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We consider a two-unit cold standby system attended by two repairmen and subjected to
a priority rule. In order to describe the random behavior of the twin system, we employ a
stochastic process endowed with state probability functions satisfying coupled Hokstad-
type differential equations. An explicit evaluation of the exact solution is in general quite
intricate. Therefore, we propose a numerical solution of the equations. Finally, particular
but important repair time distributions are involved to analyze the long-run availability
of the T-system. Numerical results are illustrated by adequate computer-plotted graphs.

1. Introduction

Standby provides a powerful tool to enhance the reliability, availability, quality, and safety
of operational plants, see, for example, [3, 7, 14]. However, in practice, standby systems
are often subjected to an appropriate priority rule. For instance, the external power supply
station of a technical plant has usually overall priority in operation with regard to an
internal (local) power generator kept in cold or warm standby [3]. The local generator is
only deployed if the external power station is down.

Cold or warm standby systems subjected to a priority rule and attended by a repair
facility have received considerable attention in the current literature, see, for example,
[1, 2, 4, 5, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21].

As a variant, we consider a twin system composed of a priority unit (the p-unit) and
a nonpriority unit (the n-unit) kept in cold standby. The p-unit has overall (break-in)
priority in operation with regard to the n-unit, that is, the n-unit is only used when the
p-unit is down. In order to avoid undesirable delays in repairing failed units, we sup-
pose that the entire system (henceforth called the T-system) is attended by two different
repairmen. The T-system satisfies the usual conditions, that is, independent identically
distributed random variables, instantaneous and perfect switch [3], and perfect repair
[6]. Each repairman has his own particular task. Repairman � is skilled in repairing the
n-unit, whereas repairman � is an expert in repairing the p-unit. Both repairmen are
jointly busy, if and only if, both units (p-unit and n-unit) are down. In any other case, at
least one repairman is idle.

Copyright © 2005 Hindawi Publishing Corporation
Mathematical Problems in Engineering 2005:1 (2005) 75–85
DOI: 10.1155/MPE.2005.75

http://dx.doi.org/10.1155/S1024123X04406085


76 Numerical availability of a priority system

In order to describe the random behavior of the T-system, we employ a stochastic
process endowed with transition probability functions satisfying steady-state Hokstad-
type differential equations. Unfortunately, the exact solution procedure is quite intricate
(see, [21, page 359] and Remark 4.1). Therefore, we propose a numerical solution of the
equations.

Finally, current repair time distributions (such as the Weibull-Gnedenko distribution)
are involved to compute the long-run availability of the T-system. The results are illus-
trated by adequate computer-plotted graphs.

2. Formulation

Consider a T-system satisfying the usual conditions. The p-unit has a constant failure rate
[15] λ > 0 and a general repair time distribution R(·),R(0)= 0, with mean ρ. The opera-
tive n-unit has a constant failure rate λs > 0, but a zero failure rate in standby (the so-called
cold standby state) and a general repair time distribution RS(·),RS(0)= 0, with mean ρs.
In order to describe the random behavior of the T-system, we introduce a stochastic pro-
cess {Nt, t ≥ 0} with arbitrary discrete state space {A,B,C,D} ⊂ [0,∞), characterized by
the following mutually exclusive events:

(i) {Nt =A}: “the p-unit is operative and the n-unit is in cold standby at time t,”
(ii) {Nt = B}: “the n-unit is operative and the p-unit is under repair at time t,”

(iii) {Nt = C}: “the p-unit is operative and the n-unit is under repair at time t,”
(iv) {Nt =D}: “both units are simultaneously down at time t.”

State D is called the system-down state.
Figures 2.1, 2.2, 2.3, and 2.4 display a functional block diagram of the T-system oper-

ating in states A, B, C, and D.
Observe that the process {Nt, t ≥ 0} is non-Markovian. A Markov characterization of

the process is piecewise and conditionally defined by:

(i) {Nt}, if Nt = A (i.e., if the event {Nt = A} occurs),
(ii) {(Nt,Xt)}, if Nt = B, where Xt denotes the remaining repair time of the p-unit

under progressive repair at time t,
(iii) {(Nt,Yt)}, if Nt = C, where Yt denotes the remaining repair time of the n-unit

under progressive repair at time t,
(iv) {(Nt,Xt,Yt)}, if Nt =D.

