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Leta, ER,,E(O, 1),i= 1,2 m-2,0<, <2< <m_2 <21,witha -.’_2ai
21be given. Let x(t) E W (0,1) be such that x (0) 0, x(1) -i=1 aix(i) (*) be given. This

paper is concerned with the problem of obtaining Poincar6 type a priori estimates of the
form Ilxllo _< cIIx"ll , The study of such estimates is motivated by the problem ofexistence
of a solution for the Caratheodory equation x"(t)=f(t,x(t),x’(t))+e(t), 0<t< 1,
satisfying boundary conditions (.). This problem was studied earlier by Gupta et al. (Jour.
Math. Anal. Appl. 189 (1995), 575-584) when the ai’s, all had the same sign.
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1 INTRODUCTION

Let ai E R,iE (0, 1),i= 1,2,... ,m- 2, 0 < 1 < 2 <"" < m-2 < 1, with
o ’.12ai be given. Let x(t) W2’1(0, 1) be such that x’(0) 0,
X(]) im=-2 aix(i) be given. We are interested in obtaining Poincar6
type a priori estimates of the form

Ilxllo <_ CIl"ll,. ()

* Corresponding author.
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The study of such estimates is motivated by the problem ofexistence ofa
solution for the multi-point boundary value problem

x"(t) f(t,x(t),x’(t)) -F e(t),
m-2

x’(0) 0, x(1) Z aix(i),
i=1

0<t<l,

(2)

where f: [0, 1] x R2 -- R is a function satisfying Caratheodory’s condi-
tions and e:[0, 1]H R be a function in LI[0, 1]. We also obtain some
sharp Poincar6 type estimates of the form Ilxll _< CIIx"ll when m 3,
i.e. for x(t) E W2’1(0, 1) with x’(0) =0, x(1) ax(rl), where V E (0, 1) and
a E R are given. We apply our estimates to the problem ofexistence of a
solution for the multi-point boundary value problem (2) and for the
three-point boundary value problem

x"(t) f(t,x(t),x’(t)) + e(t),
x’(0) 0, x(1) ax(7).

0<t<l,
(3)

We present the existence theorems for the boundary value problems (2)
and (3) in Section 3.
The study of multi-point boundary value problems for linear second

order ordinary differential equations was initiated by II’in and Moiseev
in [19,20] motivated by the work of Bitsadze and Samarski on non-local
linear elliptic boundary problems, [1-3]. We refer the reader to [4-17] for
some recent results on nonlinear multi-point boundary value problems.

2 A PRIORI ESTIMATES

In this section, we will establish some a priori estimates of the form (1).
We recall that for a ER, a+=max{a, 0}, a_=max{-a, 0} so that
a a+ a_ and lal- a+ + a_.

THEOREM Let ai R, (i (0, 1), 1,2,..., rn 2, 0 < 1 < 2 <"" <
m-2 < 1, with a- -’12 ai =/= be given. Then for x(t) W 2’1(0, 1)
with x’(O) O, x(1) -2 aix((i) we have

Ilxlloo < Cllx"ll , (4)
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where

j= 1,2,...,m- 2

Proof Since x(t)E w2’l(0, 1) there exists a c E [0, 1] such that Ilxll=
Ix(c)l. We may assume that x(c)> 0, by replacing x(t) by -x(t), if
necessary. Now, two cases arise; either c E [0, 1) or c 1. In case, c E [0, 1)
we must have xP(c) O. First we set am-1 and (m-1 1, to write the
condition x(1) 7’=2 aix(i) in the symmetric form im=- aix(i) 0
and then we apply the Taylor’s formula with integral remainder after
second term at each i (0, 1), i- 1,2,..., m 1, to get

X(i) X() -[- ri,

where ri ( s)x" (s) ds <_ O, 1, 2,..., m 1.

