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2 Departamento de Matemática, Facultad de Ciencias, Universidad de Santiago de Chile,
Casilla 307-Correo 2, Santiago-Chile, Chile

Correspondence should be addressed to Carlos Lizama, carlos.lizama@usach.cl

Received 4 December 2008; Accepted 6 April 2009

Recommended by J. Rodellar
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1. Introduction

During the last few decades, the use of flexible structural systems has steadily increased
importance. The study of a flexible aerospace structure is a problem of dynamical system
theory governed by partial differential equations.

We consider here the problem of characterize well posedness, for a mathematical
model of a flexible space structure like a thin uniform rectangular panel. For example, a
solar cell array or a spacecraft with flexible attachments. This problem is motivated by both
engineering and mathematical considerations.

Such mechanical system was mathematically introduced in [1] and consists of a short
rigid hub, connected to a flexible panel of length l. Control torque Q(t) is applied to the hub.
The panel is made of viscoelastic material with internal Voigt-type damping with coefficient
μ, that is, an ideal dashpot damping which is directly proportional to the first derivative of
the longitudinal displacement, and opposing the direction of motion. The equation of motion
of the panel is given by

u′′ = c2
(
Δu + μΔu′

)
, (1.1)
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where c is the velocity of longitudinal wave propagation, c2 = Dp/ρJp, and Dp, ρ, Jp
are, respectively, torsional rigidity, density and radius of gyration about the central axis of
the panel. Initial position and deflection angle are known. In [1] exact controllability and
boundary stabilization for the solution of (1.1) was analyzed and in [2, p. 188], the exact
decay rate was obtained.

More generally, the study of vibrations of flexible structures possessing internal
material damping is modeled by an equation of the form

u′′ + λu”’ = c2
(
Δu + μΔu′

)
, 0 < λ < μ, (1.2)

in a bounded domain Ω in R
n with smooth boundary Γ, see [3, 4].

In [4] the explicit exponential energy decay rate was obtained for the solution of (1.2)
subject to mixed boundary conditions. However, consideration of external forces interacting
with the system, which lead us naturally with the well posedness for the nonhomogeneous
version of (1.2), appears as an open problem.

In the first part of this paper we study well posedness of the following abstract version
of (1.2):

u′′(t) + λu′′′(t) = c2Au(t) + c2μAu′(t) + f(t), 0 < λ < μ, (1.3)

where A is a closed linear operator acting in a Banach space X and f is a X-valued function.
We emphasize that when A = Δ in general one cannot expect that (1.3) is well posed due
to the presence of the term u′′′. In fact, it is well known that the abstract Cauchy problem
associated with (1.3) is in general ill posed, see for example [5].

We are able to characterize well posedness, that is, temporal maximal regularity, of
solutions of (1.3) solely in terms of boundedness of the resolvent set of A. This will be
achieved in the Hölder spaces Cα(R, X),where 0 < α < 1. The methods to obtain this goal are
those incorporated in [6] where a similar problem in case of the first order abstract Cauchy
problem has been studied.

2. Preliminaries

Let X,Y be Banach spaces, we write B(X,Y ) for the space of bounded linear operators from
X to Y and let 0 < α < 1.We denote by Ċα(R, X) the spaces

Ċα(R, X) =
{
f : R → X : f(0) = 0,

∥∥f
∥∥
α <∞}

(2.1)

normed by

∥∥f
∥∥
α = sup

t /= s

∥∥f(t) − f(s)∥∥
‖t − s‖α . (2.2)

LetΩ ⊂ R be an open set. By C∞
c (Ω)we denote the space of all C∞-functions inΩ ⊆ R having

compact support in Ω.
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We denote by Ff or f̃ the Fourier transform, that is,

(Ff)(s) := f̃(s) :=
∫

R

e−istf(t)dt (2.3)

(s ∈ R, f ∈ L1(R;X)).