The state space of the underlying piecewise linear (vector) Markov process is given by

A∪ {(B,x); x ≥ 0
}∪ {(C, y); y ≥ 0

}∪ {(D,x, y); x ≥ 0; y ≥ 0
}
. (2.1)

Next, we consider the T-system in stationary state (the so-called ergodic state) with
invariant measure {pK ; K =A,B,C,D},∑K pK = 1, where

pK := lim
t→∞P

{
Nt = K|N0 = A

}
. (2.2)
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Figure 2.1. Functional block diagram of the T-system operating in state A.
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Figure 2.2. Functional block diagram of the T-system operating in state B.
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Figure 2.3. Functional block diagram of the T-system operating in state C.
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Figure 2.4. Functional block diagram of the T-system in state D.
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It can be demonstrated that the invariant measure exists for arbitrary R and RS with
finite mean. However, in order to keep the analysis as simple as possible, we henceforth
assume that R and RS have bounded densities on [0,∞), denoted by r and rs. Finally, we
introduce the measures

pB(x)dx := lim
t→∞P

{
Nt = B, Xt ∈ (x,x+dx]|N0 =A

}
,

pC(y)dy := lim
t→∞P

{
Nt = C, Yt ∈ (y, y +dy]|N0 =A

}
,

pD(x, y)dxdy := lim
t→∞P

{
Nt =D, Xt ∈ (x,x+dx],Yt ∈ (y, y +dy]|N0 = A

}
.

(2.3)

Note that, for instance, pD =
∫∞

0

∫∞
0 pD(x, y)dxdy.

3. Long-run availability

We recall that the T-system is only available (functioning) in statesA, B, andC. Therefore,
the long-run availability of the operational plant, denoted by �, is given by �= 1− pD.
Invoking the substitutions pB(·) = pAϕB(·), pC(·) = pAϕC(·), pD(·,·) = pAϕD(·,·) and
the law

∑
K pK = 1 entails that pA = 1/(1 + ΦB + ΦC + ΦD), where ΦB := ∫∞0 ϕB(x)dx,

ΦC := ∫∞0 ϕC(y)dy and ΦD := ∫∞0
∫∞

0 ϕD(x, y)dxdy. Hence,

�= 1 +ΦB +ΦC

1 +ΦB +ΦC +ΦD
. (3.1)

4. Differential equations

In order to determine the ϕ-functions, we first construct a system of coupled steady state-
type differential equations based on a time-independent version of Hokstad’s supplemen-
tary variable technique (see, e.g., [22, page 526] for further details). For x > 0, y > 0, we
obtain

λ= ϕB(0) +ϕC(0), (4.1)(
λs− d

dx

)
ϕB(x)= ϕD(x,0) + λr(x), (4.2)

(
λ− d

dy

)
ϕC(y)= ϕD(0, y), (4.3)

(
− ∂

∂x
− ∂

∂y

)
ϕD(x, y)= λsϕB(x)rs(y) + λϕC(y)r(x). (4.4)

Remark 4.1. A particular but important family � of current repair time distributions
with nonrational characteristic functions, such as the Weibull-Gnedenko and Lognormal
distributions, are fairly suitable to model repair times. Unfortunately, if both R and RS

belong to �, an explicit evaluation of the exact solution of (4.1), (4.2), (4.3), and (4.4) in
terms of finite linear combinations of known algebraic and/or transcendental functions
is as good as excluded (see [21, page 361] for further details). Therefore, we propose a
numerical solution of the equations.
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5. Numerical scheme

In order to construct an appropriate numerical procedure, we first remark that the ϕ-
functions are vanishing at infinity irrespective of the asymptotic behavior of the repair
time density functions! Therefore, a numerical procedure to solve the equations in the
region (0,∞)× (0,∞) may be converted into a numerical solution procedure in the trun-
cated region (0,L)× (0,L), for some L > 0, with prescribed boundary conditions ϕB(L)=
ϕC(L) = ϕD(L,·) = ϕD(·,L) = 0. Let ϕB,i := ϕB(xi), ϕC, j := ϕC(yj), ϕD,i, j := ϕD(xi, yi),
where xi := i∆, yj := j∆, i = 0, . . . ,N + 1; j = 0, . . . ,N + 1; ∆ := L/N . We propose the fol-
lowing numerical scheme. Let k be the iteration number. Given ϕk+1