Multiplying the equation in (5) by ai, i-- 1,2,..., m 1, and adding the
resulting equations we obtain

m-1 m-1 m-1 m-1

0--- Z aix(i) Z aix(c) + airi-- (o- 1)x(c) + airi.
i= i= i= i=

(6)

Now, (6) implies that

m-1

0 < x(c)
m-

ai fc ii (i- s)x"(s)dsri

’(i s)x" (s) ds I,
(7)
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since ri= ffi (i- s)x"(s)ds <_ O, i= 1,2,..., m- 1. We, next, observe
that[ffi( s)x"(s) ds[ <_ [i c[ "IL I ()1 dl _< I, 1 fo I"()[ d,

1, 2,..., m- 1. We thus see from (7) that

m-’(a) fIlxlto x(c) <_ (i- s)x"(s) ds
i--1

1--O-

l

_< ai [i c[ [x"(s)[ as
\i--1

1-a-

< max Ii- u] (s)] ds. (8)
-elo,]ki= 1-

Since, now, i%](ai/(1-))_]i- u is a piecewise linear function,
its maximum is attained at one of the points 0 < a < 2 <"" <-2 <
_

1. Accordingly we get

max ]-_-- Ii- u[
ue[O,1] \ i=1

max

i=(lai ) (1-i),Y(laia)_ci +--Og-
i=1

1--a +’

(1)(1’ a2 a)- [ci cj[ + (1- j),
i=l,i#j

-a +

j= 1,2,...,m-2

(9)

and estimate (4) holds in this case.
Finally, let us consider the case when c= 1, so that Ilxll--x(1).

Suppose, first, that a < 1. Now we have

m-2

0 < (1 a)x(1) ai(x(i) x(1)).
i=1

NOW,
such

for
that

each i- 1,2,...,m- 2 there exists a O"iE (i,1)
0 < X(1) X(i) (1 i)x’ (fie) (1 i) fo’ x" (s) ds.
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It follows that

m-2

f0cri(1 )Ilxll ’ ai(i 1) x" (s) as
i=1

m-2

f0ri_< (ai)_(1 i) x t!(s) ds
i=1

m-2

< (ai)_(1
i=1

and thus

m-2

Ilxll _< o -(1 sCi) llx I1 1,

in view of (9). Similarly, if c > 1, we have that

m-2

f00-i(a 1)I[xl[ ai(1 i) x tt (s) ds
i=1

m-2

foo ai

<__ (a/)+(1 i) Xtt(s) ds
i=1

m-2

(ai)+(1
i=1

and again we have

i=1

__( ai ) ,, < C]lx,,
/=1

c -(1 i) IIX II1 I1,

in view of (9). Thus estimate (4) holds in this case too.
This completes the proof of the theorem.

Remark 1 LetcERandr/E(0,1) begiven. Thenforx(t)E w2’l(0,1)
with x(0)= 0, x(1)= cx07) we see from Theorem that the estimate



356 C.P. GUPTA AND S. TROFIMCHUK

Ilxll _< CIIx"ll holds with

w) +max
+ I1 + I1

if a < -1,

/ 11 if-1 < a < 0,
/ I1

ifO<a<l
a

max{r, r/} if a > 1.

The following theorem gives a better estimate than the one given by
Theorem in the case of a three-point boundary value problem.

THEOREM 2 Let a E R and E (0, 1) be given. Thenfor x(t) W2’1(0, 1)
with x’(O) O, x(1) ax(rl) we have

Ilxll MI x"ll,, (10)

where

M=max{ ]al(1-r/) l+[a])/ I1 / I1 /fa <-1.