Definition 2.1. LetM : R \ {0} → B(X,Y ) be continuous. We say thatM is a Ċα-multiplier in
B(X,Y ) if there exists a mapping L : Ċα(R, X) → Ċα(R, Y ) such that

∫

R

(
Lf

)
(s)

(Fφ)(s)ds =
∫

R

(F(φ ·M))
(s)f(s)ds (2.4)

for all f ∈ Cα(R, X) and all φ ∈ C∞
c (R \ {0}).

Here (F(φ ·M))(s) =
∫

R
e−istφ(t)M(t)dt ∈ B(X,Y ). Note that L is well defined, linear

and continuous (cf. [6, Definition 5.2]).
Define the space Cα(R, X) as the set

Cα(R, X) =
{
f : R → X :

∥∥f
∥∥
Cα <∞}

(2.5)

with the norm

∥∥f
∥∥
Cα =

∥∥f
∥∥
α +

∥∥f(0)
∥∥. (2.6)

Let Cα+k(R, X) (where k is a positive integer) be the Banach space of all u ∈ Ck(R, X) such
that u(k) ∈ Cα(R, X), equipped with the norm

‖u‖Cα+k =
∥∥∥u(k)

∥∥∥
Cα

+ ‖u(0)‖. (2.7)

Observe from Definition 2.1 and the relation

∫

R

(F(φM))
(s)ds = 2π

(
φM

)
(0) = 0, (2.8)

that for f ∈ Cα(R, X) we have Lf ∈ Cα(R, X). Moreover, if f ∈ Cα(R, X) is bounded then Lf
is bounded as well (see [6, Remark 6.3]). The following multiplier theorem is due to Arendt,
Batty and Bu [6, Theorem5.3].

Theorem 2.2. LetM ∈ C2(R \ {0},B(X,Y )) be such that

sup
t /= 0

‖M(t)‖ + sup
t /= 0

∥∥tM′(t)
∥∥ + sup

t /= 0

∥∥∥t2M′′(t)
∥∥∥ <∞. (2.9)

Then M is a Ċα-multiplier.
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Remark 2.3. If X is B-convex, in particular if X is aUMD space, Theorem 2.2 remains valid if
condition (2.2) is replaced by the following weaker condition:

sup
t /= 0

‖M(t)‖ + sup
t /= 0

∥
∥tM′(t)

∥
∥ <∞, (2.10)

whereM∈ C1(R \ {0},B(X,Y )) (cf. [6, Remark 5.5]).

3. A Characterization of Well Posedness in Hölder Spaces

In this section we characterize Cα-well posedness. Given f ∈ Cα(R, X), we consider in this
section the linear problem

u′′(t) + au′′′(t) = bAu(t) + cAu′(t) + f(t), t ∈ R, (3.1)

where A is a closed linear operator in X and a, b, c > 0. Note that the solution of (3.1) does
not have to satisfy any initial condition. In the case a = 0, solutions of (3.1) with periodic
boundary conditions has been recently studied in [7]. On the other hand, well posedness of
the homogeneous abstract Cauchy problem has been observed recently in [8] for a = 0 and
all b ∈ C under certain assumptions on A. See also [9] for related maximal regularity results
in the case of a damped wave equation.

We denote by [D(A)] the domain of A considered as a Banach space with the graph
norm.

Definition 3.1. We say that (3.1) is Cα-well posed if for each f ∈ Cα(R, X) there is a unique
function u ∈ Cα+3(R, X) ∩ Cα+1(R, [D(A)]) ∩ Cα(R, [D(A)]) such that (3.1) is satisfied.

In the next proposition, as usual we denote by ρ(T), R(λ, T) the resolvent set and
resolvent of the operator T , respectively.

Proposition 3.2. Assume that (3.1) is Cα-well-posed. Then

(i) l(η) := −η2((1 + iaη)/(b + icη)) ∈ ρ(A) for all η ∈ R and,

(ii) supη∈R
||(η3/(b + icη))R(l(η), A)|| <∞.

Proof. Denote by L : Cα(R, X) → Cα+3(R, X) the bounded operator which associates to each
f ∈ Cα(R, X) the unique solution u of (3.1). Let η ∈ R. Let x ∈ D(A) be such thatAx− l(η)x =
0. Define u(t) = eiηtx. Then it is not difficult to see that u is a solution of (3.1) with f ≡ 0.
Hence, by uniqueness, x = 0.

