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This study presents nonlinear differential equations capable to generate continuous functions
similar to pulse sequences. First are studied some basic properties of second-order differential
equations with time-dependent coefficients generating bounded oscillating functions F similar
to test-functions (the function F and its derivative F ′ being equal to zero at the same time
moments). The necessary intercorrelations between the phase of generated oscillations and the
time-dependent coefficients is presented, being shown also that the external command function
should be set to a constant value at these time moments so as to determine the amplitude and the
sign of generated oscillations. Then some possibilities of using previous differential equation for
generating positive-definite functions with null values for the function and its derivative at the
same time moments and with constant slope for its amplitude are presented, being shown that the
corresponding external command function should present also alternating components. Finally all
previous results are used for determining a set of second-order differential equations with time
dependent coefficients and a set of external command and corrective functions for generating a
pulse sequence useful for modelling time series.

1. Introduction

As was presented in [1], practical test-functions are important in signal analysis due to the
fact that such a function f and a finite number of its derivatives f ′, f ′′, . . . are equal to zero
at the beginning and the end of a certain working interval and sampling procedures can
be performed in a robust manner. In the same paper were studied invariance properties of
differential equations able to generate such practical test-functions on a limited time interval.
However, aspects presented in that initial study should be extended to functions defined
on extended time intervals, so as to investigate possibilities of generating sequences of such
practical test functions. Stress should be laid upon sequence of sharp mathematical functions
similar to pulses, while in the limit case pulse sequences can be considered as time series.
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2. Differential Equations for Generating Bounded
Oscillating Functions

For a limited time interval it was shown [2] that a second-order system working at the limit
of stability and an integrator can generate a function represented by

z =
∫2πT

0
A(1 − cos(ωt))dt (2.1)

for an external constant input u = A (the integration time interval being represented by a
period of the oscillating second-order system, while T = 1/ω) in a robust manner. At the end
of the integration, the value z(2πT) can be sampled in a robust manner, while both z(t) and
z′(t) are equal to zero. Moreover, filtering properties of such a structure are similar to those
of a structure consisting of an asymptotically stable second-order system and an integrator.

Let us check the possibility of obtaining a more general positive-definite oscillating
function as a result of a differential equation. We consider the function F(t)written as

F(t) =
[
1 − cos f(t)

]
(2.2)

(its average value is equal to unity on an unlimited time interval). This implies

F ′(t) = f ′(t) sin f(t),

F ′′(t) = f ′′(t) sin f(t) +
(
f ′(t)

)2 cos f(t).
(2.3)

We are looking for a second-order differential equation under the form

F ′′(t) = a(t)F ′(t) + b(t)(1 − F(t)) (2.4)

(similar to linear differential equations with time-invariant coefficients generating damped
oscillations, it is considered that F ′and F ′′ are equal to zero when F(t) equals its average
value, this means when F(t) = 1).

By substituting in the previous equation F(t), respectively, F ′(t), F ′′(t)with 1−cos f(t),
respectively, f ′(t) sin f(t), f ′′(t) sin f(t) + (f ′(t))2 cos f(t) it results

f ′′ sin f + f ′2 cos f = af ′ sin f + b cos f. (2.5)

For a robust solution we should equate functions multiplying sin f , respectively cos f on both
sides. It results

b = f ′2, a =
f ′′

f ′ . (2.6)
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By considering f ′ = ± b1/2 it results

f ′′ = ± b′

2b1/2
, a =

f ′′

f ′ =
b′

2b
. (2.7)

Thus the differential equation generating the output F = 1 − cos f(t) (and its derivative F ′ =
f ′(t) sin f(t)) can be written as

F ′′ =
b′

2b
F ′ + b(1 − F) (2.8)

or

F ′′ =
f ′

f ′′F
′ + f ′2(1 − F), (2.9)

where b equals f ′2. Since b = f ′2 is a positive-definite function, at time moments when both
F(t) and F ′(t) vanishes (implying cos f(t) = 1, sin f(t) = 0) and the previous equation
becomes

F ′′ = f ′2, (2.10)

so for |f ′(t)| ≈ 0 at this time moments the second derivative F ′′ ≈ 0 and thus function F can
be approximated as zero on a large time interval.

