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This paper presents the use of the generalized classical method (GCM) for solving linear
and nonlinear differential equations. This method is based on the differential transfor-
mation (DT) technique. In the GCM, the solution of the nonlinear transient regimes in
the physical processes can be written as a functional series with unknown coefficients.
The series can be chosen to satisfy the initial and boundary conditions which represent
the properties of the physical process. The unknown coefficients of the series are deter-
mined from the differential transformation of the nonlinear differential equation of the
system. Therefore, the approximate solution of the nonlinear differential equation can be
obtained as a closed-form series.

The validity and efficiency of the GCM is shown using some transient regime problems
in the electromechanics processes. The numerical results obtained by the present method
are compared with the analytical solutions of the equations. It is shown that the results
are found to be in good agreement with each other.

1. Introduction

The transient regimes in the electromechanics, mechanics, heat-mass transfer, and hy-
dromechanics are formulated usually by nonlinear differential equations. In many cases,
to solve these equations analytically is very difficult or even impossible. Therefore, a
large number of numerical techniques have been developed to solve these engineering
problems [7]. The most widely used methods are Lindstedt-Poincaré method, the mul-
tiple time-scale method, Krylov-Bogoliubov-Mitropolski method, the polynomial series
method, Rayleigh-Ritz method, Galerkin method, and so forth [19]. These methods are
effective in the solution of the weakly nonlinear systems. However, some difficulties arise
in the solution of the strongly nonlinear problems. On the other hand, it is very im-
portant to obtain an analytic or a numerical solution of these equations for modeling,
optimization, and control of engineering systems.

The integral transform methods such as the Laplace and Fourier transform methods
can be used in the solution of the engineering problems [29]. The merit of the integral
transform is its ability to transform differential equations to algebraic equations, which
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leads to a systematic and simple solution procedure in the linear problems. However,
some difficulties appear in the solution of the nonlinear systems.

Consequently, to develop the effective mathematical methods for solving linear and
nonlinear equations analytically or numerically in a wide variety of engineering areas is a
current research problem.

Differential transformation (DT) method which is a relatively new method to solve
linear and nonlinear equations has received increasing attention in recent years. The
ability to obtain both numerical (spectrum) and analytic (power series or functional
series) solutions of the differential equations is one of the most important advantages
of the DT method. DT method was introduced first by the Ukrainian scientist Pukhov
[20, 21, 22, 23, 24, 25, 26, 27, 28]. About 30 years ago, Pukhov gave the fundamentals
of the DT method. He obtained the T-transformation of the elementary functions and
applied this method to solve the problems of the electrotechnics and electronics [20].

Later, he systematized the differential transformations of the equations and functions
[21] and used to solve the linear and the nonlinear equations which appear in the study-
ing transient regimes in the electrical circuits [22]. He also showed that the DT method
is effective to solve linear and nonlinear ODEs and PDEs with initial and boundary con-
ditions in the modeling physical systems [23, 24, 25, 26, 27, 28].

During the last ten years, considerable attention has been focused on the application
of the DT method [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In these studies, some
new formulas and the correlations are developed to apply the DT method for solving the
multidimensional PDEs [1, 4, 5, 6, 9, 15, 17].

In this paper, a general method, based on DT transformation, is presented to obtain
approximate solutions of the linear and the nonlinear differential equations related to en-
gineering problems. This method is called generalized classical method (GCM). The main
advantage of the GCM is that it allows to write the solution as an unknown functional
series which is suitable for the physical system without having to solve the main differen-
tial equation of the system itself. Meanwhile, the unknown coefficients in the series are
determined by differential spectrums of the basic differential equation of the system by
considering initial and boundary conditions. In the present work, first the essentials and
some properties of the DT method and GCM are given and also the application of the
GCM is described step by step. Then, as an example, the application of the GCM method
to the solution of the nonlinear differential equations which arise in the transient regimes
in the electromechanics processes is presented.

Numerical accuracy of the GCM is verified by considering some nonlinear differential
equations for which analytical solutions are known. It is observed that the numerical
results are in good agreement with the analytical solutions.