Let y ∈ X and define f(t) = eiηty. Let u = Lf. For fixed s ∈ R we define

v1(t) = u(t + s), v2(t) = eiηsu(t). (3.2)
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Then is easy to check that v1 and v2 are both solutions of (3.1) with f replaced by eiηsf. By
uniqueness, u(t + s) = eiηsu(t) for all t, s ∈ R. In particular, it follows that u(s) = eiηsu(0) for
all s ∈ R. Let x = u(0) ∈ D(A). Replacing u(t) = eiηtx in (3.1) we obtain

(
−η2 − iaη3

)
u(t) =

(
b + icη

)
Au(t) + eiηty. (3.3)

Taking t = 0 we conclude that (l(η) −A) is bijective and

u(t) =
1

b + icη
R
(
l
(
η
)
, A

)
eiηty. (3.4)

Define eη(t) = eiηt and (eη ⊗ y)(t) = eη(t)y.We have the identity ||eη ⊗ x||α = Kα|η|α||x||where
Kα = 2 supt>0t

−α sin(t/2) (see [6, section 3]). Hence

Kα

∣∣η
∣∣α
∥∥∥∥∥

η3

b + icη
R
(
l
(
η
)
, A

)
y

∥∥∥∥∥
=

∥∥∥∥∥
eη ⊗

η3

b + icη
R(l(η), A)y

∥∥∥∥∥
α

=
∥∥u′′′

∥∥
α

≤ ‖u‖α+3 =
∥∥Lf

∥∥
α+3 ≤ ‖L‖∥∥f∥∥α

≤ ‖L‖(∥∥f∥∥α +
∥∥f(0)

∥∥) = ‖L‖
(∥∥eη ⊗ y

∥∥
α
+
∥∥y

∥∥
)

≤ ‖L‖(Kα

∣∣η
∣∣α + 1

)∥∥y
∥∥.

(3.5)

Therefore, for ε > 0 we have

sup
|η|>ε

∥∥∥∥∥
η3

b + icη
R
(
l
(
η
)
, A

)
y

∥∥∥∥∥
≤ ‖L‖sup

|η|>ε

(

1 +
1

Kα

∣∣η
∣∣α

)
∥∥y

∥∥ <∞. (3.6)

On the other hand, since {1/(b + icη)}η∈R
is bounded and η → η3R(l(η), A) is continuous at

η = 0, we obtain (ii) and the proof is complete.

In what follows, we denote by idk the function: s → (is)k for all s ∈ R, and k ∈ N. As
before, we also use the notation

l(s) := −s2 1 + ias
b + ics

,

M(s) :=
1

b + ics
R(l(s), A), ∀ s ∈ R.

(3.7)

Lemma 3.3. Assume that

sup
s∈R

∥∥∥s3M(s)
∥∥∥ <∞, (3.8)

then id2 ·M and id3 ·M are Ċα- multipliers in B(X).MoreoverM and id ·M are Ċα-multipliers in
B(X,D(A)).



6 Mathematical Problems in Engineering

Proof. Define κ(s) := 1/(b + ias). We first observe that the functions θ(s) := κ′(s)/κ(s) and
ϑ(s) := l′(s)/l(s) have the property that sθ(s), sϑ(s), s2θ′(s) and s2ϑ′(s) are bounded on R.
We next claim thatM is a Ċα-multiplier. In fact, note that by hypothesis sup|s|>ε‖M(s)‖ < ∞
for each ε > 0, and the function s → M(s) is continuous at t = 0 since b > 0. HenceM(s) is
bounded. Moreover, defining ξ(s) := l(s)/κ(s) = −s2 − ias3 we have

M′(s) = θ(s)M(s) − ϑ(s)ξ(s)[M(s)]2, (3.9)

where sξ(s) is of order s4 and then Q(s) := ξ(s)[M(s)]2 is bounded by (3.8). It follows that
sM′(s) is bounded. Next, we have the identity

s2M′′(s) = s2θ′(s)M(s) + sθ(s)sM′(s) − s2ϑ′(s)Q(s) − s2ϑ(s)Q′(s). (3.10)

where the first three terms on the right hand side are bounded. For the last term, we have

s2ϑ(s)Q′(s) = [sϑ(s)]2Q(s) − sϑ(s)sθ(s)Q(s) + 2sϑ(s)ξ(s)M(s)sM′(s). (3.11)

