ϕ
]
dx

+
∫

u∗+ηϕ>w

[∇w · ∇(w − u∗) − f(w)(w − u∗)
]
dx

+
∫

u∗+ηϕ<v

[∇v · ∇(v − u∗) − f(v)(v − u∗)
]
dx

−
∫

u∗+ηϕ>w
|∇w − ∇u∗|2dx −

∫

u∗+ηϕ<v
|∇v − ∇u∗|2dx

+
∫

u∗+ηϕ>w

[
f(w) − f(u∗)

]
(w − u∗)dx

+
∫

u∗+ηϕ<v

[
f(v) − f(u∗)

]
(v − u∗)dx.

(2.16)

Since w(x) and v(x) are supersolution and subsolution, respectively, then

∫

u∗+ηϕ>w

[∇w · ∇(w − u∗) − f(w)(w − u∗)
]
dx ≤ η

∫

u∗+ηϕ>w

[∇w · ∇ϕ − f(w)ϕ
]
dx,

∫

u∗+ηϕ<v

[∇v · ∇(v − u∗) − f(v)(v − u∗)
]
dx ≤ η

∫

u∗+ηϕ<v

[∇v · ∇ϕ − f(v)ϕ
]
dx.

(2.17)

Observe that meas[u∗ + ηϕ > w] → 0, meas[u∗ + ηϕ < v] → 0, as η → 0,

∫

u∗+ηϕ>w

[∇w · ∇ϕ − f(w)ϕ
]
dx −→ 0,

∫

u∗+ηϕ<v

[∇v · ∇ϕ − f(v)ϕ
]
dx −→ 0.

(2.18)

Since u∗ ∈ K, b(x) < 0, it follows that

∫

u∗+ηϕ>w

[
f(w) − f(u∗)

]
(w − u∗)dx

=
∫

u∗+ηϕ>w
λa(x)

(
wp − u∗p

)
(w − u∗)dx +

∫

u∗+ηϕ>w
b(x)

(
wq − u∗q

)
(w − u∗)dx

≤
∫

u∗+ηϕ>w
λa(x)

(
wp − u∗p

)
(w − u∗)dx.

(2.19)
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Similar to (2.19), we have

∫

u∗+ηϕ<v

[
f(v) − f(u∗)

]
(v − u∗)dx

=
∫

u∗+ηϕ<v
λa(x)

(
vp − u∗p

)
(v − u∗)dx +

∫

u∗+ηϕ<v
b(x)

(
vq − u∗q

)
(v − u∗)dx

≤
∫

u∗+ηϕ<v
λa(x)

(
vp − u∗p

)
(v − u∗)dx.

(2.20)

Similar to (2.18), as η → 0, it follows that

∫

u∗+ηϕ>w
λa(x)

(
wp − u∗p

)
(w − u∗)dx −→ 0,

∫

u∗+ηϕ<v
λa(x)

(
vp − u∗p

)
(v − u∗)dx −→ 0.

(2.21)

As η → 0, we also have

∫

v≤u∗+ηϕ≤w

[∇u∗ · ∇ϕ − f(u∗)ϕ
]
dx −→

∫

Ω

[∇u∗ · ∇ϕ − f(u∗)ϕ
]
dx. (2.22)

Inserting (2.17), (2.19), and (2.20) into (2.16), we find

0 ≤ η

{∫

v≤u∗+ηϕ≤w

[∇u∗ · ∇ϕ − f(u∗)ϕ
]
dx +

∫

u∗+ηϕ>w

[∇w · ∇ϕ − f(w)ϕ
]
dx

+
∫

u∗+ηϕ<v

[∇v · ∇ϕ − f(v)ϕ
]
dx

}

+
∫

u∗+ηϕ>w
λa(x)

(
wp − u∗p

)
(w − u∗)dx

+
∫

u∗+ηϕ<v
λa(x)

(
vp − u∗p

)
(v − u∗)dx.

(2.23)

Dividing by η and letting η → 0, using (2.18), (2.21), and (2.22), we derive

∫

Ω

[∇u∗ · ∇ϕ − f(u∗)ϕ
]
dx ≥ 0. (2.24)

Noting that ϕ is arbitrary, this holds equally for −ϕ, and it follows that u∗ is indeed a weak
solution of (1)−λ , and the strong maximum principle yields u∗ > ϕl

1, in Ω. Therefore it is a
weak positive solution of (1)−λ .
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3. The Existence of Positive Solution of (1)+λ

Theorem 3.1. Let a(x), b(x) satisfy assumption (H2), and 0 < p < 1 < q < +∞. Then there exists
Λ ∈ �, Λ > 0, such that

(i) for all λ ∈ (0,Λ) problem (1)+λ has a minimal solution uλ such that Iλ(uλ) < 0. Moreover
uλ is increasing with respect to λ;

(ii) for λ = Λ problem (1)+λ has at least one weak solution u ∈ H ∩ Lp+1;

(iii) for all λ > Λ problem (1)+λ has no solution.

To prove Theorem 3.1, let us define

Λ = sup
{
λ > 0 : (1)+λ has a solution

}
. (3.1)

First of all we prove a useful lemma.

Lemma 3.2. One has 0 < Λ < +∞.