2. Differential transformation (DT) and generalized classical methods (GCM)

It is well known that linear differential equations with constant coefficients can be trans-
formed into algebraic equations and then easily solved in the complex frequency domain
by Laplace or Fourier transformations. For time-varying systems, although the applica-
tion of these techniques is possible by some modifications, it is not as easy and simple as
the former case. For nonlinear differential systems, the problem gets more complex due



T. Abbasov and A. R. Bahadir 505

to the frequency-domain convolution integrals that result from the time-domain prod-
ucts of dependent variables or their derivatives. Thus, the use of the standard transform
techniques is not practical for nonlinear systems. Fortunately, the use of the DT trans-
form overrides most of the mentioned difficulties and convolution integrals are replaced
by simple sums of algebraic terms [20, 21, 22, 23, 24, 25, 26, 27, 28].

The DT method converts the differential form mathematical model of a system into its
spectral form on which algebraic operations can be carried out to derive and understand
the system performance. For an analytic function x(t) described by Taylor series

x(t)=
∞∑
k=0

1
k!

dkx(t)
dtk

∣∣∣∣
t=0

tk, (2.1)

in the interval t ∈ [0,H], the spectral model (or transform) is defined to be the discrete
function

X(k)= Hk

k!
dkx(t)
dtk

∣∣∣∣
t=0

, (2.2)

which is known to be the DT [20, 21, 22, 23, 24, 25]. Using this transform, the Taylor
series can be written as

x(t)=
∞∑
k=0

X(k)
(
t

H

)k
. (2.3)

As seen, X(k), the spectrum of x(t), can be obtained by differential transformation and
the inverse transform can be obtained by the Taylor series. Therefore, this transformation
method is called differential Taylor transformation (DTT) by Pukhov [20]. In general,
when the differential spectrums X(k) are known, x(t) can be defined not just as a Tay-
lor series but as a functional series. The functional series can be taken as exponential,
Fourier exponential, or any approximation function. Therefore, in general, this method
can be defined as differential transformation (DT) method as well. Such an approach
expands the applicability of the DT method, and hence makes it possible to get new tech-
niques for solving various engineering problems. One of these techniques, based on the
DT method, is generalized classical method (GCM). GCM allows to obtain the solution
of the linear and nonlinear differential equations in various types which is similar to the
standard method for the solution of the differential equations with constant coefficients.
The details of the GCM can be explained as follows.

If the mathematical model is determined as

dx(t)
dt

= ϕ
(
t,x(t)

)
, x(0)= x0, (2.4)

then the approximate analytical solution of this differential equation can be obtained by
DT [25, 26, 27], where x(t) is the basic function vector, x0 is the initial value of the func-
tion x(t) at t = 0, t is the time, ϕ(t,x(t)) is the vector function having sufficient number
of the derivatives with respect to x and t. In general, this function can be nonlinear.
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Although it is nonlinear, according to the basic definition of the GCM if (2.4) has a
unique solution, it can be defined as the addition of two components

x(t)= xs(t) + xT(t), (2.5)

where xs(t) is the main component and xT(t) is the auxiliary component.
Generally, it is possible to choose the component xs(t) as an approximation of any par-

ticular solution (x̃(t)) of the system (i.e., xs(t)≈ x̃(t)). For example, xs(t) can be chosen
as a value of the system in the steady-state situation (t→∞). This component is indepen-
dent of the initial situation (t = 0) of the system.

The analytical structure of the component xT(t) must be chosen such that the approx-
imation function xT(t,c) ≈ xT(t) defining this component becomes convergent. Here,
c = (c0,c1, . . . ,cn) are the undetermined coefficients. These coefficients can be determined
from the initial, boundary, or other particular conditions of the considered system. The
differential spectrums of (2.4) and (2.5) are defined as follows [20, 21, 22, 23, 24, 25]:

k+ 1
H

X(k+ 1)=Φ(k), k = 0,1,2, . . . , (2.6)

X(k)= Xs(k) +XT(k), (2.7)

where the differential Taylor spectrums of the main functions x(t), xs(t), xT(t), and
ϕ(t,x(t)) have the form