It is clear that the first two terms on the right hand side are bounded. We observe that the
last term also is bounded. In fact, note that by hypothesis sup|s|>ε‖ξ(s)M(s)‖ < ∞ for each
ε > 0 and the function s → ξ(s)M(s) is continuous at s = 0. Hence ξ(s)M(s) is bounded.
This completes the proof of the Lemma.

Lemma 3.4. Let 0 < α < 1, k ∈ N and u, v ∈ Cα(R, X). The following assertions are equivalent:

(i) u ∈ Cα+k(R, X) and u(k) − v is constant.

(ii)
∫

R
v(s)(Fϕ)(s)ds = ∫

R
u(s)(F idk · ϕ)(s)ds for all ϕ ∈ D(R \ {0}).

Proof. (i) ⇒ (ii). Let Φ ∈ D(R{0}). Then
∫

R
v(s)(Fϕ)(s)ds =

∫
R
u(k)(s)(Fϕ)(s)ds =

(−1)k∫
R
u(s)(Fϕ)(k)(s)ds = ∫

R
u(s)F(idk · ϕ)(s)ds.

(ii) ⇒ (i). LetΦ ∈ D(R\{0}) and ψ(s) = ϕ(s)/sk. Then ψ ∈ D(R\{0}) and Fϕ = (Fψ)(k). Let
w(t) =

∫ t
0(t − s)k−1v(s)ds. Then integration by parts and assumption give

∫
R
w(s)(Fϕ)(s)ds =∫

R
u(s)(Fϕ)(s)ds. It follows from [10, Theorems 4.8.2 and 4.8.1] that w − u is a polynomial.

Since ‖w(t)‖ ≤ c(1 + |t|α+k) it follows that u(t) = w(t) + y0 + ty1 + t2y2 + · · · + tk yk =∫ t
0 (t − s)k−1 v(s)ds + y0 + ty1 + t2 y2 + · · · + tk yk for some vectors y0, y1, . . . , yk ∈ X. Thus
u(k) = v + x for some vector x ∈ X.

The following theorem, which is one of the main results in this paper, shows that the
converse of Proposition 3.2 is valid.

Theorem 3.5. Let A be a closed linear operator defined on a Banach space X. Then the following
assertions are equivalent:

(i) Equation (3.1) is Cα-well posed;

(ii) l(η) := −η2((1 + iaη)/(b + icη)) ∈ ρ(A) for all η ∈ R and

sup
η∈R

∥∥∥∥∥
η3

b + icη
R
(
l
(
η
)
, A

)
∥∥∥∥∥
<∞. (3.12)
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Proof. The implication (i) ⇒ (ii) follows by Proposition 3.2. We now prove the converse
implication.

Let f ∈ Cα(R, X). By Lemma 3.3 there exists u1, u2 ∈ Cα(R, [D(A)]) and u3, u4 ∈
Cα(R, X) such that

∫

R

u1(s)
(Fφ1

)
(s)ds =

∫

R

F(φ1 ·M
)
(s)f(s)ds, (3.13)

∫

R

u2(s)
(Fφ2

)
(s)ds =

∫

R

F(φ2 · id ·M)
(s)f(s)ds, (3.14)

∫

R

u3(s)
(Fφ3

)
(s)ds =

∫

R

F
(
φ3 · id2 ·M

)
(s)f(s)ds, (3.15)

∫

R

u4(s)
(Fφ4

)
(s)ds =

∫

R

F
(
φ4 · id3 ·M

)
(s)f(s)ds (3.16)

for all Φi ∈ C∞
0 (R \ {0}) (i = 1, 2, 3, 4). Choosing Φ1 = id · Φ2 in (3.13), it follows from