Next step consists in studying the possibilities of generating a function F(t) repre-
sented by

F = G
(
1 − cos p(t)

)
. (2.11)

It results that

F = G −G cos p,

F ′ = G′ −G′ cos p +Gp′ sin p,

F ′′ = G′′ −G′′ cos p +G′p′ sin p +Gp′′ sin p +G′p′ sin p +Gp′2 cos p.

(2.12)

We consider a slightly changed differential equation—the term (1−F) in previous differential
equations being substituted by (G − F), where G is an external command function (it can
be noticed that the amplitude of the external command G should be proportional to the
amplitude of function F). Thus, the differential equation becomes

F ′′ =
b′

2b
F ′ + b(G − F). (2.13)
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Substituting the mathematical expressions of F(t) and F ′(t), F ′′(t) previously obtained in this
modified differential equation, it results

G′′ +
(
Gp′2 −G′′

)
cos p +

(
2G′p′ +Gp′′

)
sin p =

(
b′G′

2b

)
+
(
bG − b′G′

2b

)
cos p +

(
b′Gp′

2b

)
sin p.

(2.14)

By equating the terms which do not depend on sin p, cos p and the functions multiplying
cos p, sin p on both sides of this equation, it results

(i)

G′′ =
b′G′

2b
, (2.15)

(ii)

Gp′2 −G′′ = bG − b′G′

2b
, (2.16)

which implies

Gp′2 −G′′ = bG −G′′ (2.17)

(by substituting b′G′/2b from previous equation), and

Gp′2 = bG, (2.18)

then

p′2 = b, p′ = ±b1/2 (2.19)

(similar to the analysis of a possible function F = 1 − cos f(t) presented at the beginning of
this paragraph), and

(iii)

2G′p′ +Gp′′ =
b′Gp′

2b
. (2.20)

Since p′2 = b, it results b′ = 2p′p′′, and by substituting b′ with this mathematical expression in
last equation it results

2G′p′ +Gp′′ = p′′G (2.21)
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(the right-hand side of the equation was reduced by dividing both the numerator and the
denominator with 2p′2) and

2G′p′ = 0, G′p′ = 0 (2.22)

with possible solutions: G′ = 0 (G is a constant function) and/or p′ = 0 (p is a constant
function). However, we should notice that p cannot be a constant function, while function
b = p′2 cannot be equal to zero (this would correspond to a differential equation which does
not depend on the external command G).

Substituting b = p′2 in equation G′′ = b′G′/2b previously obtained (see (i)) it results

G′′ =
p′′G′

p′
(2.23)

(the right-hand side of the equation was reduced by dividing both the numerator and the
denominator with 2p′2) and

G′′p′ − p′′G′ = 0 (2.24)

which can be written also as

(
G′p′

)′ − 2G′p′′ = 0. (2.25)

Substituting G′p′ = 0 (according to the previous conclusion; see (iii)) it results

2G′p′′ = 0, G′p′′ = 0 (2.26)

with possible solutions G′ = 0 and/or p′′ = 0.
By studying possible solutions for the equations presented at (i), (ii) and (iii), it results

that (b = p′2), and (G′ = 0 and/or p′ = 0) and (G′ = 0 and/or p′′ = 0). This implies that b = p′2

(as in the previous case), and G′ = 0, so G(t) should be a constant function.
A more general second-order differential equation generating a bounded positive-

definite oscillating function F(t) = G(t)(1 − cos p(t)) is represented by

F ′′ =
b′

2b
F ′ + b(H − F) (2.27)

(it can be noticed that the external command denoted by H(t) could be different from
the function G(t) corresponding to the amplitude of F). The analysis is similar to the
one performed in the previous case (when the external command and the amplitude of
the generated function F were considered to be equal). In the same manner, F ′ and F ′′

are computed and substituted in the second-order differential equation. By equating the
functions multiplying cos p, sin p and on both sides of this mathematical expression, it results
the same equations as in the previous case (see (ii), (iii)), with the same consequences: b = p′2
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(by equating functions multiplying cos p), and G′ = 0 (by equating functions multiplying
sin p).