Proof. Let e(x) denote the solution of the following equation:

−Δe = 1, x ∈ Ω,

e = 0, x ∈ ∂Ω.
(3.2)

Since 0 < p < 1 < q, we can find λ0 > 0 such that for all 0 < λ ≤ λ0 there exists T = T(λ) >
0 satisfying

T ≥ λATpEp + BTqEq. (3.3)

As a consequence, the function Te verifies

T = −Δ(Te) ≥ λA(Te)p + B(Te)q ≥ λa(x)(Te)p + b(x)(Te)q, (3.4)

and hence it is a supersolution of (1)+λ . Moreover, let u0 denote the solution of the following
problem:

−Δu = λa(x)up
0 , x ∈ Ω,

u0 = 0, x ∈ ∂Ω.
(3.5)

(From [3] we know that u0 exists.) Then εu0 is a subsolution of (1)+λ , provided

−Δ(εu0) = λεa(x)up

0 ≤ λa(x)(εu0)p + b(x)(εu0)q, (3.6)
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which is satisfied for all ε > 0 small enough and all λ. Taking ε as possibly smaller, we also
have

εu0 < Te. (3.7)

It follows that (1)+λ has a solution u, εu0 ≤ u ≤ Te whenever λ ≤ λ0, and thus Λ ≥ λ0.
Next, let λ∗ be such that

c0(λ∗tp + tq) > λ1t, ∀t > 0. (3.8)

If λ is such that (1)+λ has a solution u, multiplying (1)+λ by ϕ1 and integrating over Ωwe find

λ1

∫

Ω
uϕ1dx = λ

∫

Ω
a(x)upϕ1dx +

∫

Ω
b(x)uqϕ1dx ≥ c0

[∫

Ω

(
λupϕ1 + uqϕ1

)
dx

]
. (3.9)

This and (3.5) immediately imply that λ < λ∗ and show that Λ ≤ λ∗, hence 0 < Λ < +∞.

We are now ready to give the proof of Theorem 3.1.

Proof. (i) From the proof of lemma, it follows that, for all λ ∈ (0,Λ), problem (1)+λ has a
solution uλ. Let u0 satisfy (3.5); the iteration

−Δun+1 = λa(x)up
n + b(x)uq

n (3.10)

satisfies un ↑ uλ by making use of Lemma 3.3 of [1] and maximum principle. It is easy to
check that uλ is a minimal solution of (1)+λ . Indeed, if u is any solution of (1)+λ , then u ≥ u0 and
u is a supersolution of (1)+λ . Thus un ≤ u, for all n, by induction, and uλ ≤ u. Next, we will
prove that Iλ(uλ) < 0. Indeed,

Iλ(u) =
1
2

∫

Ω
|∇u|2dx − λ

p + 1

∫

Ω
a(x)|u|p+1dx − 1

q + 1

∫

Ω
b(x)|u|q+1dx. (3.11)

Since uλ is a solution of (1)+λ we have

∫

Ω
|∇uλ|2dx =

∫

Ω
λa(x)up+1

λ dx +
∫

Ω
b(x)uq+1

λ dx. (3.12)

From Lemma 3.5 of [1], we know

∫

Ω

[∣∣∇ϕ
∣∣2 −

(
λpa(x)up−1

λ
+ qb(x)uq−1

λ

)
ϕ2

]
dx ≥ 0, ∀ϕ ∈ H1

0 . (3.13)

In particular with ϕ = uλ, we infer

∫

Ω
|∇uλ|2dx − λp

∫

Ω
a(x)up+1

λ
dx − q

∫

Ω
b(x)uq+1

λ
dx ≥ 0. (3.14)
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Combining (3.12) and (3.14), we obtain

Iλ(uλ) = λ

(
1
2
− 1
p + 1

)∫

Ω
a(x)up+1

λ dx +
(
1
2
− 1
q + 1

)∫

Ω
b(x)uq+1

λ dx

≤ 1 − p

2

(
− 1
p + 1

+
1

q + 1

)∫

Ω
a(x)up+1

λ dx < 0.

(3.15)

To complete the proof of (i), it remains to show that

uλ < uλ1 whenever λ < λ1. (3.16)

Indeed, if λ < λ1 then uλ1 is a supersolution of (1)+λ . Since, for ε > 0 small, εu0 is a subsolution
of (1)+λ and εu0 < uλ1 , then (1)+λ possesses a solution v, with

(εu0 ≤)v ≤ uλ1 . (3.17)

Since uλ is the minimal solution of (1)+λ , we infer that uλ ≤ v ≤ uλ1 . Moreover

−Δ(uλ1 − uλ) = λ1a(x)u
p

λ1
+ b(x)uq

λ1
−
(
λa(x)up

λ
+ b(x)uq

λ

)

≥ λa(x)up

λ1
+ b(x)uq

λ1
− a(x)up

λ
− b(x)uq

λ
≥ 0.

(3.18)

Since uλ1 /=uλ (because λ < λ1), then the Hopf Maximum principle yields uλ < uλ1 .
(ii) Let λn be a sequence such that λn ↑ Λ; then from Iλn(uλn) < 0 we deduce that there

exists C > 0 such that

‖∇un‖2 ≤ C,

‖un‖p+1p+1 ≤ C.
(3.19)

Then there exists u∗ ∈ H1
0 such that un → u∗ > 0 a.e. in Ω, strongly in Lp+1 and weakly inH1

0 .
Such a u∗ is thus a weak solution of (1)+λ for λ = Λ.

(iii) This follows from the definition of Λ.
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