D,i,N+1 = 0, ϕk+1
D,N+1, j = 0,

ϕk+1
B,N+1 = 0, ϕk+1

C,N+1 = 0, and the values of ϕk
B,i and ϕk

C, j , we compute ϕk+1
D,i, j by means of the

two-point first-order approximation of (4.4), namely,

ϕk+1
D,i, j =

1
2

(
ϕk+1
D,i, j+1 +ϕk+1

D,i+1, j

)
+
∆

2

(
λsϕ

k
B,irs, j + λϕk

C, j ri
)
, (5.1)

i=N ,N − 1, . . . ,0 and j =N ,N − 1, . . . ,0.
Next, we calculate ϕk+1

B,i and ϕk+1
C, j by means of the first-order approximations of (4.2)

and (4.3) given by

ϕk+1
B,i =

1
γB

(
ϕk+1
B,i+1

∆
+ϕk+1

D,i,0 + λri

)
,

ϕk+1
C, j =

1
γC

(ϕk+1
C, j+1

∆
+ϕk+1

D,0, j

)
,

(5.2)

where γB := λs + 1/∆ and γC := λ+ 1/∆. Finally, in order to satisfy (4.1) we use the nor-
malizing procedure

ϕk+1,new
C, j = λ

ϕk+1
C, j

ϕk+1
C,0 +ϕk+1

B,0

,

ϕk+1,new
B,i = λ

ϕk+1
B,i

ϕk+1
C,0 +ϕk+1

B,0

.

(5.3)

Remarks 5.1. Let ϕ∆ denote a numerical solution obtained with the space-step ∆. The
relevant numerical error is then evaluated on a nested grid by ε := |ϕ∆−ϕ∆/2|. However,
such an estimate is only accurate if L is large enough. Roughly speaking, if max(r(x),rs(x))
at x = L is small, then (most likely) this particular L is appropriate. However, such a “bru-
tal force” approach may require a large number of grid points and is therefore rarely ap-
plicable. We illustrate the phenomenon by comparing the exact and the numerical solu-
tion in the most simple case, that is, let R(x)= 1− e−x, RS(y)= 1− e−y . Then, ϕD(x, y)=
lDe−(x+y), ϕC(y)= lCe−y , ϕB(x)= lBe−x, where lD := λs(λ+ 1)λ/(λs + λ+ 2), lC := λsλ/(λs +
λ+ 2), lB := λ(λ+ 2)/(λs + λ+ 2).

Figure 5.1 shows the numerical error

εM :=max
{∣∣ϕexact

D −ϕD

∣∣,
∣∣ϕexact

C −ϕC

∣∣,
∣∣ϕexact

B −ϕB

∣∣} (5.4)

versus the grid size for various L.
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Figure 5.1. The horizontal axis denotes the logarithm of the numerical error, the vertical axis denotes
the number of the grid points, (1) L= 0.4; (2) L= 1.0; (3) L= 1.5; (4) L= 2; (5) L= 4; (6) L= 6; (7)
L= 10; (8) L= 50.
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Figure 5.2. Spatial distribution of εD , (1) L= 1.5; (2) L= 3; (3) L= 6.

Observe that, if L is not large enough, εM does not decrease as ∆ decreases (see
Figure 5.1). On the other hand, too large L (consequently, too large ∆) lead to large
numerical errors. For instance, the error with L = 30 is larger than 2.5 · 10−2 for any
N ∈ [20,100], whereas the error with L= 4 is less than 2.5 · 10−2. There could be multi-
ple options too. For instance, an error less than 2.5 · 10−2 is achieved either with L = 4,
N = 15, or L= 6, N = 22, or L= 10, N = 38.

Figure 5.2 shows a two-dimensional spatial distribution of the error εD := |ϕexact
D −ϕD|

for various L. Clearly, εD could be increasing near the origin as L increases. However, the
error decreases for large x and y.



E. J. Vanderperre and S. S. Makhanov 81

6. Trial-and-error procedure

The complicated behavior of the numerical error requires an adaptive choice of ∆ and
L. Therefore, we introduce the subordinate errors ε1 := |ϕ∆,L − ϕ∆,L/2| and ε2 := |ϕ∆,L −
ϕ∆/2,L|, where ε1 characterizes the numerical error caused by truncation of the infinite
region and ε2 the numerical error related to the first-order approximants. In order to
find the optimal pair (L,∆), we first specify the required accuracy ε. Next, we propose the
following trial-and-error procedure: we vary L until ε1 < ε and then ∆ until ε2 < ε. Finally,
we introduce the following.