By equating the terms which do not depend on sin p, cos p on both sides of this
mathematical expression (for a robust solution) it results

G′′ =
b′G′

2b
+ b(H −G) (2.28)

(which differs to equation obtained in the previous case; see (i)).
SinceG′ = 0, it resultsG′′ = 0. SubstitutingG′ = 0,G′′ = 0 in previous equation it results

b(H −G) = 0, (2.29)

which implies

H −G = 0, H = G (2.30)

(it was shown that b cannot be equal to zero). So for a robust solution it is necessary for the
external commandH to be equal to the amplitude G(t) of F(t), both being constant functions
(H = G, so H ′ = G′ = 0).

It is also possible to equate just the functions multiplying cos p on both sides of the
mathematical expression (this implies b = p′2 and, consequently, b′ = 2p′p′′, as has been
shown). Performing a reduction of similar terms on both sides of equation, it results

G′′ +
(
2G′p′ +Gp′′

)
sin p =

b′G′

2b
+ b(H −G) +

(
b′Gp′

2b

)
sin p. (2.31)

Substituting b = p′2, b′ = 2p′p′′ it results

G′′ +
(
2G′p′ +Gp′′

)
sin p =

(
p′′G′

p′

)
+ p′2(H −G) +

(
p′′G

)
sin p. (2.32)

The first fraction on right side has been obtained by dividing both numerator and
denominator by 2p′ (a nonzero expression, since p′2 /= 0, p′ /= 0 as was shown) and the
function multiplying sin p on right side has been obtained by dividing both numerator and
denominator by 2p′2 (a nonzero value, since p′2 /= 0 as was shown). It results

G′′ −
(
p′′G′

p′

)
+ p′2(G −H) + 2G′p′ sin p = 0, (2.33)

so the function H (the external command) can be written as

H =
G′′ − p′′G′/p′ + 2G′p′ sin p

p′2
+G. (2.34)
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This result can be used for determining the external command function H(t) if the function
G(t) (the amplitude of the function F to be generated) is known. However, it can be noticed
that H contains an oscillating part (2G′/p′) sin p, and so the differential equation is far of
being robust.

It can be noticed that the function F = G(t)(1 − cos p(t)) has an important property:
the function F(t) and its derivative F ′(t) = G′ − G′ cos p(t) + Gp′ sin p(t) are equal to zero
at the same time moments tk, when cos p(tk) = 1 and sin p(tk) = 0 (supposing G(t) to be
a constant function, as has been shown). Inspecting the second-order differential equation
F ′′ = (b′/2b)F ′ + b(H − F) (where b = p′2 and H is a constant function—as has been shown)
it results that at this time moments the differential equation can be written as

F ′′(tk) =
(

b′

2b

)
F ′(tk) + b(H(tk) − F(tk)) = bH(tk). (2.35)

So at this time moments (when the state variables F and F ′ of the second-order differential
equations are equal to zero) the second derivative is determined by the external command
H. This suggests that at this time moments a new function:

Fk(t) = Gk

(
1 − cos pk(t)

)
(2.36)

can be generated by a differential equation:

F ′′
k(t) =

(
b′k(t)
2bk(t)

)
F ′
k(t) + bk(t)(Hk − Fk(t)), (2.37)

where the time moment tk has become the origin of time for the new working interval, with
the external command function represented by the constant functionHk. The amplitude and
the sign of the external command H at the time moments when F and F ′ are equal to zero
determine the amplitude and sign of the function F on next working time interval (until
both F, F ′ become zero again). The phase p(t) of the function F and the function b(t) which
determines the differential equations on each working interval are intercorrelated by b = p′2,
as has been shown.