X(k)= Hk

k!
dkx(t)
dtk

∣∣∣∣
t=0

,

Xs(k)= Hk

k!
dkxs(t)
dtk

∣∣∣∣
t=0

,

XT(k)= Hk

k!
dkxT(t)
dtk

∣∣∣∣
t=0

,

Φ(k)= Hk

k!
dkϕ

(
t,x(t)

)
dtk

∣∣∣∣
t=0

,

(2.8)

where the initial spectrum (for k = 0) is known and Φ(0)= ϕ(0,x0).
After choosing the function xs(t) and considering (2.6) and (2.7), the spectrums X(k)

and Xs(k) can be defined easily using the DT method. Therefore, the spectrums XT(k) in
(2.7) can be obtained.

When the function xT(t) is written in the form a suitable approximate function xT(t,c)
then

xT(t)≈ xT(t,c)= xT
(
t,c0,b0(t),c1,b1(t), . . . ,cn,bn(t)

)
, (2.9)

where b0(t),b1(t), . . . ,bn(t) are the basis functions which are chosen for the approximate
function for the function xT(t). Hence, according to (2.5) and (2.7), the spectrum equa-
tion of the function x(t) becomes

X(k)= Xs(k) +XT
(
T(k),c0,B0(k),c1,B1(k), . . . ,cn,Bn(k)

)
, (2.10)
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where B0(k),B1(k), . . . ,Bn(k) are the appropriate differential spectrums of the functions
b0(t),b1(t), . . . ,bn(t).

The spectrums T(k) can be determined as follows:

T(k)= Hk

k!
dkt

dtk

∣∣∣∣
t=0
=Hδ(k− 1)= (0,H ,0, . . . ,0), (2.11)

where

δ(k)=

1 if k = 0,

0 if k �= 0,
(2.12)

or

δ(k−n)=

1 if k = n,

0 if k �= n.
(2.13)

When considering initial and boundary conditions of the system in (2.10), the coeffi-
cients c0,c1, . . . ,cn can be defined with respect to the spectrums X(k) and Xs(k). However,
in this case from (2.5), it can be said that the approximate analytical solution of the sys-
tem is obtained. Therefore, in the GCM, using DT, the approximate analytical solution of
(2.4) can be obtained in form (2.5) without having to find its analytical solution.

Consequently, the investigation of the transient regimes in the physical systems can be
implemented by the GCM according to the following procedure [26, 27, 28].

(1) The mathematical model of the considered system is formed by using the physical
laws. This model consists of linear or nonlinear differential equations.

(2) The spectrum models of these differential equations can be obtained using the
DT method [20, 21, 22, 23, 24, 25, 26, 27, 28]. During this process, the original
functions are included in these equations’ transform to the differential spectrums.

(3) The spectrums X(k) are obtained from the spectrum models of the differential
equations, that is, X(0) = x0, X(1), . . . ,X(n), where n is the number of the spec-
trums which are used in the calculations.

(4) The main component xs(t) is determined and its DT spectrums Xs(k) are calcu-
lated. Hence, the differential spectrums of the auxiliary component can be deter-
mined in form XT(k)= X(k)−Xs(k), which is appropriate in (2.7).

(5) According to the components XT(k), the original of the auxiliary component
xT(t) is determined. If the auxiliary component xT(t) is chosen as an approxi-
mate function, that is,

xT(t)≈ xT
(
t,c0,c1,c2, . . . ,cn

)
, (2.14)

then the undetermined coefficients c0,c1, . . . ,cn of this function can be determined
from the following equilibrium equation:

X(k)−Xs(k)= XT(k)= XT
(
T(k),c0B0(k),c1B1(k), . . . ,cnBn(k)

)
. (2.15)
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The coefficients c0,c1, . . . ,cn can be calculated easily according to the certain spec-
trums XT(k) for k = 0,1,2, . . . ,n. Hence, the component xT(t) can be expressed
as

xT(t)≈ xT
(
t,c1,c2, . . . ,cn

)= c0b0(t) + c1b1(t) + ···+ cnbn(t). (2.16)

(6) The solution of the differential equation of the considered system can be ob-
tained by adding the originals of the main and auxiliary components: x(t) =
xs(t) + xT(t,c).