Lemma 3.4 that u1 ∈ C1+α(R, X) and

u′1 = u2 + y1, (3.17)

for some y1 ∈ X.Now we can choose φ2 = id · φ3 in (3.14), it follows that u1 ∈ Cα+2(R, X) and

u”1 = u3 + y2, (3.18)

for some y2 ∈ X. In a similar way, we can see that u1 ∈ Cα+3(R, X) and

u”’1 = u4 + y3, (3.19)

for some y3 ∈ X. From the definition of M(s) we obtain (b + ics)(l(s) − A)M(s) = I. Taking
into account the definition of l(s)we get [−s2(1+ ics)− (b + ics)A]M(s) = I. Then we deduce
the identity

(is)2M(s) + a(is)3M(s) = bAM(s) + icsAM(s) + I. (3.20)

We multiply the above identity by φ, take Fourier transforms and then integrate over R after
taking the values at f(s), we obtain

∫

R

F
(
φ · id2 ·M

)
(s)f(s)ds + a

∫

R

F
(
φ · id3 ·M

)
(s)f(s)ds

= b
∫

R

AF(φ ·M)
(s)f(s)ds + c

∫

R

AF(φ · id ·M)
(s)f(s)ds +

∫

R

F(φ)(s)f(s)ds
(3.21)
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for all φ ∈ C∞
0 (R \ {0}). Using (3.17), (3.18) and (3.19) in the above identity we conclude that

∫

R

u′′1(s)
(Fφ)(s)ds + a

∫

R

u′′′1 (s)
(Fφ)(s)ds

= b
∫

R

Au1(s)
(Fφ)(s)ds + c

∫

R

Au′1(s)
(Fφ)(s)ds +

∫

R

F(φ)(s)f(s)ds
(3.22)

for all φ ∈ C∞
0 (R \ {0}). By Lemma 3.4 there exists z ∈ X such that

u′′1(t) + au
′′′
1 (t) = bAu1(t) + cAu

′
1(t) + f(t) + z, t ∈ R. (3.23)

We define

u(t) = u1(t) +
1
b
A−1(z). (3.24)

Then, we can show that u solves (3.1) and that u ∈ Cα+3(R, X) ∩ Cα+1(R, [D(A)]) ∩
Cα(R, [D(A)]).

In order to prove uniqueness, suppose that

u′′(t) + au′′′(t) = bAu(t) + cAu′(t), t ∈ R. (3.25)

where u ∈ Cα+3(R, X) ∩ Cα+1(R, [D(A)]) ∩ Cα(R, [D(A)]). Let σ > 0.We define Lσu by

(Lσu)
(
ρ
)
= û

(
σ + iρ

) − û(−σ + iρ
)
, ρ ∈ R (3.26)

where the hat indicates the Carleman transform (see e.g. [11]). By [12, PropositionA.2(i)],
we have that

∫

R

u
(
ρ
)(Fφ)(ρ)dρ = lim

σ↓0

∫

R

(Lσu)
(
ρ
)
φ
(
ρ
)
dρ (3.27)

for all φ ∈ S(R), the Schwartz space of smooth rapidly decreasing functions on R. We will
prove that the right term in (3.27) is zero, from which u ≡ 0 proving the theorem. In fact, by
[12, PropositionA.2(iii)]we have

(
b + c

(
σ + iρ

))(
lσ
(
ρ
) −A)

(Lσu)
(
ρ
)
= 2σcAû

(−σ + iρ
)

−
[
2σ

(
σ + iρ

)
+ 2σa

(
σ + iρ

)2]
û
(−σ + iρ

)

− [
2σ + 2σa

(
σ + iρ

)]
û′
(−σ + iρ

) − 2σaû′′′(−σ + iρ
)

: = Ha,c

(
σ, ρ

)
,

(3.28)
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where

lσ
(
ρ
)
=
(
σ + iρ

)2 1 + a
(
σ + iρ

)

b + c
(
σ + iρ

) . (3.29)

Observe that l0(ρ) = l(ρ) ∈ ρ(A) for all ρ ∈ R. Therefore we have

(
lσ
(
ρ
) − l(ρ))(l(ρ) −A)−1(Lσu)

(
ρ
)
+ (Lσu)

(
ρ
)
=

1
b + c

(
σ + iρ

)
(
l(ρ) −A)−1

Ha,c

(
σ, ρ

)
.