It can be noticed that the previous differential equations can be easily implemented
(using either analogue circuits if a high working frequency is necessary or digital circuits if
more accurate results are required). In case of analogue circuits, mathematical operations as
multiplying and/or dividing functions are available due to high performances of operational
amplifiers. The errors between the required function and the function generated by analogue
circuits cannot be avoided; however, the cumulative errors can be easily set to zero at the
end of each working interval tk, by simply setting to zero the functions F, F ′ at these time
moments (when they should present a null value, according to theory). By performing this
operation before applying a new external command functionHk, a robust implementation of
the mathematical model can be acquired.
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The same aspect is valid also if digital circuits are used. A higher accuracy can be
obtained, but numerical errors cannot be avoided and thus numerical values of F and F ′

should be set to zero at the end of each working interval (as in case of analogue circuits).

3. Functions Similar to Pulse Sequences Generated by
Second-Order Differential Equations

The mathematical expression for the second-order equation presented in previous paragraph
should be used for generating functions similar to pulse sequences or time series. For this
purpose, at first step it will be presented a differential equation able to generate a function
with a constant slope for its amplitude, this means a function which can be written as

F = G(t)
(
1 − cos p(t)

)
= t

(
1 − cos p(t)

)
(3.1)

(the slope of the amplitude G(t) has been considered to be equal to unity). It results

F ′ = 1 − cos p + tp′ sin p,

F ′′ = 2p′ sin p + tp′′ sin p + tp′2 cos p.
(3.2)

By substituting the previous expression for F ′′ into the left side of the differential equation
F ′′ = aF ′ + b(H − F) (where b = p′2, a = b′/2b = p′′/p′ as was shown), by substituting
the previous expressions for F and F ′′ on the right side of the differential equation and by
considering that the external command functionH can be represented by a sum:

H = h1(t) + h2(t) sin p(t) + h3 cos p(t), (3.3)

it results

(
2p′ + tp′′

)
sin p + tp′2 cos p = (a + bh1 − bt) +

(
atp′ + bh2

)
sin p + (bh3 + bt − a) cos p.

(3.4)

By equating the terms which do not depend on sin p, cos p and the functions multiplying
cos p, sin p on both sides of this equation, it results

(i)

a + bh1 − bt = 0, (3.5)

(ii)

atp′ + bh2 = 2p′ + tp′′, (3.6)

(iii)

bh3 + bt − a = tp′2. (3.7)
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Since b = p′2, a = p′′/p′ (as was shown) from previous three equations it results that

h1 =
bt − a

b
= t − p′′

p′3
,

h2 =
2p′ + tp′′ − atp′

b
=

2p′′′ + tp′′′ − p′′′t
p′2

=
2
p′
,

tp′2 − bt + a

b
= −t + tp′2 + p′′/p′

p′2
= −t + t +

p′′

p′3
=

p′′

p′3
.

(3.8)

So the external command functionH(t) necessary for generating a function F = t(1−cos p(t))
by a differential second-order equation F ′′ = (p′′/p′)F ′ + (p′)2(H − F) is represented by

H = h1(t) + h2(t) sin p(t) + h3 cos p(t) = t −
(
p′′

p′3

)(
1 − cos p

)
+
(

2
p′

)
sin p. (3.9)

However, pulse sequences are best represented by functions as

Fn(t) = A
(
sin p(t)

)n = Asinnp, (3.10)

which is similar to a constant time series for n → ∞ (the functions differs to zero just when
sin p = 1).

For A = 1, it results

Fn = sinn p ,

F ′
n = p′n sinn−1 p cos p,

F ′′
n = −np′2 sinn p + n(n − 1)p′2 sinn−2 pcos2p + np′′ sinn−1p cos p.