7. Application. The Weibull-Gnedenko distribution

We consider the particular but important case of Weibull-Gnedenko repair time distri-
butions, that is, let R(x)= 1− e−xβ1 , RS(y)= 1− e−yβ2 . Obviously, the optimal pair (L,∆)
depends on λ, λs, β1, and β2. We demonstrate the trial-and-error procedure applied to
the particular case λ = 1, λs = 0.1, β1 = 2, β2 = 3. However, no restrictions are imposed
on the analysis of � for arbitrary values of λ, λs, β1 and β2. Let ε = 10−3.

First, we vary L, as shown in Table 7.1, until ε1 < ε. Next, we vary ∆, as shown in
Table 7.2, until ε2 < ε. A spatial distribution of ε1 and ε2 is depicted in Figures 7.1 and
7.2.

Table 7.1. The L trials.

L N ∆ ε1

3 40 3/40 1.9 · 10−2

6 80 3/40 7.4 · 10−4

Table 7.2. The ∆ trials.

L N ∆ ε2

6 80 3/40 6.8 · 10−3

6 160 3/80 3.3 · 10−3

6 320 3/160 9.2 · 10−4
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Figure 7.1. Spatial distribution of ε1, (1) L= 3; (2) L= 6.
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Figure 7.2. Spatial distribution of ε2 for N = 320.
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Figure 7.3. Numerically generated: (1) pB(x)/1.5, (2) pC(x), (3) pD(x, y), λs = 0.3 λ= 1.0. Note that
pB is divided by 1.5 due to scaling.
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Figure 7.4. Numerically generated: (1) pB(x)/1.5, (2) pC(x), (3) pD(x, y), λs = 0.7 λ= 1.0. Note that
pB is divided by 1.5 due to scaling.

Figure 7.3 displays pB(·), pC(·), and pD(·,·) for λ= 1, λs = 0.3 and Figure 7.4 for λ=
1, λs = 0.5. Figure 7.5 shows pD(x, y) for various λs. Let �β1,β2 (λ,λs) denote the long-run
availability as a function of λ and λs.
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Figure 7.5. Numerically generated pD(x, y), λ= 1.0, (1) λs = 0.1, (2) λs = 0.3, (3) λs = 0.7.
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Figure 7.6. Numerically generated long-run availability.

Figure 7.6 shows that the long-run availability exhibits a nonlinear behavior for suf-
ficiently large λ and λs (see also Table 7.3). Finally, Figure 7.7 displays the deviations
d1 := |�2,2 −�2,4|, d2 := |�2,2 −�4,2|, d3 := |�2,2 −�4,4|. The plot reveals that � is
fairly insensitive for β-variations.
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Table 7.3. Long-run availability �2,2(λ,λs).

λ/λs 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1 0.9950 0.9895 0.9837 0.9775 0.9709 0.9640 0.9566 0.9489 0.9408 0.9324

0.2 0.9908 0.9811 0.9706 0.9596 0.9480 0.9358 0.9231 0.9098 0.8962 0.8821

0.3 0.9874 0.9740 0.9599 0.9450 0.9295 0.9133 0.8965 0.8792 0.8615 0.8434

0.4 0.9845 0.9681 0.9509 0.9330 0.9143 0.8949 0.8750 0.8546 0.8338 0.8128

0.5 0.9820 0.9631 0.9434 0.9229 0.9016 0.8797 0.8573 0.8345 0.8114 0.7882

0.6 0.9798 0.9588 0.9369 0.9143 0.8909 0.8670 0.8426 0.8179 0.7930 0.7680

0.7 0.9779 0.9550 0.9313 0.9069 0.8818 0.8562 0.8301 0.8039 0.7775 0.7512

0.8 0.9762 0.9517 0.9265 0.9005 0.8740 0.8469 0.8195 0.7920 0.7644 0.7370

0.9 0.9748 0.9488 0.9222 0.8949 0.8671 0.8389 0.8103 0.7817 0.7532 0.7249

1.0 0.9734 0.9462 0.9184 0.8900 0.8611 0.8318 0.8024 0.7729 0.7435 0.7145
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Figure 7.7. Spatial deviations di, i= 1,2,3.

8. Conclusion

An effective statistical analysis of the T-system requires the solution of coupled Hokstad-
type differential equations. Our numerical solution procedure, endowed with a simple
and robust algorithm, allows to compute and to analyze the long-run availability for a
general class of current repair time distributions with tangible engineering applications.
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