When the above procedure is analyzed, it can be seen that it is possible to obtain the
analytical or approximate analytical solution of the various linear and the nonlinear dif-
ferential equations using the GCM. In this case, it is not necessary to solve the main equa-
tion, we just need to calculate the DT spectrums of the original equation. On the other
hand, the effect of the GCM depends on choosing appropriate components xs(t) and
xT(t). In general, in the solution of any differential equation, it may be difficult to choose
xs(t) and xT(t) directly. However, the GCM can be used effectively for investigation of
the transient or nonstationary regimes occurring in the physical processes. Because the
properties of the processes in the physical systems (periodic, nonperiodic, exponential,
etc.) are known, xs(t) and xT(t) can be expressed easily using these properties.

3. The investigation of the transient regimes by the GCM

The GCM can be used effectively for the analysis of the transient regimes occurring in the
physical processes (such as mechanics, electromechanics, heat-mass transfer, and fluid
dynamics, etc.). In this section, three concrete examples are given to investigate transient
regimes in the electromechanics processes, using the GCM.

Example 3.1. We present an analysis of the transient events on nonlinear resistance in-
ductance (RL) electrical circuit connected to the direct current (DC) supply by the GCM.

If the effect of the eddy-current losses is ignored, then the transient event in the men-
tioned circuit RL can be written in terms of dimensionless parameters as follows [18, 25]:

dx

dτ
+ xm = u, (3.1)

where x is the magnetic flux ratio, u is the applied voltage ratio (is constant), τ is the
dimensionless time.

In general, (3.1) is nonlinear, but it has an analytic solution for any value of the integer
m. The cases m= 1 and 3 are important for the electromechanics systems [18]. Therefore,
we will consider the solutions in these cases. For the validation of the obtained results, we
consider the analytical solution of (3.1) for m= 1 and 3 with zero initial condition.

For m= 1,

τ = ln
u

u− x
. (3.2)
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For m= 3,

τ = 1
6u2/3

ln
[
u2/3 +u1/3x+ x2(

u1/3− x
)2

]
+

1
u2/3

√
3

(
tan−1 u

1/3 + 2x
u1/3

√
3
− tan−1 1√

3

)
. (3.3)

Now, we investigate the GCM solution of (3.1) in the circuit RL. The steady-state value
of the current or flux according to (3.1) is (t→∞),

xs(τ)= m
√
u. (3.4)

To determine the auxiliary component xT(τ), we need the DT of (3.1):

k+ 1
H

X(k+ 1) +X (m)(k)= uδ(k), (3.5)

where

X (m)(k)=
k∑
l=0

X(k− l)X (m−1)(l). (3.6)

For the auxiliary component xT(τ), approximate functional series can be chosen as (be-
cause x(τ)→ 0 as τ →∞)

xT(τ)=− m
√
u
(

1
1 + c1τ + c2τ2 + ···+ cnτn

)
. (3.7)

Considering (2.5), (3.4), and (3.7), the approximate solution of (3.1) is

x(τ)= m
√
u
(

c1τ + c2τ2 + ···+ cnτn

1 + c1τ + c2τ2 + ···+ cnτn

)
. (3.8)

The coefficients c1,c2, . . . ,cn can be obtained from (3.5) and (3.8). For this purpose,
(3.8) can be written as

x(τ)
(
1 + c1τ + c2τ

2 + ···+ cnτ
n
)= m

√
u
(
c1τ + c2τ

2 + ···+ cnτ
n
)
. (3.9)

From (3.5) and (3.9), the DT spectrum model of the system becomes as follows:

k+ 1
H

X(k+ 1) +X (m)(k)= uδ(k), (3.10)

X(k) + c1HX(k− 1) + ···+ cnH
nX(k−n)

= m
√
u
(
c1Hδ(k− 1) + c2H

2δ(k− 2) + ···+ cnH
nδ(k−n)

)
.