(3.30)

Let φ ∈ C∞
0 (R).Multiplying by φ and integrating over R the above identity we obtain

∫

R

(Lσu)
(
ρ
)
φ
(
ρ
)
dρ =

∫

R

Nσ

(
ρ
)
Ha,c

(
σ, ρ

)
dρ −

∫

R

Mσ

(
ρ
)
(Lσu)

(
ρ
)
dρ (3.31)

where

Nσ

(
ρ
)
=

1
b + c

(
σ + iρ

)φ
(
ρ
)(
l(ρ) −A)−1

Mσ

(
ρ
)
= φ

(
ρ
)(
lσ
(
ρ
) − l(ρ))(l(ρ) −A)−1

.

(3.32)

We note that in [12, LemmaA.4],

lim
σ↓0

∫

R

Mσ

(
ρ
)
Lσ(u)

(
ρ
)
dρ = 0. (3.33)

It remains to prove that

lim
σ↓0

∫

R

Nσ

(
ρ
)
Ha,c

(
σ, ρ

)
dρ = 0. (3.34)

In fact, since (Lσu)(ρ) =
∫

R
e−σ|t|e−iρtu(t)dt, we have

∫

R

Mσ

(
ρ
)
Lσ(u)

(
ρ
)
dρ =

∫

R

∫

R

e−iρtMσ

(
ρ
)
dρe−σ|t|u(t)dt

=
∫

R

(FMσ)(t)e−σ|t|u(t)dt.

(3.35)
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Then

∥
∥
∥
∥

∫

R

Mσ

(
ρ
)
Lσ(u)

(
ρ
)
dρ

∥
∥
∥
∥ ≤

∫

R

‖(FMσ)(t)‖‖u(t)‖dt.

≤ 2C
(‖Mσ‖L1 +

∥
∥M′′

σ

∥
∥
L1

)
.

(3.36)

It is easy to check that ‖Mσ‖L1 + ‖M′′
σ‖L1 → 0 as σ → 0, proving (3.34).

We write

Ha,c

(
σ, ρ

)
= I1

(
σ, ρ

)
+ I2

(
σ, ρ

)
+ I3

(
σ, ρ

)
+ I4

(
σ, ρ

)
. (3.37)

We first prove that

lim
σ↓0

∫

R

Nσ

(
ρ
)
I1
(
σ, ρ

)
dρ = 0. (3.38)

In fact, we apply Fubini’s theorem to obtain

∫

R

Nσ

(
ρ
)
I1
(
σ, ρ

)
dρ = 2σc

∫

R

Nσ

(
ρ
)
Âu

(−σ + iρ
)
dρ

= −2σc
∫0

−∞

[∫

R

e−iρtNσ

(
ρ
)
dρ

]
eσtAu(t)dt

= −2σc
∫0

−∞
(FNσ)(t)eσtAu(t)dt

(3.39)

It follows from [[12], LemmaA.3] that

∥∥∥∥∥

∫0

−∞
(FNσ)(t)eσtAu(t)dt

∥∥∥∥∥
≤ 2C

(‖Nσ‖L1 +
∥∥N ′′

σ

∥∥
L1

)
, (3.40)

where C is a positive constant. Taking into account (3.39) and (3.40) we deduce (3.38).
We next prove that

lim
σ↓0

∫

R

Nσ

(
ρ
)
I2
(
σ, ρ

)
dρ = 0. (3.41)

In fact, defineNa
σ(ρ) = [1 + a(σ + iρ)](σ + iρ)Nσ(ρ). Then

∫

R

Nσ

(
ρ
)
I2
(
σ, ρ

)
dρ = −2σ

∫

R

∫0

−∞
e(σ−iρ)sNa

σ

(
ρ
)
u(s)dsdρ

= −2σ
∫0

−∞
(FNa

σ)(s)e
asu(s)ds.