M-- -1 <a<l,
1-

M=max if a > and a <
a-1

M=max a>l anda>la-l’ a-1

Proof For a _< 0 we see from Theorem that

M=max{ [al(1-r/) l+r/la[)+ I1 + I1
This implies, in particular, for a < -1 that

M max( [a[ (1- r/) l+r/[a’}/ Il / Icl
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Now, we note that for -1 < a < 0, that

lce
-4- /Icel > lal(1 + 7) > I1(1 )
-4-Ice] 4- I1 + I1

and so we again see from Theorem that M=(1-cer/)/(1- a) if
-1 <ce<0.
We, next, prove thatM (1 cerl)/(1 ce) if0 < ce < 1. For this, we see

using mean value theorem that there exists an E (r/, 1) such that
x(1) x(r/) (1 r/)x’(), which implies using x(1) cex(rl) that x(1)
ce(1-)/(ce-1)x’(). It then follows from the relation x(t)= x(1)-
fl x’(s) as that

in view of the equation x’(t) fd x" (s) ds, for E [0, since x’(0) 0.
Thus M (1 a7)/(1 a), if < a < 1.

Finally, we consider the case ce > 1. Let x(r/) z so that x(1) cez. We
may assume without any loss of generality that z > 0, replacing x(t) by
-x(t) ifnecessary. Suppose, now, Ilxll- so that there exists a c [0, 1]
such that either x(c) or x(c) 1. Weconsider all possible cases ofthe
location for c.

(i) Suppose that c [0, 7] and x(c) 1. Then x’(c) O, c =/: rl. Now, by
mean value theorem there exist ul [c, /], u2 [/, 1] such that

Y’(//1) X(T/) X(C) Z X(1) X(/) CeZ Z
(.)

r/-c r/-c -r/ -r/

We note that Xt(//1) O, X/(//2) 0 since 0 _< z < and ce > 1. It follows
that

XII(s)[ ds > x (s) ds + x"(s) ds 2]x’(//1)l 4- x!(//2)

21-z cez-z {> min 21-z cez-z

r- c r ce[O,n),e[o,/] r- c r J
> min{ 2 2(a-l) ce-1 } {2elo,/ r- c’ ce(r!- c) + > min -,
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(ii) Let, now, c E[0, r/], x(c)--1. Then since x’(c)=O, c7, we

again see from mean value theorem that there exist v3 E [e, r/], v4 [r, 1]
such that

x’(u3) x(r/) x(c) z + x’(u4) x(1) x(r/) az z

r/-c r/-c -r/ -r/

Again we note that x(u3) > 0, Xt(b4) __) 0 since 0 <_ z _< and a > and
we have

Ix" (s) ds _> x" (s) ds + x" (s) ds

Xt(/]3) + IXt(/]4)

l+z az-z 1+}1r/-e -r/ r/-
(11)

Let

l+z laz-z l+z
F(z, 0)

v-c

We need to estimate mince[o,,),ze[o,1/,lF(z, c). We note that F(0, c)= 2/
(r/- c) _> 2/r/for c [0, r/),

() a+l
F ,c =a(r/-c)+

a-1 a+l
(1 r/) aft/- e) a(1 -7)

for c E [0, r/). Let, now, Zo such that (aZo Zo)/(1 7) (1 + Zo)/
(r/- c)= 0 so that Zo- (1 -7)/(a7- -c(a- 1)). It is easy to see that

Zo E [0, 1/a] if r/> (a + 1)/2a and c E (0, (2at/- a 1)/(a 1)). In this
case we get

a-1 a-1
F(z’c)=arl c(a 1)

>
at/-

Accordingly we see that F(z, c) > min{2/r/, (a 1)/a(1 r/)} if at/_<
and F(z, c) >_ min{2/, (a 1)/a(1 r/), (a 1)/(at/- 1)} if at/> 1.
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We thus have from (11) that