(3.11)

Since X(0)= 0, the coefficients c1,c2, . . . ,cn can be denoted for k = 0,1,2, . . . ,n. Hence,
we obtain the approximate solution of (3.1) from (3.8). This procedure is as follows for
the cases m= 1 and m= 3.

For m= 1,

X(0)= 0, X(1)= uH , X(2)=−uH2

2!
, X(3)= uH3

3!
, . . . ,

c1 = 1, c2 = 1
2!

, c3 = 1
3!

, c4 = 1
4!

, . . . .
(3.12)
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Figure 3.1. The variations of the magnetic flux in transient regime at various terminal voltages for
m= 1. Solid lines: analytical solutions, dashed lines: GCM solutions (Example 3.1).

From (3.8), we obtain

x(τ)= u
(

1− 1
1 + τ + τ2/2! + τ3/3! + ···

)
. (3.13)

For m= 3, the exact expression of X (m)(k) in (3.10) is

X (3)(k)=
k∑
l=0

X(k− l)
l∑

s=0

X(l− s)X(s). (3.14)

Considering (3.14), from (3.10) and (3.11), we can denote the differential spectrum
X(k) and the coefficients c1,c2, . . . ,cn for the case m= 3:

X(0)= 0, X(1)= uH , X(2)= 0, X(3)= 0, X(4)=−u3H4

4
, . . . ,

c1 = u2/3, c2 = u4/3, c3 = u6/3, c4 = 3
4
u8/3, . . . .

(3.15)
From (3.8) and (3.15), we obtain

x(τ)= u1/3
(

1− 1
1 +u2/3τ +u4/3τ2 +u6/3τ3 + (3/4)u8/3τ4 + ···

)
. (3.16)

For u= 1,2,3, the comparison of the results that are obtained from (3.2), (3.3), (3.13),
and (3.16) is shown in Figures 3.1 and 3.2 for m = 1 and m = 3, respectively. As can
be seen the analytical and the approximate solutions obtained by the GCM are in good
agreement. However, it is clear that (3.13) and (3.16) are more simple than (3.2) and (3.3)
from the point of view of engineering analysis. In particular, it can be observed that the
analysis of the transient regimes of the system becomes difficult using (3.2) and (3.3) as
x→ u1/m.



T. Abbasov and A. R. Bahadir 511

0

0.5

1

1.5

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n = 5
n = 3

u = 3

n = 5
n = 3

u = 2
n = 5

n = 3

u = 1

τ

Figure 3.2. The variations of the magnetic flux in transient regime at various voltages for m= 3. Solid
lines: analytical solutions, dashed lines: GCM solutions (Example 3.1).

Furthermore, in the solution of the problem, we can choose the function xT(τ) not
only as an inverse of a power series but also as any function. For example, function xT(τ)
can be chosen as an exponential power series function, that is,

xT(τ)= e−ατ
(
c0 + c1τ + c2τ

2 + ···), (3.17)

where coefficients α,c0,c1, . . . must be determined.

Example 3.2. We present an investigation of the variation of magnetic flux or electromo-
tor force of the DC motor driver operating as a generator.

Ignoring the effect of the eddy-current losses, the differential equation of this process
in dimensionless parameters can be written as [18]

dx

dτ
+ y(x)= u, (3.18)

where x is the magnetic flux ratio, y is the current ratio (nonlinear dependence on flux
ratio), u is the applied voltage ratio, τ is the dimensionless time.

The magnetization curves of the driver machines can be defined by

x = y

ay + b
, (3.19)

where a and b are constants [18].
Considering (3.19), we can write (3.18) as follows:

(1− ax)
dx

dτ
+ λx = u, (3.20)

where λ= au+ b.
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Its analytical solution with the initial condition x(0)= 0 is

τ = 1
λ2

[
b
(

ln
u

u− λx

)
+ aλx

]
. (3.21)

Although it looks simple, (3.21) has not enough advantage in the analytical investiga-
tion of x = f (τ). This difficulty can be solved using the GCM.