(3.42)



Mathematical Problems in Engineering 11

By [12, Lemma A.3], we have for 0 ≤ σ ≤ ε,
∥
∥
∥
∥
∥

∫0

−∞
(FNa

σ)(s)e
asu(s)ds

∥
∥
∥
∥
∥
≤ 2C sup

0≤σ≤ε

(
‖Na

σ‖L1 +
∥
∥
∥(Na

σ)
”
∥
∥
∥
L1

)
, (3.43)

where C > 0. Therefore, we deduce (3.41). Proceeding in the same way we obtain

lim
σ↓0

∫

R

Nσ

(
ρ
)
Ij
(
σ, ρ

)
dρ = 0, j = 3, 4. (3.44)

This completes the proof of the assertion (3.34).

Corollary 3.6. The solution u of problem (3.1) given by Theorem 3.5 satisfies the following maximal
regularity property: u, u′ ∈ Cα(R; [D(A)]) and Au,Au′, u′′, u′′′” ∈ Cα(R;X).Moreover, there exists
a constant C > 0 independent of f ∈ Cα(R;X) such that

‖u‖α +
∥∥u′

∥∥
α +

∥∥u′′
∥∥
α +

∥∥u′′′
∥∥
α + ‖Au‖α +

∥∥Au′
∥∥
α ≤ C∥∥f∥∥α. (3.45)

The following consequence of Theorem 3.5 is remarkable in the study of Cα well
posedness for flexible structural systems. We recall that l(η) := −η2((1 + iaη)/(b + icη)).

Corollary 3.7. If A is the generator of a bounded analytic semigroup, then (3.1) is Cα-well posed.

Proof. Since A generates a bounded analytic semigroup, we have that {τ : Re τ > 0} ⊆ ρ(A)
and there is a constantM > 0 such that ‖τ(τ −A)−1‖ ≤M for Re τ > 0. Note that

η3

b + icη
R
(
l
(
η
)
;A

)
=

−η
1 + iαη

l
(
η
)
R
(
l
(
η
)
;A

)
(3.46)

and that

Re
(
l
(
η
))

=
b + acη2

b2 + c2η2
> 0 for each η ∈ R. (3.47)

We conclude that l(η) ∈ ρ(A) and

sup
η∈R

∥∥∥∥∥
η3

b + icη
R
(
l
(
η
)
, A

)
∥∥∥∥∥
<∞. (3.48)

The conclusion follows by Theorem 3.5.

For example, if A is a normal operator on a Hilbert spaceH satisfying

σ(A) ⊂ {
z ∈ C : arg(−z) < δ} (3.49)
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for some δ ∈ [0, π/2), then A generates a bounded analytic semigroup. In particular, the
semigroup generated by a self-adjoint operator that is bounded above is analytic of angle
π/2. Another important class of generators of analytic semigroups is provided by squares of
group generators.

Example 3.8. Since the Laplacian Δ is the generator a bounded analytic semigroup (the
diffusion semigroup) in X = Lp(RN) (1 ≤ p <∞), we obtain that for each f ∈ Cα(R, Lp(RN))
the problem

utt(t, x) + λuttt(t, x) = c2
(
Δu(t, x) + μΔut(t, x)

)
+ f(t, x) (3.50)

has a unique solution u ∈ Cα+3(R, Lp(RN)) ∩ Cα+1(R,W2,p(RN)) ∩ Cα(R,W2,p(RN)).

Since it is also well known that the Dirichlet LaplacianΔ generates a bounded analytic
semigroup on L2(Ω), where Ω is a bounded domain with smooth boundary ∂Ω in R

3, we
obtain the following consequence for our initial problem.

Corollary 3.9. If Ω is a bounded domain with boundary of class C2 in R
3 then for each

f ∈ Cα(R, L2(Ω)), the problem (3.50) is Cα-well posed, that is, has a unique solution u ∈
Cα+3(R, L2(Ω)) ∩ Cα+1(R,H2(Ω) ∩H1

0(Ω)) ∩ Cα(R,H2(Ω) ∩H1
0(Ω)).

We note that the same assertion remain true for all p ∈ [1,∞).
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