3

x" (s) ds
-4

x" (s) ds

X’(//3) + IX’(//4)

l+z az-z +z
-7 rl-c

min{2r/ c(1 -r)
if or <

rain{2 o-1 o-1} if or > 1
r/ a(1-r]) at/-1

(iii) Next, suppose that c E (r/, 1), x(c) 1. Again, x’(c) 0 andwe have
from mean value theorem that there exist u5 E [r/, c],//6 [, such that

x’(us) x(c) x(rl) =,1 z
x (//6)-’ x(1) x(e) cz 1

c-r/ c-r/ -c -c

Note that x’(vs) > 0, Xt(//6) 0 since x(1) az < 1. Accordingly, we
obtain

Ix"(s)l ds _>
5

x"(s) ds + X
1! (S) ds

x’(//5) + Ix’(//6) x’(u5)l 2x’(//5) +

1- z 1- az 2(a-l)-> since 0 < z <-. (12)
c-r/ 1-c -a(1-r/)’ -a

(iv) Next, suppose that c (r/, 1), x(c)=- 1. Again x’(c)= 0 and we
have from mean value theorem that there exist//7 [/, c],//8 [c, 1] such
that

x’(//7) x(e) xCrl) -1 z
x’(//8) x(1) x(c) cez. +

c-r/ c-r/ -c -c
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Note that x’(u7) <_ O, x’(u8) >_ O. Accordingly, we obtain

Ix" (s) ds _> x" (s) ds + x" (s) ds

+ Ix’(-s)
21x’(u7)l + x’(u8)
l+z l+az 2
=2 >

c-r/ 1-c -c-r/ 1-c

2 2(a- 1)

(v) Finally suppose that e 1, so that x(1) az. We then have that
there exists a u9 E (, 1) such that x’(u9)=(a 1)(a(1 ))-. Thus

lx"(s)lds x"(s)ds x’(9)
(1 "We thus see from (i)-(v) that, for a > 1, (10) holds with

max if at/< 1,
M--

a-1

max if at/>a-1 a-1

This completes the proof of the theorem.

The following theorem shows that for -1 _< a < 1, M=(1-arl)/
(1 -a) is the best constant in (10).

THEOREM 3 Let-1 <_ a < 1, r/E (0, 1) and set

inf{llx"ll," x(t) e w2’l(o, 1), x’(O) O,

x(1) x(r/), Ilxlloo } M1.

Then M1 (1 a)/(1 ari).

Proof We first see from Theorem 2 that M1 _> (1- a)/(1- at/). We,
next, note that

l-r/ l_l-r/-l+ar/=(a-1)r/<0.
at/ at/
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Let, now, Zo (1 r/)/(1 at/) and e > 0 be such that 0 _< Zo + e < 1 and
let k (Zo + e)(a- 1)/(1 -7)< 0. We, next, consider the function (t)
defined by

(t)=l+Tt, if rE[0,

and

qo(t) k(t- rl) + (zo + e), if E It/, 1],

where

ks7 ke> 1, ")/ /5’-1/3
-z0-e

It is easy to check that

(t) w2’l(0, 1), 99’(0) 0, II(t)llo (o) 1, aw(/) (1)

and

J0
"1

f0IW"(t)[ dt= 171/(- 1) t-2 dt
1 -r/a

This gives for every > 0, sufficiently small so that zo + e < 1, that

(1 a
/ II(t) llo

[il ( r/a 1-a
l+e [[W"(t)l[1

and therefore

(>l-r/a l+e
M1- 1-a

for every e >0 sufficiently small. Thus M1--(1-a)/(1-at/). This
completes the proof of the theorem.

Remark 2 The following example shows that for r/=0.5; a=4.
Theorem 2 gives the best possible constant M 2/3 in estimate (10).
Indeed, consider the function

b(t) 2t3 for [0, 1/2], b(t)-- (3t- 1)/2 for [1/2, 1],
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we gave b(t) E w2’l(0, 1), IlqS"(t)ll 3/2 and

qS’(0) 0, 4b(1/2) b(1), qS(1) II(t)[10 2/31lqS"(t)lla

This shows that for this function the inequality in estimate (10) is indeed
an equality, proving the assertion.

Moreover, it is possible to construct functions for every c E R and
r/ (0, 1) for which the estimate (10) holds with an equality for the
corresponding M indicated in Theorem 2. We omit the details as it
becomes technical. However, we should point out that the ideas for
constructing such functions are generated by developing proofs for
estimate (10) similar to the case c > given here.