We suppose that the stationary solution of (3.20) is xs(τ)= u/λ and its auxiliary com-
ponent is as in (3.7):

xT(τ)=−u

λ

(
1

1 + c1τ + c2τ2 + ···+ cnτn

)
. (3.22)

Thus the approximate analytical solution of (3.20) is

x(τ)= u

λ

(
c0τ + c2τ2 + ···+ cnτn

1 + c1τ + c2τ2 + ···+ cnτn

)
. (3.23)

Thus the DT spectrum model of the system which is formed by (3.20) and (3.23)
becomes as follows:

k+ 1
H

X(k+ 1)− a

H

k∑
l=0

(l+ 1)X(l+ 1)X(k− l) + λX(k)= uδ(k),

X(k) + c1HX(k− 1) + ···+ cnH
nX(k−n)

= u

λ

[
c1Hδ(k− 1) + ···+ cnH

nδ(k−n)
]
.

(3.24)

The spectrums X(k) and coefficients cn can be determined by taking k = 0,1,2, . . . ,n:

X(0)= 0, X(1)= uH , X(2)=−ub

2!
H2, X(3)= ub

3!
(b− 2au)H3, . . . ,

c1 = λ, c2 = λ
(
λ− b

2

)
, c3 = λ3− λ2b+

λb

6
(b− 2au), . . . .

(3.25)

Figures 3.3, 3.4, and 3.5 show the variations of the magnetic flux in the field coil of the
machine at various terminal voltages u= 1,2,3 and temporary regimes for the values a=
0.728 and b = 0.28 [18]. As can be seen in the large interval of time, there is a reasonable
agreement between (3.21) and its approximate solution (3.23).

In practical view, the investigation of the transfer functions is very important in the
control of the electrical driver machine. For the determination of the transfer function, it
is necessary to solve (3.18) and (3.19) with respect to the current ratio y. Therefore, after
some simple calculations, the equation of the driver machine becomes

b
dy

dτ
+ (ay + b)2(y−u)= 0, y(0)= 0. (3.26)
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Figure 3.3. The variations of the magnetic flux in the field at the machine for the terminal voltage
u= 1. Solid line: analytical solutions, dashed lines: GCM solutions (Example 3.2).
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Figure 3.4. The variations of the magnetic flux in the field at the machine for the terminal voltage
u= 2. Solid line: analytical solutions, dashed lines: GCM solutions (Example 3.2).

Equation (3.26) is a nonlinear equation and it has an analytical solution:

τ = 1
λ

(
ay

ay + b

)
+

b

λ2
ln
(

u

u− y

)
+

b

λ2
ln
(
ay + b

b

)
. (3.27)

However, this analytical solution is a complicated expression so it is not useful for
the engineering analysis of the transient regimes. Therefore, we can obtain more simple
approximate solution of (3.26) by the GCM. It is also possible to obtain DT approximate
solutions of (3.26) according to the above procedure. But, to show the possibilities of
the GCM, we represent the auxiliary function yT(τ) by another functional series, for
example, the exponential power series as in (3.17). In this case, yT(∞) = 0, and hence



514 The investigation of the transient regimes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

n = 5

n = 3

x

0 0.1 0.2 0.3 0.4 0.5 0.6

τ

Figure 3.5. The variations of the magnetic flux in the field at the machine for the terminal voltage
u= 3. Solid line: analytical solutions, dashed lines: GCM solutions (Example 3.2).

yT(τ) can be written as

yT(τ)= e−ατ
(
c0 + c1τ + c2τ

2 + ···+ cnτ
n
)
, (3.28)

where α,c0,c1,c2, . . . ,cn are the unknown coefficients.
As follows from (3.26) at τ =∞, ys(τ)= u. Thus, the approximate solution of (3.26) is

y(τ)= ys(τ) + yT(τ)= u+ e−ατ
(
c0 + c1τ + c2τ

2 + ···+ cnτ
n
)
. (3.29)

Before the coefficients α,c1,c2, . . . ,cn are determined by DT spectrums, we note that the
following relations can be derived from (3.26) and (3.29):

c0 =−u, c1 = u(b−α),
dy

dτ

∣∣∣∣
τ=0

= bu. (3.30)