(3.11)

By substituting cos2p = 1 − sin2 p in the second term of right-hand side, it results

F ′′
n = −n2p′2sinnp + n(n − 1)p′2sinn−2p + np′′sinn−1p cos p. (3.12)

The first term on right-hand side can be written as

−n2p′2sinnp = −bnFn (3.13)

(where bn = n2p′2).
The second term on right-hand side can be written as

n(n − 1)p′2sinn−2p = n2p′2sinn−2p − np′2sinn−2p = bnHn−2 − bnhn−1, (3.14)

where bn = n2p′2,Hn = sinn−2p, hn−1 = (sinn−1p)/n.
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The third term on right side can be written under the form

np′′ sinn−1 p cos p = anF
′
n, (3.15)

where an = p′′/p′ and F ′
n = p′nsinn−1p cos p as was shown.

So the second derivative F ′′
n can be written under the form

F ′′
n = anF

′
n + bn(Hn−2 − hn−1 − Fn). (3.16)

It can be noticed that the function Fn can be generated by a second-order differential
equation similar to the one presented in previous paragraph. The time-dependent coefficient
an (multiplying F ′

n) equals the time-dependent coefficient a of the differential equation
presented in the previous paragraph for any n; the time-dependent coefficient bn (multiplying
the difference between the external commandHn−2−hn−1 and the function Fn to be generated)
is represented by time-dependent coefficient b = p′2 of the differential equation presented in
the previous paragraph divided by n2.

Two important aspects should be emphasized.

(i) The first term of the external command functionHn−2−hn−1 is represented byHn−2 =
Fn−2 (since Fn−2 = sinn−2p = Hn−2).

(ii) The second term of the external command function Hn−2 − hn−1 is represented by a
corrective function hn−1 which can be written as: hn−1 = Fn−1/n; so, for n → ∞ the
function hn−1 → 0 and thus the external command function can be approximated
by Fn−2.

This suggests that a set of differential equations

F ′′
k+2 = aF ′

k+2 + bk+2

(
Fk − Fk+1

k + 2
− Fk

)
, k = 2, 3, . . . (3.17)

can be used for generating the complete set of functions Fn = sinnp starting from F2, F3. First
F2 and F3 are used for generating F4, then F3 and F4 are used for generating F5 and so on.

Such a set of differential equations can be also implemented using analogue or digital
circuits for multiplying and/or dividing functions. The errors between the required set
of functions and the functions generated by analogue or digital circuits become larger as
n increases, because the number of functions which should be previously generated also
increases (it is necessary to generate functions corresponding to n − 1, n − 2, n − 3 before
generating a function corresponding to a certain n and the errors are cumulative). For this
reason, the operation of setting to zero all generated functions should be done more often and
the working interval should be shortened (it can include just a few alternating components
of generated signal).

4. Conclusions

This study has presented nonlinear differential equations capable to generate continuous
mathematical functions similar to pulse sequences. First were studied some basic properties
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of second-order differential equations F ′′ = aF ′ + b(H − F) with time-dependent coefficients
a(t), b(t) generating bounded oscillating functions F = G(1−cos p(t)) similar to test-functions
(the function F and its derivative F ′ being equal to zero at the same time moments) and
similar to wavelets also [3]. The necessary intercorrelations between the phase of generated
oscillations and the time-dependent coefficients have been obtained as b = p′2, a = p′′/p′,
being shown also that the external command function should be set to a constant value at
these timemoments so as to determine the amplitude and sign of generated oscillations. Then
some possibilities of using previous differential equation for generating positive-definite
functions with null values for the function and its derivative at the same time moments
and with constant slope for its amplitude are presented (similar to solitary waves, see also
[4]), being shown that the corresponding external command function should present also
alternating components as h2 sin p(t), h3 cos p(t). Finally all previous results are used for
determining a set of second-order differential equations with time dependent coefficients and
a set of external command and corrective functions for generating a pulse sequence useful for
modelling time series (similar to time series application to surface analysis [5] or to fracture
phenomena [6]) or for computing autocorrelation function [7] with extension to network
traffic [8]). The study is also suitable for extending wavelets dynamical aspects (see [9]) to
correlation-based computational methods (see [10]).
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