3 EXISTENCE THEOREMS

DEFINITION 4 A function f: [0, 1] x R2 w- R satisfies Caratheodory’s
conditions if (i) for each (x, y) R2, thefunction [0, 1] -f(t, x, y) R
is measurable on [0, 1], (ii) for a.e. [0, ], the function (x, y) R2

f(t,x,y) R is continuous on R2, and (iii)for each r > O, there exists

cr(t)Ll[0,1] such that If(t,x,y)l<_cr(t) for a.e. t[0,1] and all
(x, y) R2 with V/X2 -- y2 <_ r.

THEOREM 5 Let f: [0, 1] x R2 e--+ R be a function satisfying
Caratheodory’s conditions. Assume that there existfunctionsp(t), q(t), r(t)
such that thefunctions p(t), q(t), r(t) are in L (0, 1) and

If(t,x,x2)l <_ p(t)lxal + q(t)lxl + r(t) (13)

for a.e. [0, 1] and all (x,x2) R2. Let c R, c7 1, and rl (O, 1) be
given. Then, the three-point boundary value problem (3) has at least one
solution in C[0, 1]provided

M[IP(t)II1 + Ilq(t)lla < 1, (14)

where M is as given in Theorem 2.

Proof Let Xdenote the Banach space CI[0, 1] and Ydenote the Banach
space L(0, 1) with their usual norms. We define a linear mapping
L" D(L) C X Yby setting

D(L) {x e W2’1 (0, 1) x’(0) 0, x(1) cx(r/)),
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and for x E D(L),

Lx x".

We also define a nonlinear mapping N"X Yby setting

(Nx)(t) f(t,x(t),x’(t)), E [0, 1].

We note that Nis a boundedmapping from Xinto Y. Next, it is easy to see
that the linear mapping L’D(L)CX Y, is a one-to-one mapping.
Next, the linear mapping K" YX, defined for y Yby

(Ky)(t) (t- s)y(s) ds + At,

where A is given by

f0 f01A(1 at/) a (r/- s)y(s)ds s)y(s) s

is such that fory Y, Ky D(L) and LKy y; and for u E D(L), KLu u.
Furthermore, it follows easily using the Arzela-Ascoli theorem that KN
maps a bounded subset ofXinto a relatively compact subset ofX. Hence
KN:XXis a compact mapping.
We, next, note that x E C1[0, 1] is a solution of the boundary value

problem (3) if and only if x is a solution to the operator equation

Lx Nx+e.

Now, the operator equation Lx Nx + e is equivalent to the equation

x KNx + Ke.

We apply the Leray-Schauder continuation theorem (see, e.g. [18],
Corollary IV.7) to obtain the existence ofa solution for x KNx / Ke or
equivalently to the boundary value problem (3).
To do this, it suffices to verify that the set ofall possible solutions ofthe

family of equations

x"(t) Af(t,x(t),x’(t)) + Ae(t), 0 < < 1,
x’ (O) O, x( x(),

(15)

is, a priori, bounded in C1[0, 1] by a constant independent of A [0, 1].
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This is straightforward to prove using the equation in (15), our
assumptions that f(t,x(t),x’(t))ELl(O, 1), (13), estimate (10), the
estimate ]lx’ll _< IIx"[[ for x(t)E w2’l(0, 1), with x’(0)=0 and the
assumption (14).

This completes the proof of the theorem.

THEOREM 6 Letfsatisfy all conditions ofTheorem where the inequal-
ity (14) is replaced with Cllp(t)ll / Ilq(t)lll < 1, where C is as given in
Theorem 5. Let ai R, i (0, 1), i= 1,2,..., rn 2, 0 < 1 < 2 <"" <
m-2 < 1, with c -]’_ ai 1, be given. Then the multi-point boundary
value problem (2) has at least one solution in C1[0, ].

This proof is quite similar to the proof of Theorem 5 and we omit it
accordingly.
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