We write the (3.26) and (3.29) in the form

dy

dτ
+
a2

b
y3 +

(
2a− a2u

b

)
y2 + (b− 2au)y = bu,

(y−u)eατ = c0 + c1τ + c2τ
2 + ···+ cnτ

n.
(3.31)

The DT spectrums can be determined from (3.31):

k+ 1
H

Y(k+ 1) +
a2

b

k∑
l=0

Y(k− l)
l∑

s=0

Y(l− s)Y(s)

+
(

2a− a2u

b

) k∑
l=0

Y(k− l)Y(l) + (b− 2au)Y(k)= buδ(k),

(3.32)

k∑
l=0

(αH)k−l

(k− l)!
Y(l)−u

(αH)k

k!
= c0δ(k) + c1Hδ(k− 1) + ··· . (3.33)
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Figure 3.6. The variations of the magnetic field current of the machine at various terminal voltages.
We have taken n= 3,6, and 8 for u= 1,2, and 3, respectively. Solid lines: analytical solutions, dashed
lines: GCM solutions (Example 3.2).

So the coefficients c1,c2, . . . ,cn in (3.29) can be determined by (3.32) and (3.33) as
follows:

cm = 1
Hm

[ m∑
l=0

(αH)m−l

(m− l)!
Y(l)−u

(αH)m

m!

]
, m= 0,1,2, . . . ,n,

Y(0)= 0, Y(1)= buH ,

(3.34)

where the differential spectrums Y(2),Y(3), . . . can be determined from (3.32). Thus, af-
ter some straightforward calculations, the coefficients c1,c2, . . . ,cn can be obtained from
(3.32) and (3.34):

c0 =−u, c1 = u(b−α), c2 = bu

2!

(
2α− b+ 2au− α2

b

)
,

c3 = bu

3!

[
3α2 + (b− 4au)2− 3α(b− 2au)− 10(au)2− α3u

b

]
.

(3.35)

In general, the parameter α > 0 can be chosen according to the convergence condition
of the functional series or arbitrarily. For example, it can be taken as α= 2λ.

A comparison of the analytical solution in (3.27) and the approximate solution of the
problem (3.29) are shown in Figure 3.6 for the values u= 1,2,3, a= 0.728, and b = 0.28.
The results are in good agreement, however, it is clear that (3.29) is simple and has an
advantage for the theoretical and practical investigations.

It can be very difficult to investigate the transient regimes of the electrodynamics pro-
cesses in the electrical machine driver. However, in the following example, it is shown
that GCM allows to study the transient events in such regimes.

Example 3.3. We present an analysis of the skidding of the wheel pair in an electrical train
with a separate excitation DC machine which has a rheostat characteristic.
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Suppose that the instantaneous change of the terminal voltage is caused by the skid-
ding and at this moment, the velocity of the electrical train does not change. Therefore,
the equation of the transient regime of the electrodynamics of the electrical train becomes
[18]

j(1 + ax)
dx

dτ
+ ax2 + bx+ c = 0, (3.36)

where a, b, c, and j are the coefficients which are dependent on the electrical, mechanical,
and geometrical parameters of the system, x is the relatively slip at the skidding, τ is the
dimensionless time.

Equation (3.36) is also a nonlinear differential equation. Its analytical solution corre-
sponding to zero initial condition is

τ = j

2
ln
(

c

ax2 + bx+ c

)
+

j

2

[
2− b

a
(
x1− x2

)]+ ln
[(

x− x2
)
x1(

x− x1
)
x2

]
, (3.37)

where x1 and x2 are the real roots of the equation

ax2 + bx+ c = 0. (3.38)

We obtain the approximate solution of (3.36) by using the GCM. To do this, we choose
the approximate auxiliary function as in (3.28). Thus, the DT spectrum model is formed
as follows:

x(τ)= xs(τ) + xT(τ)= xs(τ) + e−ατ
(
c0 + c1τ + c2τ

2 + ···). (3.39)

We suppose that the component of the slip is

xs(τ =∞)= x1, (3.40)

where x1 > 0 is a root of (3.38). At the zero initial condition,

x(0)= 0, xs(0) + c0 = 0,
dx

dτ

∣∣∣∣
τ=0

=−αc0 + c1 = −c1

j
. (3.41)

Now we can form the DT spectrum model of the problem from (3.36) and (3.39):

k+ 1
H

X(k+ 1) +
a

H

k∑
l=0

(l+ 1)X(l+ 1)X(k− l) +
a

j

k∑
l=0

X(k− l)X(l)

+
b

j
X(k) +

c

j
δ(k)= 0,

(3.42)

cm = 1
Hm

[ m∑
l=0

(αH)m−l

(m− l)!
X(l)− x1

(αH)m

m!

]
, m= 0,1,2, . . . ,n. (3.43)
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If we consider the differential spectrums in (3.42), then the unknown coefficients
c0,c1,c2, . . . ,cn can be determined from (3.43):

X(0)= 0, X(1)=− cH

j
, X(2)=− cH2

2! j2
(ac− b),

X(3)=− cH3

3! j3
[
(2ac− b)2− (ac)2 + 2ac

]
, . . . ,

c0 =−x1, c1 =− c

j
−αx1, c2 =−αc

j
− c

2 j2
(ac− b)− α2

2
x1, . . . .

(3.44)

Since the coefficient α > 0 in (3.44) designates the number of terms of the power series,
it can be chosen arbitrarily or according to the special situation of the system. Therefore,
if the number of terms of the power series in (3.39) is kept fixed, then α can be defined
easily. For example, if we suppose that c2 = 0, then from (3.44),

α= −c
jx1

[√
1− x1

c
(ac− b) + 1

]
. (3.45)

Thus, for the real parameters which are obtained from the practical applications [18]:
j = 0.6896, a= 15.9322, b =−14.3725, c =−0.1656, x1 = 0.9138, and x2 =−0.01137, we
get

α= 2.39, c0 =−0.9138, c1 =−1.9438. (3.46)

Therefore, from (3.39), (3.40), and (3.46), the slip on the electrical train becomes

x(τ)= 0.9138− e−2.39τ(0.9138 + 1.9438τ). (3.47)

The approximate solution that has been obtained is similar to the one given in [18]
which is obtained by a more complicated method.

In Figure 3.7, the slip curves which occur during the skidding of the wheel pairs of the
electrical train are given according to the GCM (3.47) and the analytical solution (3.37).
From Figure 3.7, it can be seen that the results are in good agreement for a large interval
of x and τ. However, it is certain that the approximate solution obtained by the GCM is
more useful than the analytical solution of the problem in terms of practical calculations.

4. Conclusions

In this paper, an application of the GCM based on the DT method to the nonlinear dif-
ferential equations has been investigated. The advantages and features of the GCM can be
summarized as follows.

(1) The DT method can be used to obtain both numerical and analytical solutions of
both linear and nonlinear differential equations.

(2) The GCM allows us to obtain the analytical or approximate analytical solutions
(as functional series) of the differential equations. In this method, in general,
the solutions of both linear and nonlinear differential equations can be obtained
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Figure 3.7. Dependence of the slip curves at the skidding of the wheel pairs of an electrical train at
starting. Solid line: analytical solution, dashed line: GCM solution (Example 3.3).

using the same solution procedure. The solution of the differential equation con-
sists of two components: main and auxiliary.

(3) The advantage of the GCM is determining the unknown coefficients in the auxil-
iary component by using the differential spectrums of the variables. In this case, it
is not necessary to have the analytical solution of the main differential equation.

(4) When the properties (periodic, nonperiodic, monotonous increasing or decreas-
ing) of the processes in the physical systems are considered, it becomes easy to
choose the functional structures of the main and auxiliary components. There-
fore, it is expected that the GCM will be effective in the modeling of the transient
regimes in the linear and nonlinear physical systems.

(5) Some papers that appeared in the literature show that the DT method can be used
to solve two- and three-dimensional differential equations. Therefore, the GCM
can be extended to solve these equations.

We conclude that the GCM combined with DT is eminently suitable for the numerical
solutions of the ordinary and partial differential equations that arise from several science
areas.
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